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Abstract

In this paper, we attempt to represent the Pareto Front in the Mar-
kowitz mean-variance model by two-sided discrete approximations. We
discuss the possibility of using such approximations for portfolio selection.
The potential of the approach is illustrated by the results of preliminary
numerical experiments.
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1 Introduction

The standard approach to solving the Markowitz mean-variance model Marko-
witz (1952), Markowitz (1991), Gondzio et al. (2007), Elton et al. (2014) is to
solve a number of optimization problems with a quadratic objective function,
representing portfolio variance, and one linear function, representing portfolio
mean return, constrained to be equal to a specific value. By this, a number
of efficient (in the sense of Pareto) portfolios and the corresponding pairs of
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mean return and variance values (elements of the Pareto Front) can be de-
rived. We refer to the mean-variance model, because the vast majority of
research this subject is focused on this particular problem, rather than on the
mean-standard deviation model. The mean-variance model has been a sub-
ject of extensive investigations which focused mostly on additional constraints
included in the model such as skewness Briec et al. (2013), liquidity Lo et al.
(2003) or portfolio size Chiam et al. (2008). Examples of large-scale portfo-
lio optimization problems were discussed in Steuer et al. (2011) and details
related to the large-scale optimization with multiple objectives are discussed
in Steuer et al. (2006). To solve large-scale portfolio optimization problems,
customized evolutionary algorithms were proposed, e.g., in Chen et al. (2011)
and Deb et al. (2011).

This standard approach, however completely overshadows the inherent
multiple criteria (here: bi-criteria) nature of the problem, where an investor
looking for a portfolio he/she would prefer the most, trades risk (captured as
variance) for gains (captured as mean returns) and vice versa.

Here we aim to assist investors which invest in portfolios on any scale, with
a specific focus on investing in a large number of assets. We start with the
observation that investors, with a possible exception of complete novices in the
business, have some, maybe vague, idea about their individual risk profiles,
for instance: being risk-prone, risk-neutral or risk-averse. This roughly nar-
rows their potential investments to specific segments of the Pareto Front (PF).
Hence, this makes the derivation of the whole PF superflous. To enable in-
vestors to locate such investor risk-specific segments, we propose a framework
to search for the preferable combination of mean return and variance.

The framework consists in capturing the investors’ risk profiles as they
are willing to make on the unachievable ideal portfolio of zero risk and the
maximal mean return to get an efficient portfolio. In the mean-variance model,
the maximal mean return is yielded by investing the whole capital into the
asset of the highest return.

To avoid having to solve optimization problems at the early stage of the
decision making process, instead of the element of the PF of the required risk
and mean return, investors can be provided with lower and upper bounds
on each of these values. Bounds, if sufficiently tight, are used to decide if
portfolios with risk and mean return within those bounds are satisfactory.
If so, an element of the PF (and the corresponding portfolio) is derived by
solving one quadratic optimization problem.

The outline of this paper is as follows. In Section 2, we recall the Marko-
witz model and provide necessary preliminaries. In Section 3, we show how
the investor can be supported in his/her portfolio selection decisions by ap-
proximate valuations of elements of the PF in regions of that set of his/her
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temporary interest. In Section 4 and Section 5, we show how to populate two
specific sets necessary to provide approximate valuations. Section 6 provides
some illustrative numerical examples, whereas Section 7 concludes the paper.

2 Preliminaries

The problem of portfolio investments is formulated as follows. Given a num-
ber of risky assets, find a portfolio with the most preferred risk and return
characteristic.

The underlying model for that problem is the Markowitz mean-variance
(MV) model:

min f1(x) = xTQx (minimize variance)

max f2(x) = eTx (maximize mean)
(1)

subject to x ∈ X0 =

x
∣∣∣∣∣∣
uTx = 1, (all capital to be consumed),

x ≥ 0,

 ,

where x is the vector of fractions of the capital, spent on buying individual
assets, Q is the covariance matrix, e is the vector of means, u is the all-ones
vector, x, u, e ∈ Rn, Q is an n× n matrix, and n is the number of assets.

Below we use the standard definition of solution (here: portfolio) efficiency
in the sense of Pareto, and we refer to the set of valuations of efficient portfolios
as the Pareto Front.

3 Selecting an investment portfolio

The method of preference-driven navigation over the Pareto front (PF), as pro-
posed in Kaliszewski (2006), relies on the notion of the vector of concessions,
serving as the preference carrier.

In what follows, we make use of an element y∗ of R2, y∗1 = 0, y∗2 =
= maxx∈X0 e

Tx+ε, ε > 0 . Element y∗ clearly does not represent any portfolio
composed of risky assets.

Since y∗ is unattainable, to get a feasible portfolio represented on the PF,
the investor has to compromise on y∗, and he or she can do this by selecting
a vector of concessions (see Kaliszewski et al., 2016) τ , τ1 < 0, τ2 > 0.

