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Abstract. By the method of the classical potential theory, we construct the two-parameter 
Feller semigroup of operators associated with such a diffusion phenomenon on a half-line 
with a moving boundary where either a reflection or jump phenomenon occurs at a bound-
ary point. 
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1. Introduction 

In the theory of stochastic processes while studying the diffusion processes 
in bounded and half-bounded domains, it occurs the situation in which the continu-
ation of motion of a diffusion particle after it reaches the boundary of the domain 
is performed by jumps. The question on construction of semigroups of operators 
associated with the diffusion process with the property of a jump-like exit from 
the boundary of the domain leads to the statement of a boundary-value problem for 
a linear parabolic equation of the second order with a nonlocal boundary condition. 
Since the general form of boundary conditions for a one-dimensional (with respect 
to spatial variable) time-homogeneous diffusion process was established in the 
works of W. Feller [1] and A.D. Wentzell [2], these conditions were called Feller- 
-Wentzell boundary conditions. 

In the present paper we consider the one-dimensional parabolic boundary-value 
problem of Wentzell (with the combination of the derivative with respect to spatial 
variable and the nonlocal term) for the case of an inhomogeneous diffusion process 
in domain ( ( ), )≡ ∞sD X s  provided the lateral boundary ( )X s  satisfies the Hölder 

condition with respect to the time variable with exponent > 
1
2

. This problem is 

TRIAL MODE − a valid license will remove this message. See the keywords property of this PDF for more information.



B. Kopytko, R. Shevchuk 72 

stated in Section 2 and is solved there by the method of ordinary parabolic poten-
tials. Using its solution in Section 3, we construct the two-parameter semigroup 
of operators , ,  0 ≤ < ≤s tT s t T  ( 0>T  fixed), associated with an inhomogeneous 
Feller process on the closure [ ( ), )≡ ∞sD X s  of sD  which coincides in sD  with 
the diffusion process given there and its behaviour at point ( ),X s  is determined 
by the Feller-Wentzell boundary condition. 

Note that similar problems were considered earlier in [3, 4] for the case of 
bounded and half-bounded domains with fixed boundary points. We also mention 
works [5-7] where the related problems were studied by the methods of stochastic 
analysis. 

2. Parabolic boundary-value problem of Wentzell  

Consider on plane ( , )s x  the set 

{( , ) :  0 ;  }= ≤ < ≤ ∈t sS s x s t T x D  

denoting by tS  the closure of tS . Let in tS  the parabolic equation 

 
2

2
( , , ) 1 ( , , ) ( , , )( , ) ( , ) 0

2
∂ ∂ ∂

+ + =
∂ ∂∂

u s x t u s x t u s x tb s x a s x
s xx

 (1) 

is given. We shall seek a solution ( , , )u s x t  of equation (1) satisfying the “initial” 
condition 

 lim ( , , ) ( ),  
↑

= ∈ ss t
u s x t x x Dϕ  (2) 

and the Feller-Wentzell boundary condition of the form  

 ( , ( ), )( ) ( ( , ( ), ) ( , , )) ( , ) 0∂
− + − =

∂ ∫
sD

u s X s tq s u s X s t u s y t s dy
x

µ  (3) 

(0 ≤ < ≤s t T ). 
 

The main problem is to find the function ( , , )u s x t  which belongs to 
1,2 ( ) ( )∩t tC S C S  and which satisfies the equation (1) in tS , the “initial” condition 

(2) and the boundary condition (3). 
In the present paper, the following conditions are supposed to be satisfied: 

1. The coefficients ( , )a s x  and ( , )b s x  are bounded on [0, ]×ℝT , besides, 
there exist positive constants b and B such that 0 ( , )< ≤ ≤b b s x B  for all 
( , ) [0, ]∈ ×ℝs x T . 
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2. For all 1 1, [0, ],  ,∈ ∈ℝs s T x x the next inequalities hold: 

2
1 1 1 1

2
1 1 1 1

| ( , ) ( , ) | (| | | | ),

| ( , ) ( , ) | (| | | | ),

− ≤ − + −

− ≤ − + −

a s x a s x c s s x x

b s x b s x c s s x x

α
α

α
α

 

where c and α  are positive constants, 0 1< <α . 

