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Abstract 
In this paper we propose a new approach for solving dynamic multiobjective 

decision making problems. The decision variants are generated in a discrete multistage 
model by forward/backward procedure of finding the set of all maximal elements based 
on Bellman’s principle of optimality. As the set of all maximal elements consists  
of a number of elements – decision variants, our problem is to find among them  
a compromise element based on decision maker´s preferences with respect to several 
decision criteria. The evaluation of the weights of the criteria is based on data given by 
pairwise comparison matrices using triangular fuzzy numbers. Extended arithmetic 
operations with fuzzy numbers for application of the generalized logarithmic least 
squares method are defined and six methods for ranking fuzzy numbers to compare 
fuzzy outcomes are proposed. A numerical example is presented to clarify the methodo-
logy. 

Keywords 
Multicriteria decision making, dynamic programming, multistage decision 

process, pairwise comparisons, fuzzy numbers, analytic hierarchy process (AHP). 
 

INTRODUCTION 

Most of decision making situations consist of sequential decision 
problems and have multiobjective character. One way of modeling such 
situations is multiobjective approach. The objectives can be described by means  
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of decision criteria given by elements from a partially ordered set. Here  
we consider a finite process divided into periods and for the decision criteria we 
use a set of fuzzy values modeling uncertainty of human judgments and 
evaluations. The goals of the individual periods are appropriately associated 
with the overall goal of the system and we look for efficient elements  
– sequences of decisions of the individual periods maximizing the objectives in 
the sense of Pareto. Forward/backward procedures of finding the set of all 
maximal elements based on Bellman´s principle of optimality have been 
investigated in [9, 10, and 11], see also citations therein. In real multistage 
decision problems the set of all efficient elements is, however, too large to be 
used as a direct decision support in the decision making process. That is why 
specific methods are needed for finding a “compromise” solutions, i.e. for 
narrowing the set of efficient elements, ideally to generate a single element, 
satisfying additional requirements, and serving as a decision support in  
the decision process. 

In this paper we propose a new method for finding such elements based 
on the analytical hierarchical process (AHP) which uses uncertain human 
preferences as input information. Instead of the classical eigenvector 
prioritization method, employed in the prioritization stage of the AHP, a fuzzy 
preference method, based on logarithmic least squares method, is applied.  
The resulting fuzzy AHP enhances the potential of the classical AHP for dealing 
with imprecise and uncertain human comparison judgments. It allows  
for multiple representations of uncertain human preferences by crisp, interval,  
and fuzzy judgments and makes it possible to find out a solution from 
incomplete sets of pair-wise comparisons. 

When applying the classical AHP in decision making process one usually 
encounters two difficulties:  
– evaluating pair-wise comparisons on a nine-point scale one does not deal 

with uncertainty, 
– decision criteria are not independent as is usually required. 

Here we deal with the first difficulty by proposing a new method which 
incorporates uncertainty by adopting pair-wise comparisons by triangular fuzzy 
numbers. The second difficulty taking into account interdependences between 
decision criteria is dealt with elsewhere, see [5]. 

The interface between hierarchies, multiple objectives, and fuzzy sets 
have been investigated by the author of the AHP, T.L. Saaty, as early as in 1978 
in [6]. Later, van Laarhoven and V. Pedrycz extended the AHP to fuzzy pair- 
-wise comparisons [8]. Here we propose a new and relatively simple method 
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based on the original approaches from [1, 3] and extend this method for finding 
a compromise efficient variant generated by the multistage decision process  
[9-11]. Finally, we supply an example to demonstrate properties of the proposed 
method. 

1. SEQUENTIAL DECISION PROBLEMS 

In this paper we consider a dynamic process which consists of T periods, 
t = 1,2,...,T. At the beginning of each period the system is in one of a finite 
number of given states. When a decision is made, the system is transformed  
to another feasible state and the next period begins. The feasibility of states  
is measured by membership grades and the transformation of the system from 
one state to another is performed according to decisions based on multiple 
criteria − objectives. The criteria evaluations are given by fuzzy values. We 
shall use the following notation based on [11]: 
1. Xt is the set of all states at the period t. Here we assume Xt = X for all t  

