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Abstract 
Auctions are important market mechanisms for the allocation of goods  

and services. Combinatorial auctions are those auctions in which bidders can place bids 
on combinations of items. The advantage of combinatorial auctions is that the bidder 
can more fully express his preferences. This is particular important when items  
are complements. Allowing bidders more fully to express preferences often leads  
to improved economic efficiency and greater auction revenues. A typical combinatorial 
auction problem is the so called winner determination problem. The problem illustrates 
the possibility to formulate combinatorial auctions as mathematical programming 
problems as well as the complexity of combinatorial auctions. Auctions with complex 
bid structures are called multiobjective auctions, since they address multiple objectives 
in the negotiation space. Multiobjective optimization can be helpful for detailed analysis 
of combinatorial auctions. Buyers can specify weights and aspiration levels that express  
their desired values on the attributes of the items to be purchased. Interactive methods  
for multiobjective optimization are proposed for analysis of combinatorial auctions and 
for negotiation process.   

Keywords 
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INTRODUCTION 

Auctions are important market mechanisms for the allocation of goods 
and services. They are preferred often to other common processes because they 
are open, quite fair, easy to understand by participants, and lead to economically 
efficient outcomes. Many modern markets are organized as auctions. Design  
of auctions is a multidisciplinary effort made of contributions from economics, 
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operations research, informatics, and other disciplines. Combinatorial auctions 
are those auctions in which bidders can place bids on combinations of items 
called bundles. The advantage of combinatorial auctions is that the bidder  
can more fully express his preferences. This is particularly important when 
items are complements. The auction designer also derives value from 
combinatorial auctions. Allowing bidders more fully to express preferences 
often leads to improved economic efficiency and greater auction revenues. 
However, alongside their advantages, combinatorial auctions raise a host  
of questions and challenges [see 5; 6].  

Auction theory has attracted tremendous interest from both the economic 
side as well as the Internet industry. An auction is a competitive mechanism  
to allocate resources to buyers based on predefined rules. These rules define  
the bidding process, how the winner is determined, and the final agreement.  
In electronic commerce transactions, software agents that negotiate on behalf  
of buyers and sellers conduct auctions. The popularity of auctions and  
the requirements of e-business have led to growing interest in the development  
of complex trading models [1; 2; 9]. 

Classification of auctions is based on some specific characteristics as:  
1. The numbers of sellers and buyers. 
2. The number of items. 
3. Traded items (indivisible, divisible, pure commodities, structured commo-

dities). 
4. Participants’ roles in auctions (one-sided, multilateral auctions). 
5. Preferences of the participants. 
6. The form of the private information participants have about preference. 
7. Objectives of auctions (optimization, allocation rules, pricing rules). 
8. Evaluating criteria.  
9. Complexity of bids (simply, related bids). 

10. Organization of auctions (single-round, multi-round, sequential, parallel, 
price schemes). 

The problem, called the winner determination problem, has received 
considerable attention in the literature. The problem is formulated as: Given  
a set of bids in a combinatorial auction, find an allocation of items to bidders 
that maximizes the seller's revenue. It introduced many important ideas, such as 
the mathematical programming formulation of the winner determination prob-
lem, the connection between the winner determination problem and the set 
packing problem as well as the issue of complexity.  

Iterative combinatorial auctions with multiple objectives are proposed  
in the paper as complex trading models. A solution procedure is presented. 
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1. WINNER DETERMINATION PROBLEM 

Many types of combinatorial auctions can be formulated as mathematical 
programming problems. From among different types of combinatorial auctions 
we present an auction of indivisible items with one seller and several buyers. 
Let us suppose that one seller offers a set G of m items, j = 1, 2, …, m, to  
n potential buyers. Items are available in single units. A bid made by buyer i, 
i = 1, 2, …, n, is defined as: 

Bi = {S, vi(S)} 
where: 

S ⊆ M is a combination of items, 
vi(S) is the valuation or offered price by buyer i for the combination of items S. 

 
The objective is to maximize the revenue of the seller given the bids 

made by buyers. Constraints are imposed such that no single item is allocated  
to more than one buyer and that no buyer obtains more than one combination.  

