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Abstract

Understanding societal preferences towards health is vital in pub-
lic decisions on financing health technologies. Thought experiments in
which respondents choose between health states are used to understand
the importance of individual criteria. Competing models of preference
structure can be compared by their ability to explain empirical observa-
tions. One of the key challenges when constructing such models is that
they have to aggregate preferences defined in multiple-criteria space. In
the present paper, we test whether treating the impact of health worsen-
ing (defined using EQ-5D-5L descriptive system, i.e. decomposing health
status in five criteria) as a fuzzy concept can improve the model fit.
To test if fuzzy approach to multiple-criteria preferences aggregation is
valid, we compare a standard, crisp model (SM) with two models using
fuzzy sets (JKL, previously proposed in the literature; and FMN intro-
duced here). We find FMN better than SM, and SM better than JKL.
Anxiety/depression and pain/discomfort seem to weigh most in prefer-
ences. According to FMN, self-care and usual activities are associated
with largest imprecision in preferences. The respondents are susceptible
to framing effects when time unit is changed: e.g. measuring the duration
in days results in short intervals mattering more than when expressed as
weeks. We conclude that the fuzzy-based framework is promising, but
requires careful work on the exact specification.
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1 Introduction

Understanding people’s preferences towards health is important; it can serve
in health technology assessment (HTA) to evaluate benefits of increasing life
expectancy or improving health-related quality of life (HRQoL). Hence, the
elicitation of preferences serves a prescriptive purpose: to suggest a course of
action to be taken, typically, by the public regulator on behalf of the society.

There are two steps in the preference-elicitation process. First, the math-
ematical representation of the preferences is constructed; then, its parame-
ters are estimated based on empirical data. Regarding the former, typically
a quality-adjusted life years (QALY) model is used in HTA (Weinstein et al.,
2009): a health state Q is assigned a number, u(Q), with the interpretation
that T × u(Q) denotes the von Neumann-Morgenstern utility of spending T
years in Q, where u(dead) = 0 and u(full health) = 1 (see Bleichrodt et al.,
1997; Miyamoto et al., 1998). The key challenge is that Q is usually evaluated
using multiple criteria, and u is a function aggregating them into a single in-
strument that can be used operationally. In this text, we use the EQ-5L-5D
system to define HRQoL, which implies a five-attribute description of Q.

Regarding the parameter estimation, usually either a time trade-off (TTO)
or a discrete choice experiment (DCE) is used to collect data on preferences.
In TTO, we attempt to determine the time T , such that T years in full health
is equivalent to 10 years in Q; in DCE, the respondent faces a series of pairwise
comparisons between two states, Q1 andQ2, lasting for T1 and T2 (in DCE with
duration), respectively (immediate death may also be used). The results of
TTO or DCE, combined with the QALY model assumptions (and the resulting
econometric models), can serve to assign utilities to health states.

However popular in applied HTA the QALY model is, its founding assump-
tions are often criticized (e.g. Attema et al., 2010; Pettitt et al., 2016; Beres-
niak et al., 2015). Among various lines of critique, Jakubczyk and Kamiński
(2017) and Jakubczyk (2015) suggested that fuzzy sets (a concept introduced
by Zadeh, 1965) can be used to define preferences towards health states (in
the context of health vs money trade-offs); the approach is motivated by the
observation that a lack of market experience can lead to an inherent impre-
cision in preferences. In the present paper, we aim to compare the standard
(crisp) approach with a fuzzy-based one. Even though there is no descriptive
motive in the health preference research – we do not strive to predict some-
body’s choices (as people rarely actually choose between health states) – the
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model fit seems a natural way to evaluate the credibility of the elicited values
(Jakubczyk et al., 2017).

We compare three approaches: 1) a standard QALY-model-based, crisp
model, as a benchmark; 2) a fuzzy-based approach proposed by Jakubczyk
et al. (2017) (JKL, henceforth); 3) an alternative fuzzy-based specification,
developed in the present paper (FMN, henceforth). We use the model fit as
a basic measure of model quality (minus log likelihood), but also discuss the
face validity of estimated parameters.