and X is a finite set of given states. 
2. })()({ 1+∈∈== tt

t
t XyXxyxddD ,,,;~ μ  is the fuzzy subset of X×X, 

called the fuzzy set of feasible decisions at the period t (see Section 4 
below). The feasibility of the decision d = (x,y) transforming the system 
from state x to y is denoted by the membership grade ),(dtμ  a real number 
from the unit interval [0,1]. If )(dtμ  = 0, then d = (x,y) is infeasible, i.e.  
it is impossible to transform the system from state x to y. On the other hand, 
if )(dtμ  = 1, then transforming the system from x to y is fully feasible, i.e. 
possible. Given a feasibility level λ∈[0,1], we define the set of all decisions 
at the period t with the feasibility at least λ (denoted by λ][ tD~ ), as follows. 

3. },,)();,({]~[ XyxdyxdD t
t ∈≥== λμλ . 

4. )(dc t
1

~ , )(dc t
2

~ ,..., )(dc t
n

~  are fuzzy values (e.g. triangular fuzzy numbers)  
of n decision criteria  C1, C2, ..., Cn, respectively, for decision d = (x,y)  
at the period t (see Section 4 below). 

5. V = {(x1,x2); (x2,x3);...; (xT,xT+1)} is the sequence of decisions  dt = (xt,xt+1), 
xt∈ X, t = 1,2,...,T. Here we call this sequence a multistage decision variant 
(alternative). If for each dt = (xt,xt+1) ∈ V it is true that dt = (xt,xt+1) ∈ λ][ tD~ , 
where λ ∈ [0,1] is a given feasibility level, we call V the λ – feasible 
multistage decision variant. 
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2. ELICITING DECISION VARIANTS 

For the case of partially ordered outcomes, e.g. evaluation of variants  
by fuzzy numbers, the concept of efficiency of decision variants as well as  
an algorithm for finding such variants has been presented in [10]. The essence  
of the algorithm is a forward/backward procedure of finding the set of all 
efficient variants based on Bellman’s principle of optimality. This algorithm 
usually generates a large number of efficient variants which is difficult to use  
in a decision process. Assume that m efficient multistage decision variants  
have been generated by the algorithm [10], in particular, we have: 

)},();...;,();,{( 1TT3221
jjjjjj

j xxxxxxV +=  (1) 

where:   
j

tx ∈ X,  

j = 1,2,...,m,   
t = 1,2,...,T. 

Here we propose a method for eliciting a “compromise” multistage 
decision variant chosen from the set of efficient variants. Moreover, in  
an environment with uncertainty, we take into consideration multistage decision 
variants which are also λ – feasible with a sufficiently high λ given in advance 
by decision maker. Our method is based on pair-wise comparisons of decision 
criteria and on the logarithmic least squares method for calculating the weights, 
i.e. the relative importance of the decision criteria. The result will make  
it possible to choose a single compromise variant corresponding to the decision 
maker’s preferences in the decision process. 

3. AHP AND PAIR-WISE COMPARISONS  

In the Analytic Hierarchy Process (AHP) we consider a three-level 
hierarchical decision system: On the first level there is a decision goal G;  
on the second level, we have n independent decision criteria: C1, C2,...,Cn,  

such that ( ) 1=∑
=

n

i
iCw

1
, where w(Ci) > 0, i = 1,2,...,n,  w(Ci) is a positive real 
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number – weight, usually interpreted as a relative importance of the criterion Ci 
subject to the goal G. On the third level we have m variants of the decision 

outcomes. We take V1, V2,...,Vm such that, again, ( ) 1,
1

=∑
=

m

r
ir CVw ,  

where w(Vr,Ci) is a nonnegative real number − an evaluation (weight) of Vr 
subject to the criterion Ci, i = 1,2,...,n. This system is characterized  
by the supermatrix (see [7]): 

W =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

IW0
00W
000

32

21  

a nonnegative matrix where W21 is the n×1 matrix (weighing vector  
of the criteria), i.e.:   

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

)(

)( 1

21

nCw

Cw
MW  

and W32 is the  m×n  matrix: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

),(),(

),(),(

1

111

32

mnm

n

VCwVCw

VCwVCw

L

MLM

L

W  

The columns of this matrix represent evaluations of variants by  
the criteria. Moreover, W is a column-stochastic matrix, i.e. the sums  
of columns are equal to one. Then the limit matrix W∞ = k

k
W

+∞→
lim  (see [4]) 

exists and has the following form: 

