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Abstract 
Compromise programming is one of the most often applied methods of multi-

criteria optimization, both discrete and continuous. This paper deals with decision 
making in multicriteria linear programming problems. The approach presented here  
is based on finding a hypersphere (in the criteria space), which minimalizes the distance 
from the set of all nondominated extreme points. Next, we look for the nondominated 
extreme point closest to the hypersphere found previously. This point, called the best 
compromise nondominated solution, depends on the chosen metric. We consider  
the method of compromise hypersphere with different metrics and analyze their 
influence on the best compromise nondominated solution. 
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INTRODUCTION 

Compromise programming is one of the most often applied methods  
of multicriteria optimization, both discrete and continuous. Steuer and Choo 
[10] present an interactive weighted Tchebycheff procedure for multiple 
objective programming. A problem of weight choice in compromise 
programming is considered by Ballestro and Romero [3]. Other similar 
approaches are presented in the work of Carrizosa et al. [6] who consider  
the so-called AS norms in Ideal-Point methods. Ballestro [4] studies a problem 
of selection of a compromise programming metric and the risk aversion.  
For operative applications of compromise programming, the following works 
are worth mentioning: Opricovic and Tzeng [9], who discuss comparative 
analysis of compromise solution by the multicriteria decision making methods 
as well as Abdelaziz et al. [1], who discuss multiobjective programming 
technics with goal programming and compromise programming used  
to choose the portfolio which best satisfies the decision maker.  
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This paper deals with decision making in multicriteria linear 
programming problems. The concept of the method follows from the work  
of Gass and Roy [8]. The approach presented here is based on finding  
a hypersphere (in the criteria space) which minimizes the distance from the set 
of all nondominated extreme points. Next, we look for the nondominated 
extreme point which is closest to a hypersphere. This point, called the best 
compromise nondominated solution, depends on the chosen metric. We 
consider the method of compromise hypersphere with different metrics and 
analyze their influence on the best compromise nondominated solution. 

The paper consists of three sections. Section 1 presents the general de-
scription of the compromise hypersphere for multiobjective linear pro-
gramming. Section 2 describes methods of chosing distance functions. Section 3 
contains an example. At the end, there are concluding remarks  
and further research. 

1. DESCRIPTION OF THE COMPROMISE  
HYPERSPHERE METHOD 

Let us consider the following multicriteria linear programme:  
VMax {Cx: x∈X} (1) 

where: 

X = {x∈RN: Ax ≤ b, x ≥ 0} or X = {x∈RN: Ax = b, x ≥ 0} − feasible region  
in decision space, 

x∈RN − vector of decision variables, 
C∈ Rk×N − matrix of objective function coefficients, 
A∈Rm×N   − full row rank matrix of constraint coefficients, 
b∈Rm   − right hand side vector. 

 
We call y*∈Rk a nondominated solution of (1) if: 
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* *

∈
∃ =

x
y Cx  

and 

' X
~ * ' * '

∈
∃ ≤ ∧ ≠

x
Cx Cx Cx Cx  

The corresponding point x*∈Rn  is called an efficient solution.  
The aim of the method presented here is to rank the nondominated 

extreme points of the problem (1). The details of the method are presented 
below: 
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Step 1 
Determination of the set of all nondominated extreme points (efficient 

solutions) of the problem (1). We will denote the nondominated extreme points 
as: 

y1, y2, …, yn 

Step 2 
Solution of the programme: 

( ) ( )( )( )0
0

1 0 0
0

,
min , , ,..., ,n

r
D r d d

y
y y y y  (2) 

where: 

y0 ∈ Rk,  r0 ∈ R denote the decision variables of (2), 
d: Rk×Rk→R  denotes the distance between two vectors, 
D: R×Rn→R denotes the distance between one number and the set of n numbers 
(we will identify the set of n numbers as n dimensional vector). 