3. The curve ( )=x X s  is Hölder continuous with exponent 1
2
+α  on [0, ]T . 

4. ( )∈ ℝbCϕ , where ( )ℝbC  denotes the Banach space of bounded continuous 
functions on ℝ  with norm || || sup | ( ) |

∈
=

ℝx
Xϕ ϕ . 

5. The function ( )q s  is positive and continuous on [0, ]T . 
6. ( , )⋅sµ  is the nonnegative measure on sD  such that for any 0>δ  

( ( ))

( ( )) ( , )− < ∞∫
D X s

y X s s dy
δ

µ , 
\ ( ( ))

( , ) < ∞∫
sD D X s

s dy
δ

µ , 

where ( ( )) { :  | ( ) | }= ∈ − <sD X s y D y X sδ δ  and these integrals are continuous 
on [0, ]T  as functions of .s  

 
Denote by ( , , , )G s x t y  the fundamental solution of equation (1) (0 ,≤ < ≤s t T  

,∈ℝx ∈ℝy ). Its existence is assured by 1), 2) (see [5, Ch. II, §2], [8, Ch. IV, 
§11]). Recall that function G is nonnegative, jointly continuous, continuously 
differentiable with respect to ,s  twice continuously differentiable with respect 
to x and satisfies the inequality 

 
2( )1 2

( )2( , , , ) ( ) ,
−+ + −− −≤ −

y xr p h
r p t s
s xD D G s x t y c t s e  (4) 

for all 0 ,≤ < ≤s t T  , ∈ℝx y , where r and p  are the nonnegative integers such 
that 2 2+ ≤r p ; r

sD  is the partial derivative with respect to s  of order r , p
xD  is 

the partial derivative with respect to x  of order p;  symbols c  and h  denotes 
(here and in what follows) any one of various different positive constants.  

Recall also that 

 0 1( , , , ) ( , , , ) ( , , , )= +G s x t y Z s x t y Z s x t y  (5) 

where 
2( )

2 ( , )( )
0

1( , , , ) ,
2 ( , )( )

−
−

−=
−

y x
b t y t sZ s x t y e

b t y t sπ
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and the function 1Z  satisfies inequality 

 
2( )1 2

( )2
1( , , , ) ( ) ,

−+ + − −− −≤ −
y xr p h

r p t s
s xD D Z s x t y c t s e

α

 (6) 

where 0 ,≤ < ≤s t T , ∈ℝx y , 2 2+ ≤r p , α is the constant in 2. 
Having the fundamental solution ,G  we now define the parabolic potentials that 

will be used to solve the problem (1)-(3), namely the Poisson potential 

0 ( , , ) ( , , , ) ( ) ,  0 ,  ,= ≤ < ≤ ∈∫
ℝ

ℝu s x t G s x t y y dy s t T xϕ  

where ϕ  is the function in (2), and the simple-layer potential 

1( , , ) ( , , , ( )) ( , ) ,  0 ,  ,= ≤ < ≤ ∈∫ ℝ

t

s

u s x t G s x X V t d s t T xτ τ τ τ  

with density V  which is continuous in [0, )∈s t  and satisfies the inequality 
1| ( , ) | ( )− +≤ −V s t c t s ε  

for any 0>ε . The last inequality ensures the validity of the formula on the jump 
for potential 1u  (see [9, Ch. V, §§2-4]) 

1 1
1

( , )( , ( ), ) ( , ( ), , ( )) ( , ) , 0 ,
( , ( ))

= − + ≤ < ≤∫
t

x x
s

V s tD u s X s t D G s X s X V t d s t T
b s X s

τ τ τ τ  (7) 

where 
2( ( ) ( ))

1 2 ( , ( ))( )

1
1

( ) ( )( , ( ), , ( ))
( , ( ))( ) 2 ( , ( ))( )

                                   ( , ( ), , ( )).

