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Introduction 
 

The current tough competition on the market is forcing companies to im-
prove their processes in order to make them more efficient. Improved transport-
related logistics supports clients by improving satisfaction in terms of timing and 
cost. In the case of ceramic companies, this study is oriented toward the proces-
ses connected to the grouping of merchandises and customers orders. The lack 
of appropriate tools to support optimal logistics of such items at very volatile 
demand and supply has led to development of different techniques to facilitate 
both calculation and the implementation of these tasks. Our plan is to improve 
An approximate algorithm for optimal logistics of heavy and variable size items 
described by Ros-McDonnell et al. (2010). With the objective of picking up all 
orders from all clients on a certain date, we will run a Monte Carlo simulation 
aiming to find a new, more well-organized vehicle assignment solution, with 
lower costs than those calculated by mathematical model initially proposed by 
the cited authors, where the constraints of the loading capacity and time window 
for an individual vehicle could be slightly relaxed up to p%, if probability densi-
ty function of this relaxation is supposed to be uniform on the interval (0, ε) and 
the maximal number of available trucks in a procedure is not fixed by logistic 
operator in advance, but could be stochastic variable.  

Section 2 of the paper presents a brief review of the literature related to the 
capacitated vehicle routing problem (CVRP), and lays out the group of constra-
ints associated with the description of the CVRP and the discussion on the solu-
tions contributed by mathematical and simulation models. Sections 3 and 4 de-
scribe the real problem of a logistic operator, the objectives pursued, and the 
constraints that must be obey as well as the calculation method used to simulate 
the new solutions. Section 5 describes a real situation logistic problem, the solu-
tions obtained and the analysis of those results by comparing them with the ori-
ginal solution of Ros McDonnell et al. The new solution will be validated. 

 
1. The capacitated vehicle routing problem  

 
The Vehicle Routing Problem (VRP) is addressing the optimal allocation of 

vehicles on the routes where we have several clients. These vehicles serve a gro-
up of clients. The problem has been thoroughly studied in several papers (Lapor-
te, 1992; Laporte et al., 2000; Toth & Vigo, 2002; Bachelet & Yon, 2007). Many 
of the requirements and the operative constraints, such as route specifications 
and length, number of vehicles in the fleet and their loading capacities, composi-
tion of orders, type of demands, number of warehouses, etc., may be imposed on 
the practical applications of the VRP problem (Ralphs et al., 2003). 
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At day by day operations of logistic operators, normally some variables are 
changing fast during the day and new solutions must be given to solve the new 
context rapidly. Some drivers also take a risk to load a very small percentage over 
the declared loading capacity. Related with this volatile characteristics, we can find 
for example travel time (important to consider the rush hour in urban logistic) or 
loading the trucks. Important constrains appears according to capacity constraint 
modelled at Capacitated Vehicle Routing, especially in ceramic industry. 

In the basic CVRP the demands are deterministic, the service involves de-
liveries or collections but not both, the vehicles are based at a single depot, the 
capacity restrictions and windows for the vehicles are deterministic or stochastic 
variables, the objective is to minimize the total cost needed to serve all the 
clients. Generally, travel cost between each pair of customer locations is the 
same in both directions, therefore the resulting cost matrix is symmetric, where-
as in some applications, like urban areas distribution in with one-way directions 
imposed on the roads, the cost matrix is asymmetric (Toth & Vigo, 2002). 

When researchers are looking for solutions in this context, they promote 
optimization techniques based on mathematical models such as Branch & Bo-
und, which imply simplifications of all possible constraints. Nevertheless, these 
approaches have important difficulties in their practical application, mainly 
when changes in the definition of the problem appear, such as the additional 
constraints to the problem or their relaxation. At this stage, the problem could 
cease to be a robust one, and not have a solution through the previous optimiza-
tion techniques. In this situation, simulation models permits descriptions of 
complex systems without too many assumptions, obtaining near-optimal solu-
tions and guaranteeing their feasibility (Bachelet & Yon, 2007). 