W∞ =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

IWWW
000
000

322132

 

 
 

(2) 

Here Z = W32W21 is the m×1 matrix, i.e. the resulting priority vector  
of weights of the variants, I is the unit matrix. The variants can be ranked 
according to these priorities. 
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4. FUZZY NUMBERS AND FUZZY MATRICES 

When applying the AHP in decision making, we usually encounter 
difficulties in evaluating pair-wise comparisons using the well known Saaty´s  
5- (or 9-) point scale. In practice it is sometimes more convenient for  
the decision maker to express his/her evaluation in “words of natural language”  
by saying, e.g. “possibly 3”, “approximately 4”, or “about 5”. Similarly, he/she 
could use evaluations of the form, e.g.: “A is possibly weakly preferable to B”. 
Similarly, when evaluating individual decisions by some criterion, e.g. the level 
of inventory at a period t, we are often uncertain about values of the criterion.  
It is advantageous to express these evaluations by fuzzy sets of real numbers,  
in particular, by triangular fuzzy numbers (Figure 1). For the sake of con-
venience we now shortly refresh some basic concepts of the fuzzy set theory 
which we shall use in this paper. 

A fuzzy set A~  of R is given by a membership function μ which  
is a mapping from the set of real numbers R into the unit interval [0,1], i.e.  
μ : R → [0,1]. The membership grade, μ(x) of the element x ∈ R, denotes  
the possibility of occurrence (or realization) of x, or, in other words, how 
strongly the element x belongs to the fuzzy set A~ . The higher the value,  
the stronger the membership to A~ , and vice versa. Full membership is denoted  
by the membership grade 1, full nonmembership by the grade 0. The evaluation 
of the membership grades of a fuzzy set may cause serious problems in practice; 
here we cannot go deeper into details − all what we will say here is that  
the membership grades of fuzzy sets may be estimated e.g. by experts. In order  
to distinguish fuzzy and nonfuzzy sets we shall denote the fuzzy sets, fuzzy 
vectors, and fuzzy matrices by a tilde above the symbol. For more information 
about fuzzy sets and related topics, see e.g. [12]. 

Let α ∈ [0,1] and the set [ A~ ]α = {x∈R; μ(x) ≥ α} is called an alpha cut 
of A~  (or α-cut). A triangular fuzzy number a~  is a fuzzy set of R defined  
by a triple of real numbers, i.e. a~  = ( a ; a; a ), where a  is the lower number,  
a is the middle number and a  is the upper number, a  ≤ a ≤  a .  
The membership function μ(x) is continuous in [ a , a ], increasing in [ a ,a], 
decreasing in [a, a ], μ(a) = 1 and μ(x) = 0 for x ∉ [ a , a ]. In what follows  
we shall use the most practical form of the membership function: a piecewise 
linear one.  
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If a  = a = a , then a~  is said to be a crisp number (or a nonfuzzy 

number). Evidently, the set of all crisp numbers is isomorphic to the set of real 
numbers.  

It is well known that the arithmetic operations +, −, *, and / on real 
numbers can be extended to fuzzy numbers by the Extension principle, see e.g. 
[12]. In the case of triangular fuzzy numbers );;( aaaa =~  and );;( bbbb =

~
, 

a  > 0, b  > 0, we obtain special formulae: 

)( babababa +++=+ ;;~~~  

)( babababa −−−=− ;;~~~  

)( babababa *;*;*~*~~ =  

)( babababa /;/;/~/~~ =  

In operations of multiplication and division the form of the membership 
function of the result of the operation given by the Extension principle  
is nonlinear, even in the case when the operands are piecewise linear. In that 
case, piecewise linear membership functions in the above formulae give us good 
triangular approximations of the exact fuzzy numbers defined by the Extension 
principle. In what follows we shall use them for their simplicity and versatility. 

a  a a

1

0

Fig. 1. A triangular fuzzy number 

);;(~ aaaa =
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If all elements in m×n matrix A are triangular fuzzy numbers, we call A 
the triangular fuzzy matrix and this matrix is composed of triples  
in the following way: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
)()(

)()(

mnmnmnmmm

nnn

aaaaaa

aaaaaa

;;;;

;;;;
~

L

MOM

L

111

111111111

A  

Particularly, if A~  is a triangular fuzzy matrix we say that it is reciprocal, 

if )( ijijijij aaaa ;;~ =  then )(
ijijij

ji aaa
a 111 ;;~ =  for all i,j = 1,2,...,n. 