1.1. Problem formulation 

Let xi(S) be a bivalent variable specifying if the combination S is assigned 
to buyer i (xi(S)  = 1). The winner determination problem can be formulated  
as follows 

∑
=

n

i 1
∑
⊆MS

 vi(S)  xi(S)   →      max 

subject to: 

∑
⊆MS

 xi(S)   ≦ 1,  ∀ i,  i = 1, 2, …, n   

∑
=

n

i 1
∑
⊆MS

 xi(S)  ≦ 1,  ∀ j  ∊  M  

xi(S) ∊  {0, 1}, ∀  S  ⊆ M,  ∀ i,  i = 1, 2, …, n 

The objective function expresses the revenue. The first constraint ensures 
that no bidder receives more than one combination of items. The second 
constraint ensures that overlapping sets of items are never assigned. 
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The winner determination problem, i.e. determination of the items that 
each bidder wins, is not difficult in the case of non-combinatorial auctions.  
It would take O(nm) time where n is the number of bidders and m is the number  
of items. But in the case of combinatorial auctions, the winner determination 
problem is much more complex.  

 1.2. Complexity of the problem 

Complexity is a fundamental question in combinatorial auction design. 
There are some types of complexity: 
– computational complexity, 
– valuation complexity, 
– strategic complexity, 
– communication complexity. 

Computational Complexity covers such questions as: How much 
computation is required to compute an outcome given the bid information of the 
bidders. This is an extremely important question because winner determination 
problem is an NP-complete optimization problem. The winner determination 
problem turns out to be an instance of a weighted set packing problem.  
The weighted set packing problem is a problem of finding a disjoint collection  
of weighted subsets of a larger set with maximal total weight. Weighted set 
packing is a classical NP-complete problem. 

Valuation complexity deals with such questions as: How much 
computation is required to provide preference information within a mechanism? 
Estimating every possible bundle of items requires exponential space and hence 
exponential time. Bidders need to determine valuations for 2m -1 possible 
bundles. 

Strategic complexity concerns such questions as: Which of the 2m -1 
bundles to bid on? What is the best strategy for bidding? Must bidders model 
the behavior of other bidders and solve problems to compute an optimal 
strategy? For instance, in a sealed bid combinatorial procurement scenario, 
sellers will need to take not only their valuation of the bundles into conside-
ration, but also the bidding behavior of their competitors. This requires sophisti-
cated bidding logic. 

Communication complexity concerns such questions as: How much 
communication should be exchanged between bidders and auctioneer until  
an equilibrium price is reached and the mechanism computes an outcome.  
The amount of communication between the bidders and the auctioneer can 
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become quite high. For instance, in an iterative combinatorial auction, where 
individual valuations are revealed progressively in an iterative manner,  
the communication costs could be high if the auction were conducted in  
a distributed manner over space and/or time. The problem of communication 
complexity can be addressed through the design of careful bidding languages 
that provide expressive, but concise bids. 

2. MULTIDIMENSIONAL AUCTIONS 

Multidimensional auctions are examples of generalization of auctions. 
These auctions can be classified as: 
– multiunit auction,  
– multiitem auction,  
– multiobjective auction,  
– multiround auction.  

Multiunit auctions contain multiple units of items and makes possible 
volume discount auctions. In multiitem auctions one can place bids on combi-
nations of items; such auctions are called combinatorial auctions. In combina-
torial auctions multiple objectives can be defined, for instance, as: 
– revenue maximization − the seller should extract the highest possible price, 
– efficiency − the buyers with the highest valuation get the goods, 
– collusion possibility. 

Auctions with complex bid structures are also called multiobjective 
auctions, since they address multiple attributes of the items (quality, quantity, 
price) in the negotiation space. Multiobjective optimization can be helpful  
for detailed analysis of combinatorial auctions.  

In the iterative approach, there are multiple rounds of bidding and allo-
cation and the problem is solved in an iterative and incremental way. Iterative 
combinatorial auctions are attractive to bidders because they learn about their 
rivals' valuations through the bidding process, which could help them to adjust 
their own bids. 

