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Abstract. This paper concerns an analytical study of an infinite expanse of uniform flow 

of steady axisymmetric creeping flow of an incompressible micropolar fluid around 

the permeable sphere assuming a nonhomogeneous boundary condition for microrotation 

vector. It is assumed that microrotation vector is proportional to the rotation rate of velocity 

vector. The stream function solutions for the flow fields are obtained in the terms of modi-

fied Bessel’s functions and Gegenbauer functions. Continuity of normal velocity, no-slip 

condition, non-zero microrotation vector on the sphere, uniform velocity at infinity are 

the different boundary conditions used to determine the flow fields explicitly. The micro- 

rotation component, pressure field, bounds of permeability parameter and drag force 

experienced by the permeable sphere are calculated. Dependence of the drag force on 

different fluid parameters is presented graphically and discussed. It is found that drag 

force decreases with increasing spin parameter. Several cases of interest are deduced 

from the present analysis. 
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1. Introduction 

The investigation of viscous flow through permeable media has fascinated 

substantial practical and theoretical interest in science, designing and innovation. 

In our day to day life, we observe that the permeable objects and permeability 

nature correspond to various types of viscous and non viscous fluids passing 

through the objects viz. cloth, sand, paper etc. Many different theoretical and 

experimental models have been proposed, which explain the viscous flow past and 

within porous bodies. Some more examples of such flow are a flow past a meshed 

spherical surface, soil etc. 

Darcy [1] proposed the initial study of the fluid flow in a permeable medium and 

stated that the flow rate in porous media is proportional to the pressure gradient. 
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Many different approaches [2-4] implemented to explain the creeping flow of 

an incompressible viscous fluid about permeable sphere. Joseph and Tao [5] investi- 

gated that the slow motion of a viscous fluid past a permeable sphere in an uniform 

stream can be calculated in an analogous analytic form if the fluid in the permeable 

sphere obeys the Darcy’s law. Birikh and Rudakoh [6] investigated the problem 

of slow motion of a permeable sphere in a viscous fluid and evaluated the drag and 

the flow rate of the fluid. Padmavathi et al. [8] solved the problem of stokes flow 

past a permeable sphere for the non-axisymmetric case and gave a general method 

for calculating non-axisymmetric flow both outside and inside the permeable 

spherical boundary and expressions for drag and torque on the sphere. Usha [9] 

solved the problem of creeping flow over concentric permeable spheres in relative 

motion. The problem on slow viscous flow past a spinning sphere with permeable 

surface was solved by Vasudeviah and Malathi [10], and they derived the expres-

sion for drag coefficient on the body which can be used as a formula for the deter-

mination of the permeability of the sphere. 

Eringer [11] introduced a subclass of viscous fluids, which he named micro- 

polar fluids, that ignores the deformation of the microelement but still allows for 

the particle micromotion to take place. Apart from the classical field of velocity, 

in the micropolar fluid theory there are two additional field variables, viz. the micro- 

rotation vector � and the gyration parameter	�; introduced to explain the kinematic 
of microrotation. Ramkisoon and Majumdar [12] derived a formula to evaluate 

drag on axially symmetric bodies for the case of micropolar fluid and they 

observed that the drag in the micropolar fluid is greater than that in the classical 

fluid. The slow stationary flow of a micropolar fluid past a sphere was studied 

by Rao and Rao [13].  Srinivasacharya and Rajyalakshmi [14] solved the problem 

of the creeping flow of micropolar fluid past a porous sphere and observed that 

the drag on the porous sphere, when the fluid is micropolar, is more than that of 

the Newtonian fluid. Ramkissoon [15] has obtained the solution for the problem 

of a micropolar fluid flow around a Newtonian fluid sphere and evaluated the drag 

force exerted on the sphere. The resistance force exerted on a solid sphere moving 

with constant velocity in micropolar fluid with a non-homogeneous boundary 

condition for microrotation vector was tackled by Haffmann et al. [16]. Gupta 

and Deo [17] have studied Stokes flow of micropolar fluid past a porous sphere 

with non-zero boundary condition for microrotations. Drag on Reiner-Rivlin liquid 