Due to the variability of assignments, capacities and schedules, the deve-
lopment of exact mathematical models has been traditionally used in such stu-
dies. However, it is very difficult to find the optimal solutions, due to the com-
plexity of the real world problems and the mathematical model that represents them. 
Use of heuristics offers different easier approaches. These techniques facilitate the 
search for solutions, reducing the calculation time and simplifying the real problems. 
The first attempt to give a solution for the real world problem of the logistic operator 
in a ceramics industry was given by Ros-McDonnell et al. (2010). These authors 
developed an approximate algorithm which was based on the Branch & Bound 
technique (Fischetti et al., 1994) and consisted on several priority rules: 
– Rule 1: Assignment of the means of road transport in decreasing order of load 

associated to each of routes. 
– Rule 2: Assignment of the vehicles to a route if its capacity is greater or equal 

to the load picked up on the route. 
– Rule 3: Division of orders if the load to be collected on a route is greater than 

the capacity of the assigned vehicle. 
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– Rule 4: Division of the orders if the load to be collected for one supplier is 
only greater than the capacity of the allocated vehicle. 

– Rule 5: The division of orders if the load to be collected on a route is less than the 
capacity of the assigned vehicle, but fails to meet the constraint of the maximum. 

– Rule 6: The assignment of vehicles for the collection of possible little orders 
(routes with a load less than 3.000 kg) and the remainder of orders through 
the combination of loads not yet assigned to the different routes. 

The procedure is running on 5 stages: 
Stage 1:  The grouping of suppliers by route. 
Stage 2:  Calculation of daily loads. 
Stage 3: Assigning the means of transport. 
Stage 4: Calculation of the efficiencies in the assignment of the means of road 

transport. 
Stage 5:  Calculation of cost. 
 

Constrains of max net load were not relaxed and time windows have been stric-
tly 8 hours. This algorithm was robust enough to obtain solutions according to con-
straints, but the disadvantage of this method is the high level of complexity for the 
companies’ procedure, without qualified employees to deal with this algorithms 
(see: WWW1). Here we will present a new procedure based on Monte Carlo simula-
tion, starting from the solution of the less complex algorithm given by Ros-
McDonnell et al.  

 
2.  Problem description 

 
The case studied is applied at a logistics operator (LO) receiving daily or-

ders from distributors. These orders relate to ceramics products which must be 
picked up from several manufacturers who are located on different routes. At the 
end of the day all orders received must be grouped by routes in the optimal 
sequences, to be picked up next early morning, but first is necessary to obtain 
a quick assignment of available trucks for collection the cargo. The trucks requ-
ired to collect the ceramics products of several manufacturers dispersed on diffe-
rent routes must be hired the evening before the operation. This strategy war-
ranties logistics operator a better use of the logistical resources, and 
minimizes the associated costs. However, there are a number of constrains that 
LO must bear in mind when it comes to providing these services:  
 Capacity of each transport vehicle at road (with relaxation added). 
 Possible pick-up routes. 
 Maximal number of suppliers that can be visited per vehicle per route (the value 

determined by LO as deterministic (Ros-McDonnell et al) or stochastic parameter. 
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 Cost of each vehicle. 
 Time windows (with relaxations). 

The variables and constrains are given at Tables 1, 2, and 3. 
 

Table 1 shows the capacity of each type of vehicle. 
 

Table 1 

Capacities of vehicles 

VEHICLES T1 T2 T3 T4 T5 T6 T7 
CAPACITY (kg) 25.000 16.000 8.000 5.500 4.500 4.000 1.100 

 
In the case studied six possible routes are available:  
 

kR = [ ]FEDCBA ,,,,,  
 
Based on its experience, the LO has determined a maximum number of suppliers 
which can be visited by each type of vehicles. 
  

 
Table 2 

The maximal number of suppliers (Si) that can be visited per vehicle (Tj)  
according to route 

 A B C D E F 
S1(T1) 12 10 8 6 6 9 
S2(T2) 12 10 8 6 6 9 
S3(T3) 15 14 12 6 6 14 
S4(T4) 15 14 12 6 6 14 
S5(T5) 17 18 13 6 6 15 
S6(T6) 17 18 13 6 6 15 
S7(T7) 18 18 14 6 6 15 

 
The daily (in the time window of 8 hour + relaxation) cost per vehicle is 

given at the Table 3. 
 