Combinations of multidimensional characteristics are possible. We 
suggest to use an iterative process for multiobjective combinatorial auctions. 
Multiobjective combinatorial auctions require several key components to solve 
the process: 
– preference elicitation model, 
– multiobjective optimization model, 
– negotiation model. 
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The preference elicitation model is used to let the buyer express his 
preferences. The preferences are modeled by a combination of the dynamic 
version of Analytic Network Process and aspiration levels. The multiobjective 
optimization model selects the best offer for the buyer. For analysis of iterative 
combinatorial auctions we propose to use interactive methods for multiobjective 
optimization. The negotiation model helps to find a consensus by auctions. 
Auctions have emerged as a particularly interesting tool for negotiations. 
Combinatorial auctions provide a mechanism for negotiation between buyers 
and sellers. Various concepts of negotiation models can be used for modeling 
combinatorial auctions. 

3. PREFERENCE ELICITATION 

The key feature that makes combinatorial auctions most appealing is the 
ability for bidders to express complex preferences over bundles of items, 
involving complementarity and substitutability. Items are complements when  
a set of items has greater utility than the sum of the utilities for the individual 
items. Items are substitutes when a set of items has less utility than the sum  
of the utilities for the individual items.  

Two items A and B are complementary, if the following holds: 
v({A, B}) > v({A}) + v({B}) 

Two items A and B are substitute, if the following holds:   
v({A, B}) < v({A}) + v({B}) 

Different elicitation algorithms may require different means of re-
presenting the information obtained by bidders. Sandholm and Boutilier [15] 
describe a general method for representing an incompletely specified valuation 
functions. A constraint network is a labeled directed graph consisting of one 
node for each bundle b representing the elicitor's knowledge of the preferences 
of a bidder. A directed edge (a, b) indicates that bundle a is preferred to bundle 
b. Figure 1 represents an example of a constraint network for bundles of three 
items (A,B,C). 

The constraint network representation is conceptually useful and can  
be represented explicitly for use in various elicitation algorithms. But  
its explicit representation is generally tractable only for small problems, since  
it contains 2m nodes. For preference elicitation of bundles in a constraint 
network Analytic Network Process can be used. 
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Fig. 1. Constraint network 
 

The Analytic Hierarchy Process (AHP) is the method for setting priorities 
[11]. A priority scale based on reference is the AHP way to standardize 
nonunique scales in order to combine multiple performance measures. The AHP 
derives ratio scale priorities by making paired comparisons of elements on  
a common hierarchy level by using a 1 to 9 scale of absolute numbers.  
The absolute number from the scale is an approximation to the ratio wj/wk;  
it is then possible to derive values of wj and wk. The AHP method uses the 
general model for synthesis of the performance measures in the hierarchical 
structure: 

∑
=

=
n

j
jki wvu

1
j  

The Analytic Network Process (ANP) is the method [12] that makes  
it possible to deal systematically with all kinds of dependence and feedback  
in the performance system. The well-known AHP theory is a special case  
of the Analytic Network Process that can be very useful for incorporating 
connections in the system. 

The structure of the ANP model is described by clusters of elements 
connected by their dependence on one another. A cluster groups elements share 
a set of attributes. At least one element in each of the clusters is connected  
to some element in another cluster. The connections indicate the flow  
of influence between the elements (see Figure 2).  

{A,B,C} 

{A,B} {A,C} 

{A} 

{B,C} 

{B} {C} 

∅  
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Fig. 2. Clusters and connections in multiobjective combinatorial auctions 

 
The clusters in multiobjective combinatorial auctions can be sellers, 

buyers, bundles of items, and also evaluating criteria. Paired comparisons  
are inputs for preference elicitation in combinatorial auctions. A supermatrix  
is a matrix of all elements by all elements. The weights from the paired 
comparisons are placed in the appropriate column of the supermatrix. The sum 
of each column corresponds to the number of comparison sets. The weights  
in the column corresponding to the cluster are multiplied by the weight of the 
cluster. Each column of the weighted supermatrix sums to one and the matrix  
is column stochastic. Its powers can stabilize after some iterations to limited 
supermatrix. The columns of each block of the matrix are identical in many 
cases, though not always, and we can read the global priority of units. 

Recent work has focused on the question of how to limit the amount  
of valuation information provided by bidders by adaptively limiting the pre-
cision of the bids that are specified.  