Consequently, we have: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

)()()(

)()()(

)()()(

111111111

111111
111

222111

222
121212

111121212

;;;;;;

;;;;;;

;;;;;;

~

L

MOMM

L

L

nnnnnn

nnn

nnn

aaaaaa

aaa
aaa

aaaaaa

A  

 
 
 

(3) 

where ijijij aaa ≤≤≤1 , i,j = 1,2,...,n. Without loss of generality we can 

assume that ikij aa ≤≤1  whenever i ≤ j ≤ k. 

 

5. RANKING FUZZY VARIANTS 

Suppose we obtain m triangular fuzzy numbers, which we call here 
simply fuzzy variants: 

),;;(~
1111 zzzz =  ),;;(~

2222 zzzz = …, );;(~
mmmm zzzz =  (4) 

Now, the problem is to rank them according to their “magnitude”.  
The simplest way to do it is to rank fuzzy variants according to their middle 
value, which neglects the lower and upper parts of all fuzzy numbers. This  
is not a solution we ask. 
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A better way is the center gravity method. This method is based  
on computing the x-th coordinates g

ix  of the center of gravity of every 
“triangle” given by the corresponding membership functions iz~ , i = 1,2,...,m. 
Evidently, the following holds: 

3
iiig

i
zzz

x
++

=  (5) 

By (5) the variants can be ordered from the best (with the largest value  
of (5)) to the worst (with the lowest value of (5)). Formula (5) incorporates  
in some sense the form of the triangular fuzzy number and that is why this 
method is more appropriate (Figure 2). Notice that in Figure 2, a < b, while 

g
a

g
b xx ~~ < . More sophisticated methods for ranking fuzzy numbers exist, see e.g. 

[7]. For a comprehensive review of comparison methods see [3]. 

 
The advantage of the center gravity method is that the variants are ranked 

linearly (the ranking is complete) as each variant is represented by a real 
number. This representation may, however, become in some situations  
an unnecessary simplification of the situation. That is why other ranking 
methods have been proposed [2, 4]. Here we present five ranking methods 
based on the concept of dominance and aspiration level. The resulting order 
offered by the new rankings is, however, notcomplete, i.e. some variants remain 
noncomparable. 

a

1

0

Fig. 2. Ranking fuzzy numbers 

g
ax~  

);;(~ bbbb =  

b g
bx~  

);;(~ aaaa =  
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Definition 1 

Let a~  and b~  be fuzzy numbers and δ,γ,ε ∈ [0,1] aspiration levels.  
We say that a~  is R-dominated by b~ (or b~  R-dominates a~ ) on the aspiration  
level δ if: 

αα ][][ ba ~sup~sup ≤ ,  for all  α ∈ [1 − δ,1] 

We say that a~  is L-dominated by b~ (or b~  L-dominates a~ ) on the aspiration 
level γ if: 

αα ][][ ba ~inf~inf ≤ ,  for all  α ∈ [1- γ,1] 

We say that a~  is LR-dominated by b~ (or b~  LR-dominates a~ )  
on the aspiration level ε if a~  is L-dominated and R-dominated by b~   
in the aspiration level ε. Here, L stands for “Left”, and R for “Right”. 

Definition 2 

Let a~  and b~  be fuzzy numbers and ρ,σ ∈ [0,1] − aspiration levels.  
We say that a~  is P-dominated by b~ (or b~  P-dominates a~ ) on the aspiration  
level ρ if: 

αα ][][ ba ~inf~sup ≤ ,  for all  α ∈ [1- ρ,1] 

We say that a~  is O-dominated by b~  (or b~  O-dominates a~ )  
on the aspiration level  σ  if: 

αα ][][ ba ~sup~inf ≤ ,  for all  α ∈ [1- σ,1] 

Here, P stands for “Pessimistic” and O − for “Optimistic”. We illustrate 
these concepts in the following example. 