In the next section, we first present more details on how health states are
defined and the specifications of all three approaches. In section 3, we intro-
duce the dataset and the numerical approach used to estimate the parameters
of the models. In section 4, we present the results, compare the models with
respect to the insight on the impact of health on utility, and comment on the
predictive validity of the approaches. Finally, we discuss our findings.

2 Fuzzy modelling of preferences towards health states

2.1 Benchmark, crisp model

Health states are often described with the EQ-5D-3L (or 5L) descriptive sys-
tem (Brooks et al., 1996; Herdman et al., 2011), i.e. using five dimensions (or
criteria in decision modelling parlance): mobility (MO), self-care (SC), usual
activities (UA), pain/discomfort (PD), and anxiety/depression (AD). In each
dimension, health can be at one of three (in 3L) or five (5L) levels, denoting no
problems (level 1) or more and more severe problems (consecutive levels). In
such a descriptive system, a health state is denoted by five consecutive digits;
in particular, 11111 denotes full health (FH), and 55555 (we focus on 5L case
henceforth) denotes the worst (in the descriptive system considered) possible
health state1.

There are 3125 health states in the EQ-5D-5L descriptive system, making
it virtually impossible to elicit the utility for all of them. For this reason,
a model is fitted to the data collected for a subset of states, and then the
utilities of all the states can be approximated via extrapolation. Typically,
the utility of a health state Q is calculated relative to the utility u(FH) = 1,
in the form:

u(Q) = 1−
5∑

i=1

5∑
j=2

αi,jdi,j(Q), (1)

where

1 This notation is in standard use in the literature (and, e.g., not a vector-like (5, 5, 5, 5, 5));
hence, we use it here.



78 B. Kamiński, M. Jakubczyk

• i indexes the dimensions,

• j indexes the levels (no disutility for level 1; hence, omitted in the formula
above),

• di,j is a dummy denoting whether dimension i is at level j,

• parameters αi,j represent the preference structure (again, no disutility at
level 1).

We expect that αi,j is positive and increasing with j. Often a constant term,
α0 is added (if Q differs from FH, i.e. if at least one di,j = 1). Because JKL did
not use it in their specification and because α0 is difficult to interpret, we omit
it in the basic benchmark specification here2. Nonetheless, we also present the
version with the constant term, differing little in terms of the model fit.

When the above model is estimated based on TTO data, an error term, ε,
is added to eq. (1) (otherwise, no set of parameters α could fit the observed
data). In DCE, when two health states, QA and QB, considered for TA and
TB years, respectively, are compared, it is often assumed that the probability
of QA being selected is given by an exponential version of the Bradley-Terry
approach (e.g. Bansback et al., 2012):

P (QA, TA, QB, TB) =
exp (u(QA)× TA)

exp (u(QA)× TA) + exp (u(QB)× TB)
. (2)

In the benchmark model, we use eq. (2) to estimate the parameters of eq. (1).
Notice that equation (2) allows the utility to be negative (which is not

a problem thanks to the exponential function), and indeed some health states
are perceived as worse than dead. Immediate death is equivalent to 0 utility
(i.e. is equivalent to any state with duration zero). Jakubczyk et al. (2017)
point out that in the above formula there is always a positive probability of
any state being selected, however worse it is (even dominated) than the other
one.

In equation (2), the rescaling of TA and TB (i.e. multiplying both by the
same positive constant) changes the probability. Therefore, whether the time
is expressed as years (usually the case) or months, weeks, days, should also
impact the result. At the same time, presenting the choice in the specific time
unit might frame the problem differently (e.g. the subjective perception of six
months might differ from half a year). In our dataset, we use various time
units (days, weeks, months, and years). Hence, we introduce three parameters,

2 The constant term was interpreted in terms of dimensions complementarity by Jakubczyk
(2009); it could be also interpreted to reflect the fact that the state 11111 might also
include some minor health problems.
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τ1, τ2, and τ3, scaling the duration when days, weeks, or months are used,
respectively. For example, if time is expressed in days in the task, then the
formula for probability becomes:

P (QA, TA, QB, TB) =
exp (u(QA)× TA × τ1)

exp (u(QA)× TA × τ1) + exp (u(QB)× TB × τ1)
. (3)

The parameters to be estimated are α (20) and τ (3). We expect τi to
be < 1 and increasing with i. If there is no framing effect of a time unit, we
should get τ1 = 1/365, τ2 = 1/52, and τ3 = 1/12.