Combinatorial auctions can be divided into auctioneer-side allocation 
auctions and bidder-side allocation auctions. The bidder-side allocation auctions 
were developed for small problems where bidders can cooperate in order to find 
a better allocation in each iteration without external help. In the auctioneer-side 
allocation auctions the auctioneer solves the winner determination problem after 
the bids are collected. The auctioneer provides then some kind of feedback  
to support the bidders in improving their bids in the next iteration. Usually  
the bidder’s current winning bids and item prices are used as the feedback.  
The key challenge in the iterative combinatorial auction design is to provide 
information feedback to the bidders after each iteration. Assigning prices  
to items and/or item bundles was adopted as the most intuitive mechanism  
of providing feedback. 

Sellers 

Buyers Criteria 

Bundles 
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The AHP and ANP are static, but in decision analysis in the modern 
world it is very important to take time into account. The DHP/DNP (Dynamic 
Hierarchy Process/Dynamic Network Process) methods have been introduced 
[12]. There are two ways to study dynamic decisions: structural, by including 
scenarios, and functional by explicitly involving time in the judgment process. 
For the functional dynamics there are analytic or numerical solutions. The basic 
idea of the numerical approach is to obtain the time dependent principal 
eigenvector by simulation.  

The Dynamic Network Process seems to be the appropriate instrument 
for analyzing dynamic network effects [7]. The method is appropriate also  
for the specific features of multiobjective combinatorial auctions. The method 
computes time dependent weights for bundles of items of weights of bidders 
(Figure 3). 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Time dependent weights 

 
In the multiobjective combinatorial auction model we take into account 

the auctioneer, bidders, criteria, and packages as clusters and different types  
of connections in the system. There are also some dependencies and feedback 
among elements and clusters. The dynamic version of the model is tested. 

We used the alpha version of the ANP software Super Decisions 
developed by Creative Decisions Foundation (CDF) for some experiments  
for testing the possibilities of the expression and evaluation of the multi-
objective combinatorial auction models (Figure 4).  

Battle zone 

Winner 

Loser 

Weights 

Time 
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Fig. 4. Multiobjective Combinatorial Auction Model 
 
We propose to combine the weight model of preference elicitation with 

multiobjective model based on aspiration levels ALOP [8]. The general 
formulation of an individual multiobjective decision problem is expressed  
as follows: 

z(x) = (z1(x), z2(x), ..., zk(x)) → “max” 

x ∈ X  
(1) 

where X is a decision space, x is a decision alternative and z1, z2, ..., zk are the 
objectives. The decision space is defined by objective restrictions and by mutual 
goals of all the agents in the aspiration level formulation. The decision 
alternative x is transformed by the objectives to objective values z ∈ Z, where  
Z is an objective space. Every agent has his own objectives. 

It appears that people tend to satisfy given conditions rather than attempt 
to optimize them. That means substituting the goals of reaching specified 
aspiration levels for the goals of maximizing. We denote by y(t) aspiration 
levels of the objectives and by Δy(t) changes of aspiration levels in the step t. 
We search for alternatives such that: 

z(x) ≥ y(t) 

x ∈ X 
(2) 
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According to heuristic information from the results of the condition (2) 
the agent changes the aspiration levels of objectives for step t + 1: 

y(t+1) = y(t) + Δy(t) (3) 
We can formulate the multiobjective decision problem as a state space 

representation. The state space corresponds to the objective space Z, where  
the states are the aspiration levels of the objectives y(t) and the operators  
are changes of the aspiration levels Δy(t). The start state is a vector of the initial 
aspiration levels and the goal state is a vector of the objective levels for the best 
alternative. 

4. MULTIOBJECTIVE OPTIMIZATION MODEL 

To find the ideal alternative we use the depth-first search method with 
backtracking procedure. The heuristic information is the distance between  
an arbitrary state and the goal state. 

We propose an interactive procedure ALOP (Aspiration Levels Oriented 
Procedure) for multiobjective linear programming problems, where the decision 
space X is determined by the linear constraints: 

X = {x ∈ Rn; Ax ≤ b, x ≥ 0} (4) 
and zi = cix, i = 1, 2, ... , k, are linear objective functions. Then z(x) = Cx,  
where C is a coefficient matrix of objectives. 

The decision alternative x = (x1,x2, ...,xn) is a vector of n variables.  