Example 

In Figure 3, a~  is LR-dominated by b~  (or b~  LR-dominates a~ )  
on the aspiration level β, β ≤ β*. Moreover, for α ∈ [α*,1] a~  is P-dominated by  
b~  (or b~  P-dominates a~ ) on the aspiration level α, α ≤ α*. At the same time,  
a~  is O-dominated by b~  (or b~  O-dominates a~ ) on the aspiration level  
δ ∈ [0,1]. 
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6. THE ALGORITHM 

For each period t = 1,2,...,T and decision d = (x,y) we have n fuzzy values 
(triangular fuzzy numbers) )(dc t

1
~ , )(dc t

2
~ ,..., )(dc t

n
~  of decision criteria  

C1, C2, ..., Cn, respectively. The relative importance of the criteria is given  
by an (n×n) pair-wise comparison matrix ,~ tA  a reciprocal fuzzy matrix  

whose elements are triangular fuzzy numbers );;(~ t
ij

t
ij

t
ij

t
ij aaaa = . 

The proposed method for finding the “best” multistage decision variant 
(or for ranking all the variants) can be formulated in an algorithm  
in the following three steps:  
1. Calculate the triangular fuzzy weights from the fuzzy pair-wise comparison 

matrices and from fuzzy triangular fuzzy numbers. 
2. Calculate the aggregating triangular fuzzy evaluations of the multistage 

decision variants. 
3. Find the “best” variant (or rank the variants) defined as triangular fuzzy 

numbers. 
 

γ][a

1

0

Fig. 3. Dominance of two fuzzy numbers 

b~  a~ 
1 − α*

1 − β*
γ 
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Below we explain in detail each step of this algorithm. 

Step 1. Calculate the triangular fuzzy weights from the fuzzy pair-wise 
comparison matrix. 

From now on we assume that the input data are uncertain and that they 
are given by triangular fuzzy numbers. Our purpose is to calculate the triangular 
fuzzy numbers – in this context we call them fuzzy weights – as evaluations  
of the relative importance of the criteria at each period.  

Let a fuzzy pair-wise comparison matrix A~  defined by (3) be given.  
We assume that there exists a fuzzy vectors of triangular fuzzy weights 

nwww ~,...,~,~
21 , ),;;(~

iiii wwww =  i = 1,2,...,n such that the pair-wise 

comparison matrix (3) is an estimation of the fuzzy matrix: 

⎥
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⎥
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W  

We shall find the fuzzy weights nwww ~,...,~,~
21 by minimizing the fuzzy 

functional: 
2

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

ji
ij

j

i a
w
wH

,

~go~l~
~

go~l~  
 

(6) 

In (6), minimization of H~  is understood in the sense of solving  
the optimization problem: 

minloglogloglogloglog
,

222

⎯→⎯
⎪⎭

⎪
⎬
⎫
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⎪
⎨
⎧
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⎟
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−∑
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ij

j

i
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j

i
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j

i a
w
w

a
w
w

a
w
w   

(7) 

subject to: 

0≥≥≥ iii www ,  i = 1,2,...,n (8) 
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It can be proven by standard methods of calculus that at each period 
t = 1,2,...,T there exists a unique explicit solution of problem (7), (8) as follows: 

)( t
k

t
k

t
k

t
k wwww ;;~ = , k = 1,2,...,n 
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(9) 

In [3], the method of calculating triangular fuzzy weights by (9) from  
the triangular fuzzy pair-wise comparison matrix (3) is called the logarithmic 
least squares method. This method can be applied both for calculating  
the triangular fuzzy weights of the criteria and for eliciting relative triangular 
fuzzy values of the criteria for the individual variants. Moreover, it can also  
be used for calculating feedback impacts of criteria on other criteria. 

Step 2. Calculate the aggregating triangular fuzzy evaluations
of the multistage variants. 

Having calculated triangular fuzzy weights of the criteria for each period 
t = 1,2,...,T, we will calculate, for a decision d = (x,y), its aggregation  
of evaluations as the weighting sum: 

)(~ dS t = ⋅~~tw1 )(dc t
1

~ ⋅+ ~~~ tw2 )(dc t
2

~ ++ ~~L ⋅~~t
nw )(dc t

n
~  (10) 

Here ( ))();()()(~ dcdcdcdc t
i

t
i

t
i

t
i ;=  are fuzzy evaluations of the 

decisions. We also assume that the normalization property is satisfied, namely: 

∑
=

=
n

i

t
i dc

1
1)(  (11) 

Otherwise, we normalize )(dc t
i

~  by dividing its three components by 

∑
=

=
n

j

t
j dcS

1
)( . 