−
−

−−
= +

− −

+

X X s
b X s

x

x

X X sD G s X s X e
b X s b X s

D Z s X s X

τ
τ τ τττ τ

τ τ τ π τ τ τ

τ τ

 

Furthermore, from condition 3 and estimate (6) it follows that 

 
11 2( , ( ), , ( )) ( ) ,  0 .
− +

≤ − ≤ < ≤xD G s X s X c s s t T
α

τ τ τ  (8) 

We find the solution of problem (1)-(3) of the form 

 0 1( , , ) ( , , ) ( , , ),  0 ,  ,= + ≤ < ≤ ∈ su s x t u s x t u s x t s t T x D  (9) 

with the unknown function V  to be determined. 
If we substitute the expression (9) for ( , , )u s x t  into (3), we obtain, upon using 

the relation (7), the following Volterra integral equation of the second kind 

 ( , ) ( , ) ( , ) ( , ),  0 ,= + Ψ ≤ < ≤∫
t

s

V s t K s V t d s t s t Tτ τ τ  (10) 
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where 

( )1
0 0 0

1( , ) ( , ( )) ( , ( ), ) ( , , ) ( , ( ), ) ( , ) ,
( )

 
 Ψ = + −
 
 

∫
s

x
D

s t b s X s D u s X s t u s y t u s X s t s dy
q s

µ  

( )1

( , ) ( , ( ))

1( , ( ), , ( )) ( , , , ( )) ( , ( ), , ( )) ( , ) .
( )

= ×

 
 × + −
 
 

∫
s

x
D

K s b s X s

D G s X s X G s y X G s X s X s dy
q s

τ

τ τ τ τ τ τ µ
 

In order to solve this integral equation, we have to study the behavior of func-
tion Ψ  and kernel K . We begin with estimate for Ψ . Write ( , )Ψ s t  in the form 

( )

( )

( )

1
0 0 0

( ( ))

0 0
\ ( ( ))

1 2 3

1( , ) ( , ( )) ( , ( ), ) ( , , ) ( , ( ), ) ( , )
( )

1           ( , , ) ( , ( ), ) ( , )
( )

           ( , ( )) ( , ) ( , ) ( , ) .


Ψ = + − −




+ − =



= Ψ +Ψ +Ψ

∫

∫
s

x i
D X s

D D X s

s t b s X s D u s X s t u s y t u s X s t s dy
q s

u s y t u s X s t s dy
q s

b s X s s t s t s t

δ

δ

µ

µ  

For function 1( , )Ψ s t  we have 

 
1

1 2
1 0( , ) ( , ( ), ) || || ( ) .

−
Ψ = ≤ −xs t D u s X s t c t sϕ  (11) 

To estimate 2 ( , )Ψ s t , apply the Lagrange formula to the integrand 

0 0( , , ) ( , ( ), )−u s y t u s X s t  in its expression. We have 

( )1
0 0 0( , , ) ( , ( ), ) ( , ( ) ( ( )), ) ( )− = + − ⋅ −yu s y t u s X s t D u s X s y X s t y X sθ , 

where θ  is some real number from interval (0,1) . Hence 

 

( )

( )

2 0 0
( ( ))

1
0

( ( ))

1( , ) ( , , ) ( , ( ), ) ( , )
( )

1 ( , ( ) ( ( )), ) ( ) ( , )
( )

Ψ = − =

= + − ⋅ − ≤

∫

∫

D X s

y
D X s

s t u s y t u s X s t s dy
q s

D u s X s y X s t y X s s dy
q s

δ

δ

µ

θ µ

 

             
1
2( ) || || ( ) .