The agent states the aspiration levels y(t) for the objectives values. There  
are three possibilities for the aspiration levels y(t). The problem (2) can  
be feasible, infeasible, or else; has a unique nondominated solution. We verify 
the three possibilities by solving the problem: 

min
1

→= +

=

+∑ i

k

i
i d wv  (5) 

Cx – d+ = y(t) 

x ∈ X , d+ ≥ 0  
The value of the objective function in the problem (5) can be interpreted  

as an increase of utility. 
If the following holds: 

– v > 0, then the problem is feasible and di+ are proposed changes Δy(t)  

of aspiration levels which achieve a nondominated  solution in the next step, 
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– v = 0, then we obtained a nondominated solution, 
– the problem is infeasible, then we search for the nearest solution to  

the aspiration levels by solving the goal programing problem: 

min)1
1

→+= −+

=
∑ ii

k

i i
dd( 

z
v  (6) 

Cx − d+ + d- = y(t) 

x ∈ X , d+ ≥ 0, d- ≥ 0  
The solution of the problem (6) is feasible with changes of the aspiration 

levels Δy(t) = d+ − d-. For small changes of nondominated solutions the duality 
theory is applied. Dual variables to the objective constraints in the problem (6) 
are denoted by ui, i = 1, 2, ..., k. 

If the following holds: 

∑
=

=Δ
k

i

t
ii yu

1

)( , 0  (7) 

then for some changes Δy(t) the value v = 0 is not changed and we obtained 
another nondominated solution. The agent can state k-1 small changes  
of the aspiration levels Δyi(t), i = 1, 2, ... , k, i ≠ r, then the change  
of the aspiration level for criterion r is calculated from (7). The agent chooses  
a forward direction or backtracking. Results of the procedure ALOP are the path  
of tentative aspiration levels and the ideal solution. 

5. NEGOTIATION MODEL  

We propose a two-phase interactive approach for solving multiobjective 
negotiation problems: 
1. Finding the ideal alternative for individual agents. 
2. Finding a consensus for all the agents. 

In the first phase each agent searches for the ideal alternative by the 
ALOP procedure. In the second phase a consensus can be obtained by the 
search process and the principle of cooperativeness is applied. The heuristic 
information for the agent is the distance between his proposal and the 
opponent's proposal. We assume that all the agents found their ideal alterna-
tives. We propose an interactive procedure GROUP-ALOP for searching for  
a consensus. 
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For simplicity we assume the model with two agents: 
z1(x) → “max” 
z2(x) → “max” 
x ∈ X 

(8) 

The agents search for a consensus on a common decision space X and 
change the aspiration levels of the objectives y1, y2. The sets of feasible 
alternatives for the aspiration levels y1 and y2 are X1 and X2. 

z1(x) ≥ y1 

x ∈ X 
z2(x) ≥ y2 
x ∈ X (9) 

The consensus set S of the negotiations is the intersection of feasible sets 
X1 and X2: 

S = X1 ∩ X
2
 (10) 

When the aspiration levels change, the consensus set S is also changed. 
The agents search for one element consensus set S by alternating the consensus 
proposals. The image of partner's proposal can be taken as the aspiration levels 
in one’s own objectives space. In searching for a consensus the distance 
between the proposals is heuristic information. The paths of the tentative 
aspiration levels can be used for the backtracking procedure. The forward 
directions can be directed by the proposed new aspiration levels in step t + 1: 

y1(t +1) = (1-α)y1(t) + α z1(x2) 

y2(t +1) = (1-β)y2(t) + β z2(x1) 
where α, β ∈ <0,1> are the coefficients of cooperativeness. 

CONCLUSIONS 

Combinatorial auction is an important subject of intensive economic 
research which promises to increase efficiency and reduces exposure to risk  
in an economic environment where synergy is significant. The winner determi-
nation problem is by far the most researched issue in combinatorial auctions. 
The problem illustrates the possibility to formulate combinatorial auctions  
as mathematical programming problems and also the complexity of them. 

We propose to use multiobjective iterative combinatorial auctions. Multi-
objective optimization can be helpful for detailed analysis of combinatorial 
auctions. Iterative process helps the bidders express their preferences.  
A possible flexible approach is presented. The approach is based on the Dy-
namic Network Process and Aspiration Level Oriented Procedure. The combi-
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nation of such approaches can give more complex views on auctions.  
The iterative method is used for multiobjective optimization and also 
negotiation which model helps to find a consensus by auctions.  
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