Table 3 

Daily cost per vehicle (in €) 

VEHICLE T1 T2 T3 T4 T5 T6 T7 
EUR/DAY 300 220 170 160 160 160 125 
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There are multiple combinations of these variables and constraints even for 
feasible solutions without relaxation, which needs to be known by LO before 
previous working day is finished and assignment of vehicles is done. For these 
reasons, it is necessary to use a fast procedure to find the best solution. 
 
3. Monte Carlo method 
 

Monte Carlo method is a computational algorithm that relies on repeated 
random sampling to compute their results. Because of their reliance on repeated 
computation of random numbers, these methods are most suited when it is infe-
asible or impossible to obtain an exact result with a deterministic algorithm. The 
idea is not to get an exact solution after an infinite amount of calculation time, 
but to have a good approximation quickly (Jackel, 2002). 

The method applies to problems with no probabilistic content as well as to 
those with inherent probabilistic structure (Fishman, 1996) like in our relaxa-
tions and the constraints in number of vehicles hired for the individual road. 

Monte Carlo Simulation (MCS) have been several times base on Fernandez 
de Cordoba (1998) who developed a heuristic algorithm based in MC methods to 
the rural postman problem and Juan et al. (2009) who applied MCS to solve the 
capacitated vehicle routing problem. MCS can also be complemented with 
others methods like Markov Chains to solve discrete and combinatorial optimi-
zation problems (Vrugt et al., 2011) especially in case of given time window like 
here if service time would be stochastic variable. The aim is to find a variety of 
solutions that can be used under the additional constraints or relaxations.  

This improved version, in which all the objectives are met in terms of order 
collection, aims to find as good or better solutions (based on the cost minimiza-
tion) than solutions given by the approximate algorithm of Ros-McDonnell et al. 
Random numbers are first generated by the computer simulating the maximum 
quantity of vehicles of each type needed to collect the orders, which is in 
previous paper determined in advance by LO as the fixed value, based on the 
previous experiences of LO. It can be now uniformly distributed around previo-
usly fixed value. The output of each simulation will show to the LO the best set 
of the fleet of vehicles, its load capacity and the associate cost.  

The variety of solutions are easily available for the LO in a short time run-
ning the MCS using Excel with an extremely low computational cost. These 
solutions can be used under the additional constraints or relaxations previously 
explained. A subsequent validation process of the solutions found will be deve-
loped using Google Maps web application. 

The demand is deterministic because the information about it, is known by 
the LO at the end of the previous working day. But here additionally the load is 
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allowed to be 0% to ε% over the limits in capacity of vehicles and is uniformly 
distributed.  

The procedure for searching solutions is as follows: 
1.  Calculation of the load capacity to be hired on a daily basis. This capacity of 

the fleet must be greater or equal than the total load to be picked up on any 
particular day. Upper limit is uniformly distributed up to a given value. 

2.  Calculation of the possible solutions, by means of a Monte Carlo simulation, 
for the fleet to be used to collect the daily orders. Random variables will mo-
del the fleet of vehicles which has to pick up all the orders. Up to ε% uni-
formly distributed overload and up to δ% of time window is allowed but not 
always accepted by drivers (uniformly distributed). 

3.  Calculation of costs at each solution found in the previous step. The solutions 
granting lower costs than those of the approximate algorithm must be selected. 

4.  The final choice is the cheapest solution of fleet and route allocations for 
each vehicle, along several alternative routes under additional relaxations in 
constrains of time window or capacity of individual vehicle. 

A short example with four simulations is shown in Table 4, where LO has 
to collect orders in amount of 85.611 kg with a maximum cost of 1.550 €. Solu-
tions representing a fleet of vehicles with a lower capacity and/or higher cost 
will not be accepted. The constraints of capacity and time window are relaxed as 
described above. 
 

Table 4 

Simulation example with combination of fleets in columns 4-10, capacities  
in column 2 and costs in column 3 

SIMULATION  TOTAL KG TO BE 
COLLECTED = 85,611 

COST < 
1,550 €   

OUTPUTS KG COST (€) T1 T2 T3 T4 T5 T6 T7 
VALID SOLUTION 91.100 1.455 2 1 3 0 0 0 1 
INVALID SOLUTION 56.900 1.850 0 1 1 2 3 1 4 
VALID SOLUTION 93.200 1.490 3 0 2 0 0 0 2 
INVALID SOLUTION 114.000 2.350 0 4 3 0 4 2 0 