2.2 JKL fuzzy model

We only briefly reintroduce the JKL model (Jakubczyk et al., 2017), and the
reader is encouraged to see the original publication for details. JKL suggested
to treat the utility of being in state Q for T years, u(Q,T ), as a fuzzy set.
For simplicity, they used a piecewise linear membership function, µu(Q,T )(x);
µu(Q,T )(x) = 1 for low values (x ≤ L(Q) × T ), µu(Q,T )(x) = 0 for high values
(x ≥ H(Q)× T ), where L(Q) and H(Q) are parameters characterizing health
state Q. Then, µu(Q,T )(x) is linearly decreasing between L(Q)×T and H(Q)×
× T (or jumping discontinuously, if L(Q) × T = H(Q) × T ). JKL interpret
µu(Q,T )(x) as the conviction that being in Q for T years gives the utility of at
least x.

Analogously to eq. (1), L(Q) and H(Q) are given as linear combinations
of dummies for dimensions and levels defining Q:

L(Q) = 1−
5∑

i=1

5∑
j=2

hi,jdi,j(Q), (4)

H(Q) = 1−
5∑

i=1

5∑
j=2

li,jdi,j(Q). (5)

Parameters l and h define the range of disutility for a given dimension/level.
The larger they are, the bigger the impact of a given health worsening on
utility. The more they differ, the larger the imprecision in the perception of
disutility. Because of the subtraction, parameters h are used to define L(Q),
and parameters l are used to define H(Q).

In the JKL model, two health states are compared in the following way
(e.g. in a DCE experiment). The advantage of (Q1, T1) over (Q2, T2), namely
δ(Q1,T1),(Q2,T2), is given as:

sup
x∈R

(
µu(Q1,T1)(x)− µu(Q2,T2)(x)

)
,
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and the advantage the other way round is defined analogously. The param-
eters δ must be in the [0, 1] range. It can happen that both δs are positive.
Then, the net advantage of advantage of (Q1, T1) over (Q2, T2), ∆(Q1,T1),(Q2,T2),
is given as δ(Q1,T1),(Q2,T2) − δ(Q2,T2),(Q1,T1), and the resulting ∆ ∈ [−1, 1].

The probability of (Q1, T1) being chosen instead of (Q2, T2) is given as

a function of the net advantage: P (∆) = (∆+1)ρ

2 , for ∆ ≤ 0, with a non-
negative parameter ρ to be estimated (and for ∆ > 0, the probability is
calculated using the assumption that P (∆) + P (−∆) = 1). The value ρ = 1
leads to ∆ being transformed linearly into probability, ρ < 1 results in proba-
bility remaining at around 50% for many values of ∆, and ρ > 1 results in a
probability being sensitive to ∆ values differing even slightly from zero.

Let us notice the following features of JKL’s model. First, multiplying T1

and T2 by the same strictly positive number does not change the preferences
(parameters δ, ∆, and P (·)). Hence, no counterparts of τ are needed (as long as
the same time unit is used in both states compared). Second, for large enough
differences between (Q1, T1) and (Q2, T2), the probability of one being chosen
is equal to 1 (not only approaches 1). Third, this model compares the two
health profiles in the conviction space (i.e. the values of membership functions
are compared), rather than in the utility space. This last property motivates
trying another fuzzy-based approach, presented in the next subsection (in
which the first two properties do not hold; hence, the model is more flexible).

2.3 Fuzzy model – a new specification (FMN)

Again, the utility of living in Q for T years, u(Q,T ), is defined by two numbers,
L(Q)×T and H(Q)×T . The values L(Q) and H(Q) are defined as in eq. (4).
In the present specification, though, the membership function, µu(Q,T )(x) is
equal to 1 for L(Q)×T ≤ x ≤ H(Q)×T , and 0 otherwise. The interpretation
is that the decision maker agrees fully that T years in state Q may correspond
to the utility of x, or – putting it differently – cannot rule out x as the utility
of (Q,T ) and totally rules out any value below L(Q)× T or above H(Q)× T .