 
We will denote the optimal solution of (2) as ,0* y  0

*r  and the minimal 

value of the cost function as ).2(min*  

Interpretation of problem (2). The problem is to find a hypersphere 
with the centre y0 ∈ Rk and the radius r0 ∈ R such that its distance from the set 
{y1, y2, …, yn} is minimal.  

Step 3 
Solution of the programme: 

1,...,
min
i k= ),( 0*

0
* iydr y−  (3) 

We will denote the optimal solution of (3) as ,* i  the optimal extreme 
point as ,* iy  and the minimal value of the cost function as ).3(min*  

Interpretation of problem (3). The problem is to find the extreme point 
which is closest to hypersphere found in Step 2. 

Remark 1 
We can find the set of all nondominated extreme points (efficient 

solutions) with the help of ADBASE [11]. 
 



Sebastian Sitarz 226 

Remark 2 
The method of solving the programme (2) depends on the choice of D 

and d. In general, this programme is a complicated optimization problem 
(examples will be presented later).  

Remark 3 
Problem (3) is trivial, it suffices to compare n numbers which were used  

in Step 2.  

2. MEASURE OF DISTANCE 

As we have seen in Section 1, the compromise hypersphere method uses 
functions d and D as measures of distance. The following sections describe  
the methods of building these functions.  

2.1 Choosing function d  

We will use the well known family of metrics pl :Rk×Rk→R to measure  
the distance between two vectors: 
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where: 

y = (y1, …, yk) ∈ Rk, z = (z1, …, zk) ∈ Rk. 
 
Therefore, in the problem (2) we will use the function pl  as function d  

with parameter  p ∈ [1,∞]. 

2.2. Choosing function D  

We will use a modification of metrics ql  to measure the distance between  
a number and the set of n numbers (identified as an n dimensional vector).  
The modification function ql :R×Rk→R  is defined as follows: 



METRICS IN THE COMPROMISE HYPERSPHERE METHOD 227 

 

)),,...,,((,( ww rrrlrL qq =)  

where: 

r ∈ R, (r,r, …, r) ∈ Rk,  w ∈ Rk  and  lq  is defined in Subsection 2.1. 
 
Therefore, in the problem (2) we will use the function  ql  as function  D  

with parameter q ∈ [1,∞] . 

2.3. Problem H(p, q) 

By using the function pl  as d and ql  as D in the problem (2) we obtain  
the following problem  H(p,q):  

))),),...,, 001
0

,
(((,(min

0
0

yyyy nppq

ry
llrl      H(p,q) 

The problem H(2, ∞) is considered in the papers by Anthony et al. [2] 
and by Butler et al. [5]. However, Gass and Roy [8] consider an approximation 
of the problem H(2, ∞) and it’s quality can be found in Gass et al. [7].  

3. EXAMPLE 

Consider the following two-criteria problem (Figure 1): 

VMax [x1, x2] 

3x1 + 2x2 ≤ 51 
x1 + 2x2 ≤ 21 
x1 + 3x2 ≤ 25 
x1 + 4x2 ≤ 30 
x1 + 6x2 ≤ 42 

x1, x2 ≥ 0 
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Fig. 1. Illustration of the example 

 
We apply the hypersphere compromise method described in Section 1. 

Step 1 
We have the following six nondominated efficient extreme points:  

y1 = (0, 7),   y2 = (6, 6),   y3 = (10, 5),   y4 = (13, 4),   y5 = (15, 3),   y6 = (17, 0) 

Steps 2 and 3 
In Step 2 we consider the problems H(p, q) for p = 1, 2, ∞  

and q = 1, 2, ∞. To solve these problems we use metaheuristic methods (genetic 
algorithms). The aim of the paper is not to analyze the numerical aspects  
of the optimization problems presented here, but to analyze the solutions 
obtained. Thus, we will not discuss numerical methods in details. The numerical 
analysis of the methods used will be the topic of future research. 