−
≤ −c t sδ ϕ   (12) 

The same estimate is also valid for 3( , )Ψ s t . Indeed, using the triangle inequality, 
we obtain 
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( )3 0 0
\ ( ( ))

1( , ) ( , , ) ( , ( ), ) ( , )
( )

Ψ = − ≤∫
sD D X s

s t u s y t u s X s t s dy
q s

δ

µ  

 ( )
1
2

0 0
\ ( ( ))

1 ( , , ) ( , ( ), ) ( , ) ( ) || || ( ) .
( )

−
≤ + ≤ −∫

sD D X s

u s y t u s X s t s dy c t s
q s

δ

µ δ ϕ  (13) 

Combining (11), (12) and (13), we conclude that 

 
1
2

0( , ) ( ) || || ( ) .
−

Ψ ≤ −s t c t sδ ϕ  (14) 

where 0 ( )c δ  is some positive constant depending on δ . 
 

Now consider kernel ( , )K s τ . Write it as follows 

( )

( )

( )

1

\ ( ( ))

0 0
( ( ))

1 1
(

( , ) ( , ( ))

1( , ( ), , ( )) ( , , , ( )) ( , ( ), , ( )) ( , )
( )

1 ( , , , ( )) ( , ( ), , ( )) ( , )
( )

1 ( , , , ( )) ( , ( ), , ( )) ( , )
( )

= ×


× + −


+ − +

+ −

∫

∫

s

x
D D X s

D X s

D X

K s b s X s

D G s X s X G s y X G s X s X s dy
q s

Z s y X Z s X s X s dy
q s

Z s y X Z s X s X s dy
q s

δ

δ

δ

τ

τ τ τ τ τ τ µ

τ τ τ τ µ

τ τ τ τ µ
( ))

.




∫
s

 

The first term in square brackets in the above expression is already estimated 
by (8). The absolute values of the second and fourth terms are bounded, respec-
tively, by 

1
2( )( )

−
−c sδ τ  and 

1
2( )( ) ,
+

−
−c s

α

δ τ  
which becomes clear, respectively, after using the inequality (4) with 

0, 0= =r p  and after applying the Lagrange formula to difference 

1 1( , , , ( )) ( , ( ), , ( ))−Z s y X Z s X s Xτ τ τ τ  and using the inequality (6) with 0, 1= =r p , 
successively. 

It remains to estimate the third term in the expression for ( , )K s τ  which we 
denote by ( , )R s τ . Write it in the form 

2 2

2 2

( ( )) ( ( ) ( ))
2 ( , ( ))( ) 2 ( , ( ))( )

( ( ))

( ( )) ( ( ) ( ))1 (1 )
2 ( , ( ))( ) 2 ( , (

0

1( , ) ( , )
( ) 2 ( , ( ))( )

1 ( , )
( ) 2 ( , ( ))( )

− −
− −

− −

− −
− − −

−

 
 = − =
 −
 

∂
= − −

∂−

∫

∫

y X X X s
b X s b X s

D X s

y X X s X
b X s b X

R s e e s dy
q s b X s

s dy e e
q s b X s

δ

τ τ
τ τ τ τ τ τ

τ τθ θ
τ τ τ τ τ

τ µ
π τ τ τ

µ
θπ τ τ τ

))( )

( ( ))

.−
 
 
 
 

∫ s

D X s

d
δ

τ θ
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Taking the derivative 
2 2( ( )) ( ( ) ( ))(1 )

2 ( , ( ))( ) 2 ( , ( ))( )
− −

− − −
− −

 ∂  −
 ∂
 

y X X s X
b X s b X se e

τ τθ θ
τ τ τ τ τ τ

θ
 and then using 

the equality 
2 2 2( ( )) ( ( ) ( )) ( ( )) 2( ( ) ( ))( ( ))− − − = − − − −y X X X s y X s X X s y X sτ τ τ , 

we get 

2 2( ( )) ( ( ) ( ))1 (1 )
2 ( , ( ))( ) 2 ( , ( ))( )

0 ( ( ))

( ) ( )( , )
( ) ( , ( ))( ) 2 ( , ( ))( )

           ( ( )) ( , )

1           
2 ( ) ( , ( ))( ) 2 (

− −
− − −

− −

−
= ×

− −

 
 × − − −
 
 

−
−

∫ ∫
y X X s X

b X s b X s

D X s

X X sR s
q s b X s b X s

d y X s e e s dy

q s b X s b

δ

τ τθ θ
τ τ τ τ τ τ

ττ
τ τ τ π τ τ τ

θ µ

τ τ τ π τ
2 2( ( )) ( ( ) ( ))1 (1 )

2 2 ( , ( ))( ) 2 ( , ( ))( )

0 ( ( ))

1 2

, ( ))( )

           ( ( )) ( , )

          ( , ) ( , ).