We then define the advantage of one profile, (Q1, T1), over another, (Q2, T2),
by comparing the middles of 1-cuts of u(Q,T ):

∆(Q1,T1),(Q2,T2) =

(
T2
H(Q2) + L(Q2)

2
− T1

H(Q1) + L(Q1)

2

)
× τi. (6)

The parameter τi is the scaling factor, and i changes with the time unit
used to measure T1 and T2 (the same time unit assumed): i = 1 for days, i = 2
for weeks, i = 3 for months, and i = 4 for years. We normalize τ4 = 1, and
estimate τ1, τ2, and τ3.
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We define the ancillary score, π, (subscripts (Q1, T1), (Q2, T2) suppressed;
cf. eq. (2)),

π =
1

1 + exp (−∆)
. (7)

In this way, we transform ∆ in the π ∈ [0, 1] interval, to facilitate interpreting
the advantage in terms of probabilities.

In this model, we try to account for the fact that a larger difference be-
tween L(Q) and H(Q) denotes a larger imprecision in how the utility of Q
is perceived. We want to include the possibility that larger imprecision may
dilute the preferences, i.e. shift the probability of one alternative being chosen
towards 50%. Specifically, we take:

Θ(Q1,T1),(Q2,T2) =

(
T2
H(Q2)− L(Q2)

2
+ T1

H(Q1)− L(Q1)

2

)
× τi. (8)

In the present specification, we use the same vector [τ1, τ2, τ3] when calculating
∆ and θ, assuming the time unit is perceived identically in both aspects.

Finally, we define the resulting probability of (Q1, T1) being chosen as:

P =
π − 0.5

1 + ωΘ
+ 0.5, (9)

where ω is a parameter to be estimated. For ω = 0 there is no impact of
imprecision on preferences (and the model can be reduced to a crisp version
with L(Q) = H(Q) for all the states).

Summing up, in the FMN specification, we have to estimate parameters
h and l (40), ω (one parameter), and τ (3).

3 Methods

3.1 Dataset

We used the data from the DCE predictive competition organised by the
International Academy for Health Preference Research (IAHPR), sponsored
by The EuroQol Group, available for general public, and described on the
IAHPR website (http://iahpr.org/eq-dce-competition/, as of 16 Nov,
2016). More details can be found in Jakubczyk et al. (2017).

There were responses from 4074 US respondents, each choosing between
two health states in 20 pairwise comparisons. Each health state was described
with the EQ-5D-5L descriptive system, and the duration was given (four time
units were used: days, weeks, months, and years; the same unit for both states
in each pair).

In the modelling, only the aggregated proportion of a given answer is used,
not the entire individual answer.
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3.2 The approach to estimation

In the data set, there were 1560 different combinations of compared states
and times. For each combination ci, the number of observations, ni, and the
number of choices of option 1, ki, were recorded.

To estimate the parameters of the model (in all three specifications), we
employed the maximum likelihood estimation:

max L =
1560∑
i=1

ki ln(Pr(ci)) + (ni − ki) ln(1− Pr(ci)), (10)

by changing the parameters used in a given specification. Although the three
models have significantly different specifications, using the same objective
function allows us to analyse their fit by simply comparing the estimated
− log(L) (the lower the better).

In the estimation for level 1, we assumed that the preference is crisp and
equal to 0 for every dimension. When estimating the parameters of the crisp
specification, we imposed the constraints that αi,j are positive and non de-
creasing in j for every dimension i. When estimating the parameters of the
fuzzy specifications we imposed the following constrains: (a) li,j and hi,j are
positive, (b) for every dimension i and level j, hi,j ≥ li,j , (c) the mean of
li,j and hi,j is non-decreasing in j for every dimension i. They reflect the
assumptions made in the crisp model and only add the fuzzy set consistency
restriction (b).

The problem specified in eq. (10), subject to the above constraints, was
solved using the Nelder-Mead optimization in both cases: crisp and the new
fuzzy FMN specification. The constraints were imposed by adding constraint
violation penalty. In the latter, in order to ensure an effective estimation
of the objective function, we replaced functions li,j and hi,j by (hi,j + li,j)/2
and (hi,j − li,j)/2, as the latter form was simpler to impose constraints on
and, in consequence, it provided a higher stability of the results. In the JKL
specification, eq. (10) is non-differentiable due to the way we compare fuzzy
sets. Therefore, Nelder-Mead or other standard optimization routines failed
to consistently converge. To overcome these problems, we employed simulated
annealing optimization in this case.