sphere placed in a micropolar fluid with non-zero boundary condition for micro- 

rotation has been solved by Jaiswal and Gupta [18]. Gupta and Deo [19] have 

solved the problem of axisymmetric creeping flow of micropolar fluid over 

a sphere coated with a thin fluid film. It is found that a sphere without coating 

experiences greater resistance in comparison to coated fluid. Slow steady rotation 

of a permeable sphere in an incompressible couple stress fluid is considered 

by Aparna and Murthy [20] and they also studied the problem on uniform flow 

of an incompressible micropolar fluid past a permeable sphere [21]. 

The aim of this paper is to extend the work of Aparna and Murthy [21] by 

assuming a non-zero boundary condition instead of zero boundary condition for 
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microrotation vector  The microrotation on the boundary of the sphere is assumed 

to be proportional to the rotational rate of the velocity field on the boundary. 

The stream function and pressure for the flow outside and inside of the sphere 

are calculated. The drag experienced by a permeable sphere is evaluated and 

the graphical representation of the drag force with respect to the different fluid 

parameters is displayed. The effect of fluid parameters on velocities and stream 

functions are discussed. 

2. Mathematical formulas 

Here we have considered a permeable sphere of radius � in an unbounded 
medium with the origin at the centre � of the sphere (Fig. 1). We assume that 
the permeable sphere is stationary and a steady axisymmetric creeping flow of 

a micropolar fluid has been established around it by a uniform flow with velocity 

of magnitude U directed along the �-axis far away from the sphere. 
 

 
Fig. 1. Graphical representation of the model 

The general form of governing equations for the slow steady motion of micro- 

polar fluid under stokes approximation can be written as 

 ∇ ∙ v� = 0, (1) 

 −∇p + �∇ × ω	 − 
� + ��∇ × 
∇ × v�� = 0, (2) 

 −2�ω+ �∇ × v� − γ∇ × 
∇ × ω�+ 
α+ β+ γ�∇
∇ ∙ ω� = 0, (3) 

where v� being the velocity vector, p the pressure, ω = ��
,���̂� the microrotation 
vector, � the classical viscosity coefficient of the fluid, � the vortex viscosity 
coefficients, α, β, γ are gyro viscosity coefficients satisfying the following 
inequalities 

      � = � � = 0 

Uniform 

flow 

� − ���� 

� 

v� 
v� 
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 3α + β + γ ≥ 0,   2� + � ≥ 0,   γ ≥ |β|,   � ≥ 0,   γ ≥ 0. (4) 

To non-dimensionalize the equations and variables, we put 

 = �̃,�� = �����, �� =
��
� ��, ��� =

�
� ���, (5) 

and drop tildes subsequently in further analysis. Since the flow field is axisymmet-

ric, we can introduce stream functions �(,�) which is related to the velocity in 
spherical coordinate system (,�,�) by Happel and Brenner [7] 

v� = v�
,���̂� + v�
,���̂� = −��� � �
sin� �̂�	�, (6) 

and we obtain two velocity components of the flow as  

v� = −
1

�sin�
��
�� , �v� =

1

sin�
��
� . (7) 

Eliminating the pressure from equation (2) and using (3) we get the differential 

equation 

  �! � − λ
�"� = 0, (8) 

 

, ζ = cos� and micropolar parameter where  
 

λ
�

=
�
2� + ����
γ(� + �)

 (9) 

Using the equation (3) we get the micro-rotation component 

	�� =
1

2sinθ
# ��+

γ(� + �)

��  ��$. (10)

3. Method of solution 

The solution of Eq. (8) can be obtained by superimposing the solution of 

  ��� = 0,    ��� = 0,   ! � − λ
�"�� = 0, (11) 

in the form, 

 � = ��+��+��. (12) 

 � =
��
�� +

(1 − ζ
�
)

�
��
�ζ�
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Suppose �	 and �
 denote the stream function solution for the external flow 
( ≥ �) and for the internal flow ( ≤ �) respectively. Using the method of separa-
tion of variables, the stream function solution for external flow and internal flow 

are obtained as 

�	 = �� +
%� + &� + '�√)� �� 
λ��*�(ζ) (13)

and 

 �
 = +%�� + &�� + '�√,� �� 
λ�-*�
ζ�, (14) 

where ,� �� 
�, 	)� �� 
� are modified Bessel functions of the first and second kind 
and *�
ζ� =

�
� (1 − ζ

�
) is Gegenbauer polynomial. 

