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Abstract. Thermal processes occurring in the heated tissue are described by the 1D gener- 

alized dual-phase lag equation supplemented by appropriate boundary and initial condi-

tions. Using the sensitivity analysis method, the additional problem connected with the 

porosity is formulated. Both problems are solved by means of the explicit scheme of the 

finite difference method. In this way it is possible to estimate the temperature changes due 

to the perturbation of porosity. In the final part of the paper, the example of computation 

is shown and the conclusions are formulated. 
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1. Introduction 

Thermal phenomena occurring in heated tissue are described using the various 

mathematical models, e.g. [1-8]. One of them is the dual-phase lag equation [9-11] 

in which two time parameters τq and τT appear. The parameter τq is the phase lag of 

the heat flux and parameter τT is the phase lag of the temperature gradient. Exten-

sion of this model is the generalized dual-phase lag equation [12-15]. In this equa-

tion the phase lag times τq and τT are expressed in terms of the blood and tissue 

properties, the interphase convective heat transfer coefficient and the blood perfu-

sion rate. Generalized dual-phase lag equation contains additional parameters, 

it means the coupling factor G, the porosity ε defined as a ratio of blood volume to 

total volume and the blood temperature Tb. 

In this paper the 1D generalized dual-phase lag equation (GDPLE) under the 

assumption that the blood temperature is constant is considered. The aim of inves-

tigations is to estimate the changes of the temperature field due to the perturbations 

of porosity ε. For this purpose, the direct method of sensitivity analysis is applied 

[16-20]. In this case the mathematical model consists of the basic problem 

(GDPLE supplemented by appropriate boundary and initial conditions) and the 
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additional problem resulting from the differentiation of governing equations. These 

problems are solved using the explicit scheme of the finite difference method for 

hyperbolic equations [14, 15]. In the final part of the paper the example of compu-

tations and conclusions are presented. 

2. Formulation of the problem 

The generalized dual-phase lag equation describing the heat transfer processes 

occurring in the heated tissues is based on the theory of porous media [6, 12, 13]. 

In this approach the tissue is divided into two regions: the vascular region (blood 

vessels) and the extravascular region (tissue). An important parameter in this model 

is the porosity ε, it means the ratio of blood volume to total volume. Using this 

parameter, the effective thermal conductivity 

 ( )1 ε λ ελbΛ = − +  (1) 

and effective heat capacity 

 ( )1 ε ρ ερb bC c c= − +  (2) 

are defined, where λ, λb are the thermal conductivities of tissue and blood, respec-

tively, ρ, ρb are the densities, c, cb are the specific heats. 

Under the assumption that the metabolic heat sources Q, Qb and the blood 

temperature Tb are constant, the generalized dual-phase lag equation for 1D 

problem takes the form [13, 15, 16] 

 ( )
2 2 3

2 2 2
0 : ( ) ε 1 εq T b b

T T T T
x L C C G T T Q Q

t t x t x
τ τ

∂ ∂ ∂ ∂
< < + = Λ + Λ + − + + −

∂ ∂ ∂ ∂ ∂
 (3) 

where T = T(x, t) is the temperature, x is the spatial co-ordinate, t is the time, G is 

the coupling factor, τq and τT are the phase lags for heat flux and temperature gradi-

ent. The equation (3) is supplemented by boundary conditions [10, 11] 
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and the initial ones 
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t

∂
= = =

∂
 (5) 

where qb is the known constant boundary heat flux, Tb is the boundary temperature 

and Tp is the initial temperature of biological tissue. 
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The coupling factor G and the phase lags τq, τT are defined as [12, 14] 

 α bG A wc= +  (6) 

 
( )ε 1 ε ρ ρ

τ
b b

q

c c

GC

−
=  (7) 

 
( )ε 1 ε ρ λ

τ
b b

T

c

G

−
=

Λ
 (8) 

where A is the the volumetric heat transfer area between tissue and blood, α is the 

heat transfer coefficient and w is the blood perfusion rate. 

The volumetric heat transfer area between tissue and blood can be determined 

from the dependence A = k Pb/V, where k is the number of blood vessels located 

in the volume V and Pb is the surface area between the single vessel and tissue. 

As mentioned before, the porosity ε is the ratio of blood volume to total volume: 

ε = kVb/V and it follows that A = ε Pb/Vb . The heat transfer coefficient can be 

calculated from the Nusselt number Nu = α d/λb, where d is the vessel diameter. 

Assuming that the diameter of all blood vessels is the same, then Pb/Vb and α 

are constants. 

3. Sensitivity analysis 

To estimate the temperature changes due to the changes of porosity, the direct 

method of sensitivity analysis can be applied [16-20].  