For the Nelder-Mead optimization, we used the implementation that fol-
lows Gao et al. (2012) and uses default parameters and stopping criteria,
except for the number of iterations (we did not impose any restriction on the
number of iterations of the optimization procedure). It was implemented in
the Julia language (Bezanson et al., 2017) using the Optim package (White et
al., 2017). The specification of the crisp model is effectively a logistic regres-
sion and thus it has a single local (and thus global) optimium (Menard,2002).
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The FMN model, with (hi,j + li,j)/2 and (hi,j − li,j)/2 as decision variables, is
a logistic regression with an additional monotonic transformation given by (9).
We do not have a proof that this transformation has a single minimum, but
intuitively the properties of the objective function should not be significantly
different. To verify the stability of the solution, we ran the optimization 1000
times, each time starting from a new point sampled uniformly from the admis-
sible region; the optimization converged to approximately the same solution.

For the estimation of the JKL model parameters, we found that this model
has multiple local minima. Therefore, we developed a custom algorithm based
on simulated annealing (Du and Swamy, 2016). The exact procedure was the
following. We started with an admissible point sampled uniformly. Then,
10,000 steps of simulation annealing were performed with the application of
Gaussian perturbations to all parameters (inadmissible perturbations were
rejected). In the second stage, to perform a search near the optimum, we
performed a random local search in which in each step we perturbed only one
parameter and accepted the new solution only if it improved the solution. The
second step was halted when for a batch of 1000 iterations the improvement
of the objective function was less than 10−8 (approximately the square root of
the precision of IEEE 754 floating point around 1.0). To verify that we do not
end in a local minimum, we applied the multi-start (Mart́ı, 2003) approach
– the procedure was run 1000 times starting from a different random point.
We report the best solution found. As with any heuristic approach, this is
only an approximation of the optimal solution. However, it should be noted
that better properties of the optimized objective function are another reason
for preferring the FMN fuzzy approach presented in this paper over the JKL
model.

4 Results

4.1 Crisp model

The results for the benchmark model are presented in Table 1, in the spec-
ification without and with the constant term α0. In both approaches, the
AD dimension was found to cause the greatest disutility (when at level 5) fol-
lowed by PD; on the other hand, the UA dimension causes the least disutility
(looking at level 5 only).

The estimated values of τ show that durations measured using various time
units are not simply algebraically recalculated, e.g., into years. For example,
τ1 = 0.123 > 1/365, showing that the relative importance of one day, when
duration is measured in days, is greater than if it was measured in years.
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Notice that even τ2 > τ3, suggesting that one week has greater weight than
one month, but that may be due to estimation imprecision.

The measure of fit, that is, negative log of likelihood, has no direct inter-
pretation (it will be compared to the ones obtained for other models).

The values presented in the table can be used to calculate the utility for
all 3125 states in the EQ-5D-5L descriptive system. For example, u(55555) =
= −0.668 (for the specification without α0).

Table 1: Crisp model, without and with the free parameter. Measure of fit equal to
52538 and 52410, respectively. Dimensions: MO = mobility, SC = self-care,

UA = usual activities, PD = pain/discomfort, AD = anxiety/depression

Dimension/level Description No α0 With α0

Constant — 0.128

MO2 slight problems in walking about 0.067 0.038
MO3 moderate problems . . . 0.094 0.078
MO4 severe problems . . . 0.241 0.210
MO5 unable to walk about 0.318 0.290

SC2 slight problems washing or dressing 0.039 0.025
SC3 moderate problems . . . 0.069 0.063
SC4 severe problems . . . 0.215 0.200
SC5 unable to wash or dress myself 0.319 0.297

UA2 slight problems doing usual activities 0.111 0.065
UA3 moderate problems . . . 0.135 0.094
UA4 severe problems . . . 0.263 0.227
UA5 unable to do usual activities 0.263 0.227