The micro-rotation components ��	  and ��
  for external and internal flow are 

��	 =
1

sin� {−
&� +

λ
�
. '�√)� �� 
λ�}*�(ζ) (15)

��
 =
1

sin� {5&�� +
λ
�
. '�√,� �� 
λ�}*�(ζ) (16)

4. Boundary conditions 

The boundary conditions to be satisfied at the surface of the permeable sphere, 

which are physically realistic and mathematically consistent for this proposed 

problem, can be taken as: 

• Continuity of normal velocity on the boundary i.e. 

��	�ζ =
��
�ζ 	on	 = �. (17)

• No-slip condition across the surface i.e. 

	��	� =
��
� = 0	on	 = �. (18)

• The micro-rotation vector on the boundary is assumed to be proportional to 

the rotation rate of velocity which provides 

�� =
/

2sin�  ��	on	 = �. (19)
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• The condition at infinity for uniform stream as 

li0�→∞

�	 =
1

2
��sin��. (20)

• The pressure difference across the permeable boundary obeys Darcy’s law i.e. 

∆1 =
�
2 (Normal	3iltration	velocity), (21)

where 2 is the permeability ceofficient coefficient of the surface. 
4.1. Determination of arbitrary constant 

By applying the above boundary conditions (17)-(20) we obtain the following 

linear equations: 

%� + &� + '�	)� �� 
λ�− A� − B� − C�,� �� 
λ� = −1, 
 

	%� − &� + '� +λ)� �� 
λ�+ )� �� 
λ�- = 2, 
 

2%� + 4&� + '� +λ,� �� 
λ�− ,� �� 
λ�- = 0, 
 

2&�
1 − /� − '�λ� ;2

. − /<)� �� 
λ� = 0, 
 

10&�
1 − /� + '�λ� ;2

. − /< ,� �� 
λ� = 0, 

The above five linear equations involve six arbitrary constants. Consequently, 

the unknown constants %�,&�,'�, B� and C� are expressed in terms of %� = =. 
On solving above equations, we get 

%� =
1

2
+
=
2
 

+

�∈�
λ
λ��

��
�λ�����

��
�λ��(��λ��

��
�λ�����λ��

��
�λ������

��
�λ�������

��
�λ���λ���

��
�λ����λ���

��
�λ�)

��∇�∇�   

+
������������(�

�
λ��

��
�λ����

��
�λ�)

�� +
��(��

�
��

��
�λ�����	
���

��
�λ�(

�
�λ�

��
�λ���

��
�λ�)

��
)

�� ,  

&� =
��λ��

��
�λ���λ��

��
�λ�����

��
�λ������

��
�λ��(��λ��

��
�λ����λ��

��
�λ�)

���∇�   

 +
���λ�� ��

�λ�����
��
�λ��(��λ��

��
�λ����λ��

��
�λ�)

��∇�∇� ,  
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'� =
���(����)∈�

λ
λ��

��
�λ�����

��
�λ��

��∇�∇� +
�������(��λ��

��
�λ���λ��

��
�λ�����

��
�λ������

��
�λ�)

λ��∇� ,  

&� =
����
∇�

,     '� =
���������

���������������, 

Where 

>� = ;2

. − /<λ�,� �� 
λ�, ∈�= λ,� �� 
λ�− ,� �� 
λ�, 
∈�= 2
1 − /�λ)� �� 
λ�− 2 ;2

. − /<λ�)� �� 
λ�, 
∇�= .)� �� 
λ�−./)� �� 
λ�− 2λ)� �� 
λ�+./λ)� �� 
λ�, 
∇�= 10
1 − /� ?λ,� �� 
λ�− ,� �� 
λ�− 4 ;2

. − /<λ�,� �� 
λ�@, 

We considered %� = = as the measure of permeability of the boundary surface 
which reduces the uncertainty in the equation. In the case of %� = = = 0	the stream 
function for the internal region vanishes identically and this corresponds to the case 

of an impermeable boundary. Here, we take the problem of permeable sphere 

for non-zero =. 