The equation (3) is differentiated with respect to the porosity ε and then 
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or 
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where U = ∂T/∂ε is the sensitivity function. 
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The boundary conditions (4) and the initial conditions (5) are also differentiated 

with respect to ε. Thus 

 

( ) 2 2
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and 

 0 : 0, 0
U

t U
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= = =

∂
 (12) 

In equation (10) the derivatives of thermal parameters are determined as follows 
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The equations (10)-(12) create the additional problem which is coupled with 

the basic problem (equations (3)-(5)). 

4. Method of solution 

To solve both the basic problem and the additional one, the finite difference 

method in the version presented in [21] is applied. The geometrical mesh with con-

stant step h and time step ∆t are introduced. 

For the internal node i the following approximate form of equation (3) is proposed 
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After mathematical manipulations one obtains (i = 1, 2, …, n − 1) 
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where 
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For the boundary node i = 0 one has 
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and next 
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From equation (20) it follows that 
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In the similar way the equation (10) connected with the sensitivity function is 

approximated 
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From the equation (22) it results that (i = 1, 2, …, n − 1) 
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For the boundary node i = 0 one obtains (cf. equation (11)) 
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hence 
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Because the explicit scheme of the finite difference method is applied, the stability 

criteria should be fulfilled [21]  
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5. Results of computations 

The layer of biological tissue of  thickness L = 0.01 m is considered. On the 

surface x = 0  the Neumann condition qb = 1500 W/m
2
 is assumed and on the surface 

x = L the Dirichlet condition Tb = 37°C is accepted. The initial temperature of tissue 
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is equal to Tp = 37°C. The thermophysical parameters of tissue and blood are col-

lected in Table 1. The blood perfusion rate w = 5 kg/(m
3
s), the porosity ε = 0.1637, 

the vessels diameter d = 0.00456 m, the Nusselt number Nu = 4.93. 

The calculations were made using the explicit scheme of the finite difference 

method assuming the grid step h = 0.0002 m and time step ∆t = 0.01 s. 

Table 1 

Thermophysical parameters 

Parameter Tissue Blood 

Thermal conductivity [W/(m·K)] 0.3 0.5 

Density [kg/m3] 1000 1060 

Specific heat [J/(kg·K)] 4000 3770 

Metabolic heat source [W/m3] 240 250 

 
In Figure 1 the distribution of sensitivity function after 60, 120 and 180 seconds 

is presented. Figures 2 and 3 illustrate the courses of temperature and sensitivity 

function at the points x = 0 (heated surface), x = 1 mm, x = 2 mm, x = 3 mm and 

x = 4 mm. As might be expected, the biggest changes of the sensitivity function 

occur near the heated surface (Fig. 1). 

 

 

Fig. 1. Distribution of the sensitivity function after 60, 120 and 180 seconds 

Knowledge of the sensitivity function allows one, among others, to estimate 

the changes of temperature due to the perturbation of the parameter considered: 

∆T = U∆ε, where ∆ε is the assumed perturbation of the porosity (e.g. ∆ε = 0.05ε). 

In Table 2 the changes of temperature for different values of ∆ε at the point x = 0 

are collected. As can be seen, changes in temperature increase both with an increase 

of ∆ε as well as with the  duration of the heating process. 
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Fig. 2. Heating curves at selected points 

 

Fig. 3. Course of sensitivity function at selected points 

Table 2 

Change of temperature due to the perturbation of porosity (x = 0) 

Time 

[s] 

∆T 

[°C] 

∆ε = 0.01ε ∆ε = 0.05ε ∆ε = 0.1ε 

60 –0.01 –0.03 –0.06 

120 –0.02 –0.09 –0.17 

180 –0.03 –0.13 –0.26 

240 –0.03 –0.16 –0.32 

300 –0.03 –0.17 –0.35 

360 –0.04 –0.18 –0.37 
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6. Conclusions 

The 1D generalized dual-phase lag equation describing the thermal processes 

occurring in the heated biological tissue is considered. The sensitivity analysis with 

respect to the porosity is presented. Here, the diameter of vessels is assumed 

as a constant and then the porosity contains information only about the density 

of blood vessels. 

As might be expected, the highest temperature perturbation occurs near the heated 

boundary, which can be seen in Figure 1. On the other hand, however, the heating 

time also has a meaningful impact on the results (cf. Fig. 3). It should be noted that 

in each case, the sensitivity function takes the negative values. This results from 

an increase in porosity, which entails in decreasing the tissue temperature, of course. 

As can be seen in Table 2, the porosity perturbation of 1% causes very small changes 

in temperature (< 0.1%), while  the porosity perturbation of 5 or 10% noticeably 

changes  the values of temperature. 

The presented approach can be extended for 3D problems and two-temperature 

models [12, 14, 22] in which the blood temperature is determined from the addi-

tional equation coupled with the generalized dual-phase lag equation. 
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