PD2 slight pain or discomfort 0.076 0.048
PD3 moderate . . . 0.122 0.093
PD4 severe . . . 0.358 0.328
PD5 extreme . . . 0.358 0.328

AD2 slightly anxious or depressed 0.120 0.080
AD3 moderately . . . 0.221 0.196
AD4 severely . . . 0.410 0.367
AD5 extremely . . . 0.410 0.367

T1 day 0.123 0.129
T2 week 0.385 0.400
T3 month 0.368 0.389
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4.2 JKL model

In Table 2, we present the estimation results for the JKL model, as in the
original publication: Jakubczyk et al. (2017). When focusing on level 5, the
PD and AD dimensions were found to cause the greatest disutility. Also, AD is
associated with largest imprecision of preferences: the difference between h5,5

and l5,5 amounts to almost 0.6, nearly two thirds of the difference in utility
between dead and full health.

In JKL specification, the utility of the worst state, u(55555), is a wide
interval: [−2.02;−0.07].

Importantly for the present paper, the fit decreases significantly when com-
pared with the crisp approach, even though the number of parameters has
doubled. This finding motivates trying another fuzzy approach, as specified
in subsection 2.3, whose results are presented subsequently.

Table 2: Fuzzy model, dimensions as in Table 1, ρ = 0.989. Measure of fit equals
60971

Dimension Parameter
Level

2 3 4 5

MO
l 0.034 0.034 0.200 0.320
h 0.215 0.215 0.500 0.601

SC
l 0.000 0.026 0.116 0.208
h 0.186 0.278 0.388 0.530

UA
l 0.018 0.018 0.138 0.138
h 0.138 0.206 0.355 0.389

PD
l 0.000 0.071 0.210 0.266
h 0.296 0.296 0.546 0.771

AD
l 0.031 0.091 0.091 0.138
h 0.120 0.242 0.701 0.727

4.3 Fuzzy model

In Table 3, we present the estimation results for the new fuzzy approach,
specified in the present paper. As in the results from JKL, AD and PD are
the most important dimensions (the disutility of level 5). SC and UA are
associated with largest imprecision of level-5 disutility (the difference between
lower and upper disutility).

Due to the approach to estimation (defining constraints on and estimating
the middles and lengths of [l, h] intervals, rather than l and h), the parameters l
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are non-increasing in several cases (UA5, PD5, AD5). The size of this effect
is small, e.g. as compared to the estimation error (not presented here).

In this specification, the utility of the worst state, u(55555), is an interval:
[−1.3;−0.57], much narrower than in JKL.

Most importantly, the measure of fit for the newly specified fuzzy approach
clearly outperforms the two earlier specifications.

Table 3: Fuzzy model, dimensions as in Table 1, τ1 = 0.406, τ2 = 1.229, and
τ3 = 1.265, ω = 0.293. The measure of fit is 50392

Dimension Parameter
Level

2 3 4 5

MO
l 0.022 0.033 0.234 0.300
h 0.125 0.157 0.309 0.433

SC
l 0.000 0.000 0.167 0.247
h 0.046 0.111 0.235 0.441

UA
l 0.080 0.036 0.265 0.181
h 0.124 0.216 0.296 0.380

PD
l 0.060 0.064 0.473 0.459
h 0.123 0.252 0.503 0.517

AD
l 0.044 0.183 0.404 0.382
h 0.134 0.229 0.506 0.528

5 Discussion

We tested the quality of three approaches for modelling the preferences towards
health states. We found that the FMN fuzzy-based approach specified in the
present paper clearly outperforms the other two. On the other hand, the
fuzzy-based approach suggested previously by JKL performed worst in terms
of model fit. The relative differences between the measures of fit are quite
large, as compared to the impact of adding/removing a constant term in the
crisp specification.

These results suggest the following, in our opinion. Fuzzy modelling of
preferences in the context of health not only has face validity (people find it
difficult to introspectively determine their own preferences) but also performs
better in terms of objective criteria. We attribute those difficulties to the fact
that choosing between health states forces to consider conflicting objectives:
respondents have to compare (a) different dimensions of health (e.g. juxtapos-
ing mental and physical disabilities) and (b) different durations of remaining in
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a given health state. Still, it is very important to introduce fuzziness properly,
so as to correctly model the imprecision and its impact on decisions.