5. Pressure distribution 

Using equation (2) the pressure for the external flow is 

��
� =

(2 −.)

(1 −.)

&�� cosθ,
��
�� =

(2 −.)

(1 −.)

&�
2� sinθ (22)

and for the internal flow 

��
� = −5

(2 −.)

(1 −.)
&�cosθ,

��
�� = 5

(2 −.)

(1 −.)
&�sinθ. (23)

Solving Eq. (22) we get the external pressure 

1	 = −
(2 −.)

(1 −.)

&�
2� cosθ (24)

 by Eq. (23) the internal pressure 

1
 = −
(2 −.)

(1 −.)
5&�cosθ (25)
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5.1. Bounds for permeability parameter A 

We assume that there is a pressure difference at the surface of the sphere, due to 

which fluid enters and leaves the surface of sphere. At the boundary, the normal 

filtration velocity 

B(ζ) = −
1

�
��
�ζ  (26)

Bounds of permeability parameter for physically possible flow are determined 

by Leonov [3], from obvious conditions 

B < 0,			∆1 = 1	 − 1
 > 0	for	0 < � <
C
2
	and	B > 0, ∆1 < 0	for	 C

2
< � < C, 

using these conditions, we get 

0 < = <
�[��������λ��

��
�λ��(�λ���(�������λ�)��

��
�λ�]��

��
�λ�

��������λ��
��
�λ���

��
�λ����

��
�λ�[���������λ��

��
�λ������λ�����������λ������

��
�λ�]. (27) 

Putting / = 0 in equation (27), we obtained 

0 < = <
3[5.λ,� �� 
λ�− (4λ

�
+ 5.),� �� 
λ�)� �� 
λ�]

5.λ,� �� 
λ�)� �� 
λ�+ ,� �� 
λ�[20.λ)� �� 
λ�− 3!14λ
�

+ 5.")� �� 
λ�]
 

  (28)

this is calculated by Aparna and Murthy [21]. 

6. Evaluation of drag force 

In order to determine the hydrodynamic drag force D acting on the sphere, 
which is directed along the symmetrical axis, we have used the formula 

D = CE %̅� �� ?

� + �� �� + ���

%̅� @G�, (29)

where %̅ = sin�. Using the equation (13) to (16), the drag on the permeable 
sphere due to external flow 

D = 2C��
	2� + ��&� = 2C��� (2 −.)

(1 −.)
&�. (30)

The non-dimensional drag is defined as 

D� =
D

−6C��� (31)
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7. Result and discussion 

At the outset, it is instructive to consider some limiting situations of the drag 

force as discussed below: 

(a) Drag for no-spin on the boundary 

It is interesting to know that by putting / = 0 in the calculated drag force 
(30), we get 

 D =
�������λ��� (�����!��λ��

��
�λ����������!������"�!�λ����

��
�λ�)��

��
�λ�

��������λ��
��
�λ�������λ����

��
�λ��(���

��
�λ���λ��

��
�λ�)

, (32) 

this result is same as earlier reported by Aparna and Murthy [21]. 

(b) Case of viscous fluid 

By putting . = 0, / = 0 and λ = ∞ on the constants %�,&�,'�, B�, C� for 
viscous fluid, the stream functions are obtained for external and internal flow, 

as given below 

	�	 = ?� +

2 + /�

4 +

/ − 6�

4
@*�(ζ) (33)

�
 = −
1

2

� − 2��/*�
ζ�. (34)

As / = 0, λ = ∞ the right hand side of equality (27) tends to 2/7 this leads to 

0 < = < 2
7H , these results are all in complete agreement with Leonov [3]. 