 
The valid solution presented in the first line of Table 4 is the simulation 

output of 2 vehicles “T1”, 1 vehicle “T2”, 3* T3 and 1*T7. According to Table 
4, this means a fleet with a maximum capacity of 91.100 kg, which is higher 
than 85.611 kg to be collected. The cost to hire this fleet is 1.455 € which is 
lower than the cost given by the approximate algorithm, which equals 1.550 €.  
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4. Monte Carlo simulation solution 
 
The vehicle leaves from one single depot and must travel one or several ro-

utes, with the limitations of routes. As an example, Figure 1 shows the itinerary 
for a vehicle that is making two routes and collect suppliers orders in those ro-
utes in a working day.  

Service time is defined as the time needed for the vehicle to leave the route, 
enter the supplier’s facilities, pick up the order and return to the route. We assu-
med that it is equal to 30 minutes for each supplier. Service time is added to the 
time needed for the vehicle to travel the whole route, which has been calculated 
by using Google Maps web application. The total time needed by a vehicle to 
collect all the orders in the routes that have been assigned to it, is calculated by 
the following formula:  

Ttotal= TDep Oi+ Trutai+ Tpri+ TDiOj+ Trutaj+ Tprj+ TDjDep 

 
Terms:  
TDep Oi time elapsed from the depot to the start of the route i  
Troutei Travelling time needed to complete the route i . 
Tpri Time needed to collect all orders from all suppliers on the route i  (calculated 

service time at each supplier’s facilities is 30 minutes). 
TDiOj Time consumed from the completion of the route i  to the start of the route j . 
Troutej travelling time of the route j  
Tprj Time needed to collect all orders from all suppliers on the rout j  (30 minutes). 
TDjDep Return time from the end of the last route to the depot. 

Figure 1. Diagram for the calculation of vehicle total travel and service times 
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The optimal logistics on January 19th 2006 when the quantity collected (in 
kg) at each road was as presented at the Table 5 is as follows. 

Table 5 

Loads per route (in kg) 

ROUTE A ROUTE B ROUTE C ROUTE D ROUTE E ROUTE F TOTAL 
40.906 24.402 4.577 12.517 1.885 23.898 108.185 

 
Table 6 

Number of suppliers per route 

route ROUTE 
A 

ROUTE 
B 

ROUTE 
C 

ROUTE 
D 

ROUTE 
E 

ROUTE  
F TOTAL 

number 14 22 4 2 1 18 61 
 

Starting from approximate algorithm (Ros-McDonnell et al., 2010) the assi-
gnments of the following fleet has been determined: 3xT1, 2xT2, 1xT4, 1xT5 
and 1xT6. The cost of total service has been equal to 1.820 € of. The number of 
operations performed by the simulation can be fixed in advance. We have made 
the constraints to 400.000 iterations. Using Monte Carlo Simulation by excel 
under given constrains, we obtained the following solutions, which are given at 
Figure 2. The solution at lower cost than 1.550 € and the appropriate total capa-
cities (higher than 580.611 kg + ε) are valid solutions, marked by square. If we 
choose ε = 0, the optimal solution corresponds to the fleet: (3*T1, 2*T2, 2*T7) 
with a load capacity of 109.200 kg. 
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Figure 2. Solutions obtained with Monte Carlo Simulation method (MCS) 
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Once the assignment of routes to vehicles is completed, the solution must 
be validated to verify that the fleet can in fact carry out the collection of all the 
merchandise in prescribed time window of 8 hour which could be exceeded for 
less than a certain percentage (3%). Using Google Map the admissible solutions 
can be given as presented at Figure 3. 

 

 
Figure 3. Route´s Map and travelling times at Google Maps web application 

 
Figure 3 represents total travel times given by Google Maps which are used 

to verify if each type of vehicles meets time windows under 8 hours (Table 7). 
Fleet (3*T1, 2*T2, 2*T7) exceeds time window only at one vehicle for 0,25%. 
 