JKL’s idea to model the DCE data with fuzzy sets was correct, but the
concrete specification can be improved. JKL based the probability of choosing
a given alternative on the difference between the membership functions calcu-
lated along the Y axis. This approach had two important features: it directly
corresponded to the constant proportional trade-off (CPTO) assumption (scal-
ing the durations should not change the preferences between the alternatives)
and allowed full certainty of choice when two alternatives differ substantially.
Its poor performance may be due to the violation of CPTO in empirical data
(Attema et al., 2010; Jakubczyk et al., 2017), and to the failure of the ex-
ponential Bradley-Terry function used in the crisp specification to follow the
CPTO.

The new fuzzy-based specification resembles the crisp approach more di-
rectly, in that the utilities of the compared health states are subtracted (the
middles of 1-cuts of utilities, to be precise) to derive the probability of one
state being chosen. The fuzzy approach allows the imprecision in preferences
to impact the behaviour of respondents in that the probability is shifted to-
wards 50%. The improvement in model fit (along with estimated ω > 0)
suggests this mechanism may be in place.

We acknowledge that many improvements can still be made to all the spec-
ifications (especially to the crisp model, which contains fewer parameters),
e.g. time can be handled non-linearly. Also, the approach to the estimation
process (e.g. the monotonicity constraints) could be changed (e.g. to guaran-
tee the monotonicity in rows in Table 3). Therefore, the result of the present
comparison should not be treated as the ultimate test determining the cor-
rect approach, but rather to indicate the ideas to be pursued in subsequent
research.

The individual results are quite consistent between the considered ap-
proaches: pain/discomfort and anxiety/depression are the most important
dimensions (i.e. the worsening to level 5). In the new specification (preferred
due to predictive validity over the JKL), the SC and UA dimensions are asso-
ciated with especially large imprecision (particularly when measured relative
to the disutility), i.e. the difference between h and l. This may result either
from the fact that ‘self care’ and ‘usual activities’ are the most vague notions
in the descriptive system, or from the fact that the respondents find it most
difficult to assess the value of performing these activities. It might also be
the case that the importance of these criteria varies with the duration (see
Jakubczyk et al., 2017). Here, we would like to highlight that the obtained
results show the ability of the fuzzy approach to capture this differing uncer-
tainty of comparing conflicting criteria in a multiple-objective setting.
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Our analysis provides insight into how time – yet another dimension in the
multiple-criteria decision setting considered here – is perceived when compar-
ing health states (in the crisp approach and the new fuzzy approach). The
parameters τ measure the relative importance of a unit of time (relative to
‘year’ as a unit). All the shorter units (days, weeks, months) in both ap-
proaches were found to have larger weight than it would follow from their
actual duration. For example, in the crisp approach, τ1 (corresponding to
‘day’) amounts to 0.123 and in the fuzzy approach, to 0.406, while one day
equals 1/365 of a year. There are at least two possible interpretations. First,
when the problem is presented in days, the decision maker changes his/her
own attitude (the framing effect) and realizes that even individual days mat-
ter. The decision maker may pay attention to the relative, not only absolute,
differences in duration between the alternatives (see Jakubczyk et al., 2017).

Second, when faced with a decision problem and overwhelmed with the
amount of information about conflicting multiple objectives, the decision maker
may focus on numbers (how many units of time will I live in this state) and
not on units (what is the actual duration). In the extreme case, if the units
are neglected altogether, we would expect all parameters τ to be equal to 1.

Based on our findings, in future research it would make sense to test other
approaches to time handling. For example, the duration could enter the equa-
tions in non-linear form (see also Jakubczyk et al., 2017), to drop the CPTO
assumption altogether. Also, other treatments of imprecision in eq. (8) could
be considered: it is not obvious that the imprecisions should depend linearly
on time in the same fashion that the utility does. No estimation errors were
presented in the present study. A more systematic treatment of statistical
significance of findings could help to direct further research. Finally, the com-
parison of models was based on the model fit. Perhaps the predictive validity
(out-of-sample prediction success) could be a more reliable approach.
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