Vector τ defines proportions in which the investor agrees to sacrifice un-
attainable values of risk and mean return represented by y∗ in a quest for an
element of the PF.
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Vector τ can be defined by the investor explicitly, in the atomistic (or
parametric) manner, by indicating its components τ1, τ2 (in absolute numbers,
e.g. τ = (−2, 7) or relative quantities, e.g. τ = (− 2

2+4 ,
7

2+4)), or implicitly, in
the holistic manner, by indicating a base point y, i.e. a variant from the set
{y | y1 ∈ y∗1 + R+, y2 ∈ y∗2 − R+}, R+ – the set of real positive numbers,
which defines τ as τ1 = y1 − y∗1, τ2 = y∗2 − y2. The latter manner is a special
version of the reference point paradigm (cf. e.g. Kaliszewski, 2006; Ehrgott,
2005; Miettinen, 1999; Wierzbicki, 1999).

If the investor expresses his or her preferences in the form of vectors τ ,
then for any such a vector, he or she can be provided with bounds:

Ll(SL, τ) ≤ fl(xτ ) ≤ Ul(V SU , τ), l = 1, 2, (2)

where xτ would be a solution to:

min
x∈X0

max{ 1

τ1
(f1(x)− y∗1),

1

τ2
(y∗2 − f2(x))} (3)

if this problem were solved to optimality, SL is a set of feasible portfolios,
V SU is a set of elements of R2 located ”above” the PF (for definitions of SL
and V SU and formulas for Ll(SL, τ) and Ul(V SU , τ) see Miroforidis (2010),
Kaliszewski et al. (2009), Kaliszewski et al. (2010), Kaliszewski et al. (2012a)).
Figure 1 illustrates the derivation of bounds for given τ and unknown xτ .

Figure 1. Derivation of bounds for given τ and unknown xτ (bullet) with V SU con-
sisting of two elements (circles) and with SL consisting of one portfolio
(marked with an X). The North-West corner of the rectangle determined
with these three elements is a lower bound for f1(xτ ) and an upper bound
for f2(xτ ), whereas the South-East corner is an upper bound for f1(xτ ) and
a lower bound for f2(xτ )
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4 Derivation of SL

To ensure effectiveness of lower bound calculations, sets SL (termed lower
shells in Miroforidis (2010), Kaliszewski et al. (2009), Kaliszewski et al. (2010),
Kaliszewski et al. (2012), Kaliszewski et al. (2012a)) should be composed of
elements which are not dominated by any other element in this set.

To populate SL, we propose the following procedure:

Procedure 1: Derivation of the lower approximation SL

begin
1 Initialize A with assets
2 for a number of pairs of portfolios in A do
3 For each pair derive a number of their convex combinations

4 SL := A;
5 Delete the dominated portfolios from SL; go to Step 2.

If the lower bounds obtained with this population procedure are not sat-
isfactory, i.e. the differences between the lower and upper bounds are not as
small as required, the procedure can be extended to combinations of more
than two portfolios.

5 Derivation of V SU

Similarly to set SL, to ensure effectiveness of upper bound calculations, sets
V SU (termed virtual upper shells in Kaliszewski et al. (2012)) should be com-
posed of elements which do not dominate any other element in this set.

Let us consider the following modification of model (1):

min f1(x) = xTQx

max f ′2(x) = 1
α e

Tx
(4)

subject to x ∈ X0 .

Figure 2 represents PFs of this model for different α. It is clearly seen that
for α = 1 the PF to model (4) coincides with the PF of model (1) and for
α < 1 the PF satisfies the requirements for set V SU for model (1).

Assume for the moment that some algorithm applied to model (1) has
produced the PF and hence to model (4) with α = 1. Then a simple rescaling
of that PF in the model (4) with α < 1 produces the PF to model (1) and
hence V SU (Figure 2).
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Figure 2. Pareto Fronts for model (4) with different α

This observation is of no practical value, because the PF for model (1) is
the very object sought, not a given one. However, below we make use of the
idea of objects shifting in the mean-variance space along the variance axis to
populate V SU .

Suppose that an algorithm is able produce SL such that maxx∈SL
(f1(x)−

−f1(x′)) ≤ β, where f(x′) are elements of the PF, such that for each x ∈ SL,
f1(x) = f1(x

′).

Then, the set {y | y1 = f1(x) − β, y2 = f2(x), x ∈ SL} is clearly a valid
V SU .

At the moment we are not in the position to propose any exact method to
derive β except in-sample testing. In the next section, we present results of
a few such tests.

6 An illustrative example

We illustrate the idea on an example from the Beasley OR Library (1991),
namely the problem port4.txt with 98 assets. For that problem the library
provides the Pareto Front with 2000 elements uniformly covering the range of
accessible returns (Figure 3).
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Figure 3. The first iteration – V SU (N), f(SL) (�) and images of assets (�) in the
example problem. For each τ and the corresponding compromise half line,
the North-West corners of the rectangles represent the lower bound for vari-
ance and the upper bound for mean, and the South-East corners represent
the upper bound for variance and the lower bound for mean

For this problem we have derived lower shell SL by forming portfolios
from pairs of assets (Figure 3). Next, for each portfolio from SL we have
calculated the difference in variance between this portfolio and an element of
the Pareto Front with the same return. If there has been no element of the
Pareto Front with the return equal to that of the portfolio, we have taken the
element of the closest return. With 2000 elements of the Pareto Front, we
miss the correct value of return by at most 0.1815 · 10−5. Next, we shifted SL
along the horizontal axis by the value of the maximal difference and we have
obtained a valid V SU . With SL and V SU in place, we have calculated bounds
on fl(x

τ ), l = 1, 2, as in Table 1.