Now, let V = {d1; d2; ...; dT} be a λ – feasible multistage decision variant, 
where d1 = (x1,x2), d2 = (x2,x3), ..., dT = (xT,xT+1), and λ ∈ [0,1] is a given 
feasibility level. 
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We define a fuzzy evaluation )(~ VZ  of the multistage decision variant V 
as: 

)(~ VZ  = )()()()()()( T
T

T
T dSddSddSd ~~~~~~ μμμ +++ L2

2
2

2
1

1
1

1  (12) 

where )( t
t dμ  is the feasibility of the decision dt. Notice that )(~ VZ  given  

by (10), (11), and (12) is the resulting fuzzy evaluation of the multistage variant. 
Here, for addition, subtraction and multiplication of triangular fuzzy numbers 
we use the fuzzy operations defined earlier. That is why )(~ VZ  is also  

a triangular fuzzy number, i.e. ).;;()(~ zzzVZ =  A group of multistage variants 
can be ranked according to these evaluations. 

Step 3. Find the “best” variant, rank the variants. 
In Step 2 we have found the fuzzy evaluations of the λ – feasible multi-

stage variants described as triangular fuzzy numbers, i.e. by (11) we calculated 
the triangular fuzzy vector: 

( ) ( ))()( mmmm zzzzzzVZVZZ ;;,...,;;)(~),...,(~~
1111 ==  

The simplest method for ordering a set of triangular fuzzy numbers  
is the center of gravity method. This method is based on computing the x-th 
coordinates g

ix  of the center of gravity of every triangle given by  
the corresponding membership functions iz~ , i = 1,2,...,m. Evidently, it holds: 

3
iiig

i
zzz

x
++

=  (13) 

By (13) the variants can be ordered from the best (with the biggest value 
of (12)) to the worst (with the lowest value of (13)). Naturally, we can use more 
sophisticated methods for ranking fuzzy numbers [3]. 

7. EXAMPLE 

In this section we analyze an example of decision making situation based 
on the example from [11]. The discrete process has 2 states, }{ 1 2xxX ,= ,  
3 periods, t = 1,2,3, and 2 fuzzy decision criteria C1 and C2 defined by the fuzzy 
functions 1c~  and 2c~ , respectively. The evaluations of individual criteria  
by triangular fuzzy numbers and fuzzy state transformations are given  
in the following tables. 
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Table 1 

 
Fuzzy data 

d = (xi , xj) 
t = 1 t = 2 t = 3 

μ t(dj)  
tc1

~ (dj)  
tc2

~  (dj) μ t(dj)  
tc1

~ (dj)  
tc2

~  (dj) μ t(dj)  
tc1

~ (dj)  
tc2

~  (dj) 

d1 = (x1 , x1) 0,8 (1;4;5) (1;2;3) 0,9 (4;5;8) (3;4;6) 0,8 (3;5;8) (2;3;4) 

d2 = (x1 , x2) 0,8 (4;6;8) (2;2;2) 0,9 (2;4;5) (1;2;3) 0,8 (3;4;7) (6;7;8) 

d3 = (x2 , x1) 0,9 (1;3;4) (5;7;8) 0,8 (3;6;8) (2;2;2) 0,9 (2;4;6) (1;2;3) 

d4 = (x2 , x2) 1,0 (0;2;4) (3;5;6) 0,7 (2;5;9) (3;7;8) 0,7 (3;6;8) (6;7;8) 

 
Here μ1(d1) = 0,8,  1

1c~ (d1) = (1;4;5),  1
2c~ (d1) = (1;2;3), etc.  

After normalization (11) we obtain the following table. 
 