In Table 1 there are optimal solutions of the problems (2) and (3);  
the optimal value of cost function of (2) is also presented. The symbols  
in the cells of Table 1 denote: 

0
*0* , ry  − the centre and the radius of minimal hypersphere, 

iy*  − the optimal extreme point in problem 3, 

)2min(*  − the minimal value of the cost function in problem 2. 
 

y
2 

y
1 
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Table 1 

 
Optimal solutions of the problems (2) and (3) and the optimal value  

of cost function of the problem (2) 

d = lp  

p = 1 p = 2 p = ∞  
 
(5, 0), 12 
y1, y4, y6 
8 

 
(0.8683, −15.0536), 22.0703 
y6 

1.8139 

 
 (5.2700, −4.6828), 10.3157 
y2 

6 

q=1 

D=l
q 

 
(4.4, −0.3), 11.7 
y1 

4.7749 

 
(1.6262, −15.0776), 21.9415 
y3 

0.8844 

 
(7.2222, -3.2778), 8.7778 
y2, y3 

2.6457 

q=2 

 
(4.3333, −0.6667), 11.3333 
y3   
3 

 
(1.5906, −15.1667), 22.1007 
y1 

0.4792 

 
(7, −1), 8 
y5   
2 

q=∞ 

 

Case analysis of  p = 2 and  q = ∞  
We discuss the case of p = 2 and q = ∞ in detail. An example of minimal 

hypersphere with the centre 0* y   = (1.5906, −15.1667) and the radius 

0
* r  = 22.1007 is presented in Figure 2.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Minimal hypersphere in the case of the problem H(2, ∞) 

y
2 

y
1 
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Table 2 presents distances between nondominated efficient extreme 
points and minimal hypersphere and a ranking of these points. In Table 2  
an optimal solution of the problem (3) is also presented. The solution y1  
is connected with the minimal distance which is equal to 0.1234. 
 

Table 2 
 

Distances between nondominated efficient extreme points and minimal hypersphere  
for  p = 2 and q = ∞ 

 ),( 0*
0

* iydr y−  Ranking  

y1 0.1234 1 

y2 0.4792 4 

y3 0.2506 3 

y4 0.2051 2 

y5 0.4792 4 

y6 0.4792 4 

 
Moreover, in the case analyzed here, the formula for the function D  

has the following form: 

( ) ( )( ) ii

q wrrrrlrl −==
=

∞
0
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*

0
*

0
*

0
* max,,...,,, ww  

where: 
660*50*40*30*20*10* )),(),(),(),(),(),(( Rydydydydydyd ∈= yyyyyyw  

and 
6)1007.22,1007.22,1007.22,1007.22,1007.22,1007.22()...,,,( 0

*
0

*
0

* Rrrr ∈=  

Using values presented in Table 2 we obtain: 

( ) { } 4792.04792.0,4792.0,2051.0,2506.0,4792.0,1234.0max,0
* ==wrl q

 

Therefore, only vectors lying farthest from minimal hypersphere 
influence the value of cost function D. There are three y2, y5, y6 vectors  
with the maximum distance 0.4792 (see Table 2).  
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CONCLUDING REMARKS  
AND FURTHER RESEARCH 

We have presented a method of decision supporting in problems of multi-
criteria linear programming. The method is based on finding a hypersphere 
which is closest to the set of the efficient extreme points. The method presented 
by Gass and Roy [8] has been developed using different methods of measuring 
the distance. We have presented an example with nine possible variants  
of hypersphere compromise programming. In the example we considered six 
nondominated extreme points. As we have shown (Table 1), each of the non-
dominated extreme points (depending on the assumed variant of measuring) 
turned out to be a optimal solution of the programmes H(p, q). An extension  
of the presented method could be constructed by means of the augmented 
Tchebycheff metric [10].  

The author suggests the following problems as the subject of further 
research: 
– constructing a method of choosing functions d and D using interaction  

with decision maker, 
– finding mathematical properties of the presented problem H(p, q), 
– numerical analysis of algorithms searching for optimal solutions  

of the problem H(p, q). 
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