Table 7 

The optimal solution 

VEHICLE ROUTE SUPPLIERS 
VISITED TIME  

1 T1 A 10 6,07 OK 
2 T1 A-B 9 5,98 OK 
3 T1 F-B 10 6,85 OK 
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contd. table 7 

1 T2 F-C-B 10 8,02 OK 
2 T2 E-D-F 6 6,42 OK 
1 T7 F-C 7 5,8 OK 
2 T7 A 8 6,1 OK 

 
This optimal solution meets all the constraints (Table 1 and 2) and require-

ments (enough load capacity, costs less than algorithm of Ros McDonnells et al 
and time window has been exceeded for 0,25% only at only one truck T2). 
 
Conclusions 

 
In real everyday operations CVRP solutions having limited and slightly re-

laxed time window and some other constrains, are needed to be achieved quic-
kly, and with relevant economic consequences for a company. Orders being 
collected on one particular day will determine the capacity of the total fleet for 
the following day. This situation, together with the lack of an appropriate met-
hod, may result in solutions that are quick and effective, but not efficient 
enough. The Monte Carlo-based calculation method improves the results obtain-
ed by the approximate algorithm of Ros McDonnell et al. (2010) allowing higher 
volatility of parameters. The improvements obtained are reflected in a reduction 
of costs close to 20%, and in the increase of efficiency of the load of vehicles in 
the fleet. The advantages given by the method (as opposed to other existing met-
hods) are in easy and faster way to obtain the better results when very small 
relaxation of constrains are allowed.. All the obtained solutions are operative in 
Spanish ceramics industry and they have been verified and validated by Google 
Maps time & distance tool.  
 
References 
 
Bachelet B., Yon L. (2007): Model Enhancement: Improving Theoretical Optimization 

with Simulation. Simul Model Pract Th 15, pp. 703-715. 

Fernandez de Cordoba P., Garcia Rafi L.M., Sanchis J.M. (1998): A Heuristic Algorithm 
Based on Monte Carlo Methods for the Rural Postman Problem. “Computers 
and Operation Research” 25(12), pp. 1097-1106. 

Fischetti M., Toth P., Vigo D. (1994): A Branch-and-bound Algorithm for the Capacita-
ted Vehicle Routing Problem on Directed Graphs. Oper. Res., 42, pp. 846-859. 

Fishman G.S. (1996): Monte Carlo. Concepts, Algorithms, and Applications. Springer, 
New York. 



E. HONTORIA, V. DE-LA-FUENTE ARAGON, L. ROS-MCDONNELL, M. BOGATAJ 

 16 

Jackel P. (2002): Monte Carlo Methods in Finance. John Wiley & Sons, New Jersey. 

Juan A.A., Adelantado F., Faulin J., Grasman S.E., Montoya-Torres J.R (2009): Solving 
the Capacitated Vehicle Routing Problem with Maximum Travelling Distance and 
Service Time Requirements: An Approach Based on Monte Carlo Simulation. Pro-
ceedings – Winter Simulation Conference, art. no. 5429663, pp. 2467-2475.  

Laporte G. (1992): The Vehicle Routing Problem: An Overview of Exact and Approxi-
mate Algorithms. Eur J Oper Res 59, pp. 345-358. 

Laporte G., Gendreau M., Potvin J.Y., Semet F. (2000): Classical and Modern Heuristi-
cs for the Vehicle Routing Problem. Int Tra Oper Res 7, pp. 285-300. 

Toth P., Vigo D. (2002): Models, Relaxations and Exact Approaches for the Capacitated 
Vehicle Routing Problem. Discrete Appl Math 123, pp. 487-512.  

Ralphs T.K., Kopman L., Pulleyblank W.R., Trotter L.E. (2003): On the Capacitated 
Vehicle Routing Problem. Math Program 94, pp. 343-359. 

Ros-McDonnell L., de-la-Fuente Aragon M.V., Bogataj M. (2010): An Approximate 
Algorithm for Optimal Logistics of Heavy and Variable Size Items. Cent Eur J Oper 
Res doi: 10.1007/s10100-010-0155-6. 

Vrugt J.A.ab, Ter Braak C.J.F. (2011): DREAM(D): An Adaptive Markov Chain Monte 
Carlo Simulation Algorithm to Solve Discrete, Noncontinuous, and Combinato-
rial Posterior Parameter Estimation Problems. “Hydrology and Earth System 
Sciences”, Vol. 15, Iss. 12, pp. 3701-3713. 

(WWW1): http://rd.springer.com/article/10/1007/s10100-010-0155-6 