Table 1: Lower and upper bounds on components of f(xτ ) for selected τ ,
first iteration

τ L1(SL, τ ) L2(SL, τ ) U1(V SU , τ ) U2(V SU , τ )
(1,1) 0.00123 0.00798 0.00086 0.00828

(0.5,1) 0.00107 0.00706 0.00063 0.00788
(0.2,1) 0.00065 0.00593 0.00042 0.00699

(0.0667,1) 0.00037 0.00367 0.00020 0.00613
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In the second iteration, we have derived SL by forming portfolios from
pairs of portfolios in SL of the first iteration and calculated bounds again.
The bounds are given in Table 2.

Table 2: Lower and upper bounds on components of f(xτ ) for selected τ ,
second iteration

τ L1(SL, τ ) L2(SL, τ ) U1(V SU , τ ) U2(V SU , τ )
(1,1) 0.00090 0.00811 0.00100 0.00821

(0.5,1) 0.00074 0.00752 0.00080 0.00773
(0.2,1) 0.00047 0.00641 0.00054 0.00669

(0.0667,1) 0.00025 0.00452 0.00031 0.00537

Table 3 presents maximal errors which occur when taking L(SL, τ) to rep-
resent f(xτ ), defined as:

errl = 100 · Ul(V SU , τ)− Ll(SL, τ)

Ll(SL, τ)
, l = 1, 2

or:

errl = 100 · f(xτ )− Ll(SL, τ)

Ll(SL, τ)
, l = 1, 2,

with f(xτ ) approximated by solving problem (3) over the discrete approxima-
tion of the Pareto Front, as provided in Beasley OR Library for that problem.
The errors have been calculated for the first and second iteration.

Table 3: Maximal relative errors when taking L(SL, τ) to represent f(xτ )

First iteration Second iteration
τ err1 err2 err1 err2 err1 err2 err1 err2

% %
(1,1) 43.01 3.83 18.33 2.69 10.09 1.16 8.00 0.27

(0.5,1) 69.81 11.64 23.02 8.35 11.63 2.13 5.83 1.10
(0.2,1) 54.51 17.78 17.97 13.07 11.68 4.65 0.96 4.16

(0.0667,1) 83.27 66.82 32.33 41.92 22.69 18.36 5.00 14.89

The numbers in Table 3 illustrate the phenomenon of fast improvement of
approximations of the Pareto Front by lower shells. As in the first iteration,
the relative errors are absolutely unacceptable, in the second iteration they
drop to the level which, if still unacceptable, makes sense to proceed to the
third and possibly successive iterations. And it should be stressed that this is
only by taking pairwise combinations of portfolios1.

1 A similar behavior was observed for the other portfolio selection problems from the Beasley
OR Library; due to limited space we confined ourselves to presenting numerical results
for one problem only.
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Figure 4. The second iteration – V SU (N), f(SL) ( �) and images of assets
(�) in the example problem

Thus far we have attempted to approximate the entire Pareto Front, which
is of limited use in practical applications. As we now know where to improve
approximations locally (i.e. in the regions pointed to by the DM’s preferences
represented by the vectors of concessions and the corresponding compromise
half line), we can limit computations solely to those regions.

7 Conclusions

In this paper, we have attempted to apply the general bounding methodol-
ogy to the classical Markowitz portfolio selection mean-variance model. The
methodology allows investors to express their preferences in a natural manner
with the help of vectors of concessions and thus limit the search for Pareto
optimal (efficient) portfolios directly to the regions of investors’ interests. The
existence of two-sided bounds on Pareto suboptimal portfolios allows to con-
trol the extent of Pareto suboptimality of feasible portfolios when they are
considered for the most preferred portfolio.

We perceive inexact approaches to the portfolio selection problems to be
a valid alternative to exact methods when the number of assets available
for a portfolio exceeds a thousand. We raise three issues to support our
view. First, inexact methods can provide feasible portfolios relatively quickly.
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The only problem is their accuracy, but we have solved that problem by provid-
ing lower and upper bounds on portfolio variance and mean. Second, inexact
methods are generally much simpler to code than exact methods, so they can
be often coded in-house. This eliminates the need to acquire (often on the
basis of a costly license) an exact solver. Third, in the case of problems ad-
mitting more constraints (e.g., cardinality constraints), exact methods become
inefficient as the size and complexity of portfolio selection problems grows.

We have shown that in the case of the mean-variance portfolio selection
problem, portfolios with a limited number of assets can provide reasonable
approximations of the Pareto optimal portfolios. This observation needs to
be further verified on various large-scale test problems. Applications of this
observation to more complex portfolio selection problems will be the subject
of the authors’ further investigations.
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