Table 2 
 

Normalized fuzzy data 

d = (xi , xj) 
t = 1 t = 2 t = 3 

tc1
~ (dj)  

tc2
~  (dj) 

tc1
~ (dj)  

tc2
~  (dj) 

tc1
~ (dj)  

tc2
~  (dj) 

d1 = (x1 , x1) (0,17; 0,67; 0,83) 
(0,17; 0,33; 0,50) 

(0,44; 0,56; 0,89) 
(0,33; 0,44; 0,89) 

(0,38; 0,63; 0,75) 
(0,25; 0,38; 0,50) 

d2 = (x1 , x2) (0,50; 0,75; 1,00) 
(0,25; 0,25; 0,25) 

(0,33; 0,67; 0,83) 
(0,17; 0,33; 0,50) 

(0,27; 0,36; 0,64) 
(0,55; 0,64; 0,73) 

d3 = (x2 , x1) (0,10; 0,30; 0,40) 
(0,50; 0,70; 0,80) 

(0,38; 0,75;1,00) 
(0,25; 0,25; 0,25) 

(0,33; 0,67; 1,00) 
(0,17; 0,33; 0,50) 

d4 = (x2 , x2) (0,00; 0,29; 0,57) 
(0,43; 0,71; 0,86) 

(0,17; 0,42; 0,75) 
(0,25; 0,58; 0,67) 

(0,23; 0,46; 0,62) 
(0,46; 0,54; 0,62) 

 
The original multistage decision system is graphically depicted  

in Figure 4. The goal of this decision situation is to find the “best” multistage 
decision variant(s) from three preselected ones according to two criteria 
evaluated by triangular fuzzy numbers. 
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Fig. 4. The graph of the process 
 
The weights of the criteria in the individual periods are given  

by the following 3 pair-wise comparison matrices: 

( ) ( )
( ) ( )⎥⎦

⎤
⎢
⎣

⎡
=

1;1;1;;
2;3;41;1;1

2
1

3
1

4
1

1A , 
( ) ( )
( ) ( )⎥⎦

⎤
⎢
⎣

⎡
=

1;1;1;;
3;4;51;1;1

3
1

4
1

5
1

2A , 
( ) ( )
( ) ( )⎥⎦

⎤
⎢
⎣

⎡
=

1;1;1;;
4;5;61;1;1

4
1

5
1

6
1

3A  

By (9) we calculate the fuzzy weights of priorities of the criteria  
in the periods: 

)(0,671
1 800750 ,;,;~ =w , ),20( 33025001

2 ,;,;~ =w  

)(0,752
1 830800 ,;,;~ =w , ),17( 25020002

2 ,;,;~ =w  

)(0,803
1 860830 ,;,;~ =w , ),14( 20017003

2 ,;,;~ =w  

In the example the set of 10 efficient realizations (i.e. multistage decision 
variants) has been generated using the Bellman Principle of optimality [9].  
The ordered structure is based on the relation of LR-domination on  
the aspiration level ε = 1: 

V1 = {(x1,x2); (x2,x1);(x1,x1)}, V2 = {(x1,x2); (x2,x2); (x2,x2)},  
V3 = {(x2,x1); (x1,x2); (x2,x1)}, 

V4 = {(x1,x1); (x1,x1);(x1,x1)}, V5 = {(x1,x2); (x2,x1); (x1,x2)},  
V6 = {(x1,x2); (x2,x2); (x2,x1)}, 

 

1x1x

2x

1x 1x

2x 2x 2x

0,8 (1;4;5) (1;2;3) 0,9 (4;5;8) (3;4;6) 0,8 (3;5;8) (2;3;4)

0,8 (4;6;8) (2;2;2) 

0,9 (1;3;4) (5;7;8) 

0,9 (2;4;5) (1;2;3)

0,8 (3;6;8) (2;2;2)

0,8 (3;4;7) (6;7;8) 

0,9 (2;4;6) (1;2;3) 

1,0 (0;2;4) (3;5;6) 0,7 (2;5;9) (3;7;8) 0,7 (3;6;8) (6;7;8)

 t = 1     t = 2 t = 3 = T
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V7 = {(x2,x1); (x1,x1);(x1,x1)}, V8= {(x2,x1); (x1,x1); (x1,x2)}, 
V9 = {(x2,x1); (x1,x2); (x2,x2)}, 

V10 = {(x2,x2); (x2,x2);(x2,x2)} 

In Figure 4 it is clear that we could generate 16 different variants.  
We limit ourselves, however, to the efficient realizations.  