(c) Micropolar polar fluid past a solid sphere 

Substituting � = 0 in equation (32) and we get 

D =
6	C	��	λ	(� + 2�)(� + �))� �� 
λ�
−�)� �� 
λ�+ 2λ(� + �))� �� 
λ� , (35)

this is well known result has been reported by Ramkisoon and Majumdar [12]. 

The non-dimensional stream function � at the surface is given by  

�
1,0� =
I1 + %� + &� + '�)� �� 
λ�J

2
 

(36)

The normal velocity on the surface of the sphere decreases as � increase for 
0 to 

�
�  and at � =

�
� the normal velocity is zero. On the axis	� = 0 the normal 

velocity is given by 
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 : = � A/ + &� + '�,� �� (λ)B = /�{1 + %� + &� + '�)� �� 
λ�. (37) 

This velocity is less than the velocity � of the fluid at infinity. 
 

  

Fig. 2. Variation in �� w.r.t. λ Fig. 3. Dependence of drag w.r.t. 	 

  

Fig. 4. Variation of 
 w.r.t. λ Fig. 5. Dependence of ��1,0 w.r.t. 	 

The variation in non-dimensional drag <�	with respect to micropolar parameter λ 
is shown in Figure 2. It is clear from the figure that firstly <� decreases at 
the small values of λ and then drag force reaches almost constant for fix value of / = 0.5 and	5 = 2/7 and <� approaches unity as . decrease to zero. 
Variation in the non-dimensional drag <� against spin parameter / (Fig. 3) 

shows that the <� decreases with the increase in /	for	λ = 10, 5 = 2/7 and various 
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value of coupling number	.. The microrotation vector is zero when spin parameter / = 0, in this case the drag is maximum as shown in Figure 3. This physically 
shows that the drag is greater in the case of zero microrotation vector than in the 

case of non-zero microrotation vector. 
 

  

Fig. 6. The variation of �� versus � Fig. 7. The variation of �� versus � 

Figure 4 represent the variation of non-dimensional velocity : on the sphere 
on the axis (� = 0) with respect to micropolar parameter	λ. It is evident as λ 
increases the normal filtration velocity increases rapidly. 

The variation between the stream function touching the sphere with regard to 

value of spin parameter / is shown in Figure 5. Represented that stream function 
increases with increasing value  / for the fixed value of λ = 20 and 	5 = 2/7. 

The effect of permeability parameter 5 on the non-dimensional drag <� is 
shown in Figure 6. It is evident that for different value of spin parameter /, drag 
decreases continiously as increases the value of 5 where λ = 20, . = 0.5 are 
the fixed value. When permeability parameter 5 = 0, the permeable sphere become 
impermeable. Figure 6 shows that drag is maximum for impermeable sphere. 

  The variation of <� with respect to the coupling number . for different values 
of the spin paeameter	/ shown in Figure 7. It is clear that for . < 0.7 correspond 

to a weak drag and increases rapidly for . > 0.7 for fix value of λ = 20 and 5	 = 2/7	. From Figure 7, it is observed that drag is greater in case of micropolar 
fluid than that of newtonian fluid. 

8. Conclusion 

The stream function solution to the flow field equation for steady axisymetric 

creeping flow of micropolar fluid around a permeable sphere are obtained. Different 
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useful results are obtained from the solution, particularly the closed expression 

for the drag force and the dependence of the drag coefficient on various fluid 

parameters. It is found that an increase in the spin parameter decreases the drag 

force experienced by permeable sphere. As the value of permeability parameter 

increases, the drag force experienced by the sphere decreases continously and, with 

the increasing of the coupling number, the drag force also increases. The volumet-

ric rate increases with the increasing spin parameter. Maximum normal velocity 

on the micropolar parameter is also studied. It is observed that the drag is greater 

in the case of zero microrotation vector than in the case of non-zero microrotation 

vector. 
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