Using Table 2 we calculate evaluations of the variants according  
to the criteria from the formula (10), in particular: 

)(~ dS t = ⋅~~tw1 )(dc t
1

~ ⋅+ ~~~ tw2 )(dc t
2

~  = ( ))();();( dSdSdS ttt  

The results are given in the following table: 
 

Table 3 
Normalized fuzzy data  

d = (xi , xj) 
t = 1 t = 2 t = 3 

( ))();();(1 dSdSdS 11 ( ))();();( dSdSdS 222 ( ))();();( dSdSdS 333

d1 = (x1 , x1) (0,17; 0,67; 0,83) (0,44; 0,56; 0,89) (0,38; 0,63; 0,75) 

d2 = (x1 , x2) (0,50; 0,75; 1,00) (0,33; 0,67; 0,83) (0,27; 0,36; 0,64) 

d3 = (x2 , x1) (0,10; 0,30; 0,40) (0,38; 0,75;1,00) (0,33; 0,67; 1,00) 

d4 = (x2 , x2) (0,00; 0,29; 0,57) (0,17; 0,42; 0,75) (0,23; 0,46; 0,62) 
 
Finally, applying formula (12), in particular: 

)(~ VZ  = )()()()()()( 3 dSddSddSd 32211 ~~~~~ μμμ ++  

where d is a decision of the corresponding period, we obtain the resulting fuzzy 
values of the efficient variants and their centers of gravity (Table 4). 
 

Table 4 
Ranking of efficient variants based on their centers of gravity 

Variants g
ix  Ranking  

Z~ (V1) = (0,83; 1,49; 2,02) 1,50 1 

Z~ (V2) = (0,60; 1,15; 1,72) 1,15 9 

Z~ (V3) = (0,76; 1,39; 2,21) 1,41 3 

Z~ (V4) = (0,73; 1,41; 2,25) 1,47 2 
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Table 4 

Variants g
ix  ranking 

Z~ (V5) = (0,80; 1,35; 1,98) 1,38 6 

Z~ (V6) = (0,68; 1,37; 2,12) 1,39 5 

Z~ (V7) = (0,77; 1,31; 2,11) 1,40 4 

Z~ (V8) = (0,74; 1,17; 1,90) 1,27 7 

Z~ (V9) = (0,58; 1,23; 1,72) 1,18 8 

Z~ (V10) = (0,38; 1,04; 1,75) 1,06 10 

 
The fuzzy values of the arbitrary chosen three variants (V1, V2, V3)  

are depicted in Figure 5. 
 
 

 
Total evaluation of variants 

 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Total evaluation of variants V1, V2, and V3. 
 

In Figure 5, the rank of the variants is not clear, in particular, V1 and V3 
are nearly “equally good”, while V2 is evidently the worst. We can confirm this 
observation using the center gravity ranking method. Applying the formula (13) 
we calculate gx1  = 1,50, gx3  = 1,41, gx2  = 1,15 which confirms our first 
observation in Figure 5. 
 

0

0,25

0,5

0,75

1

0,00 0,50 1,00 1,50 2,00 2,50

V1
V2
V3
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Consider now other rankings based on the concept of domination and on 
aspiration levels in Definitions 1 and 2. In Figure 5 it is evident that Z~ (V3)  
is LR-dominated by Z~ (V1) on the aspiration level β = 0,25. Moreover, Z~ (V3)  
is P-dominated by Z~ (V1) on the aspiration level α = 0,07. At the same time, 
Z~ (V3) is O-dominated by Z~ (V1) on the aspiration level δ = 1,0. With all 
rankings in mind, the multistage decision variant V1 should be considered the 
best. 

CONCLUSION 

In this paper we proposed a new approach for solving the dynamic 
multiobjective decision making problems. The decision variants are generated 
in a discrete multistage model by forward/backward procedure of finding the set 
of all maximal elements based on Bellman’s principle of optimality. As the set 
of all maximal elements consists of a number of elements – decision variants, 
our problem is to find among them a compromise variant based on decision 
maker´s preferences with respect to several decision criteria. The evaluation  
of the weights of the criteria is based on the data given by pair-wise comparison 
matrices using triangular fuzzy numbers. Extended arithmetic operations with 
fuzzy numbers for application of the generalized logarithmic least squares 
method are defined and six methods for ranking fuzzy numbers to compare 
fuzzy outcomes are proposed. A numerical example is presented to clarify  
the methodology. 
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