− −
− − −

− −

×
−

 
 × − − =
 
 

= +

∫ ∫
y X X s X

b X s b X s

D X s

X s

d y X s e e s dy

R s R s
δ

τ τθ θ
τ τ τ τ τ τ

τ τ

θ µ

τ τ

 

From condition 3 it follows that 
1 1 1

2 2
1

0 ( ( ))

| ( , ) | ( ) ( ( )) ( , ) ( )( ) .
+ +

− −
≤ − − ≤ −∫ ∫

D X s

R s c s d y X s s dy c s
δ

α α

τ τ θ µ δ τ  

Consider 2 ( , )R s τ . Since 
2 2 2(1 )( ( )) ( ( ) ( )) (1 ) ( ( )) ,− − + − ≥ − −y X X s X y X sθ τ θ τ θ θ  

we have 
2(1 )3 1 ( ( ))

2 2 ( , ( ))( )2
2

0 ( ( ))

| ( , ) | ( ) ( ( )) ( , )
−

− −− −≤ − − ≤∫ ∫
y X s

b X s

D X s

R s c s d y X s e s dy
δ

θ θ
τ τ ττ τ θ µ  

1 1 1
1 12 2

0

( )( ) (1 ) ( )( ) .
− −− −≤ − − ≤ −∫c s d c sδ τ θ θ θ δ τ  

Thus kernel ( , )K s τ  in (9) has strong singularity which is caused by 2 ( , )R s τ . 
Therefore we do not know yet whether a solution of (10) exists. We shall see 
presently that it is nevertheless possible to obtain the solution of (10) by an ordi-
nary method of successive approximations, i.e., 

 ( )

0
( , ) ( , )

∞

=

=∑ k

k
V s t V s t  (15) 

where 
(0) ( , ) ( , ),= ΨV s t s t  
( ) ( 1)( , ) ( , ) ( , ) ,  .−= ∈∫ ℕ

t
k k

s

V s t K s V t d kτ τ τ  
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Let us prove that the integrals on the right side of expression for ( , )kV s t  exist 
and the series (15) is convergent in 0 ≤ < ≤s t T . To do this, we first break 
the expression for ( , )K s τ  into two terms 1( , )K s τ  satisfying the estimate (8) with 
some positive constant 1( )c δ  and 2 2( , ) ( , )=K s R sτ τ  having strong singularity, i.e., 

 1 2( , ) ( , ) ( , ),  0 .= + ≤ < < ≤K s K s K s s t Tτ τ τ τ  (16) 

Next, consider (1) ( , )V s t  and represent it as follows 
(1) (1) (1)

1 2( , ) ( , ) ( , ),= +V s t V s t V s t  
where 

(1) ( , ) ( , ) ( , ) ,  1,2.= Ψ =∫
t

i i
s

V s t K s t d iτ τ τ  

In view of estimate (8) (with constant 1( )c δ ) for 1( , )K s τ  and inequality (14), 
we immediately deduce that 

 
11(1) 2 2

1 0 1( , ) ( ) ( ) || || ( ) ( )
− + −

≤ − − ≤∫
t

s

V s t c c s t d
α

δ δ ϕ τ τ τ  

               

1
2 2

0 1

1
2 2( ) ( ) || || ( ) .
1

2

− +

   Γ Γ   
   ≤ −

+ Γ 
 

c c t s
α

α

δ δ ϕ
α

 (17) 

To estimate (1)
2V , write 

( )

2 2

(1)
2 2

( ( )) ( ( ) ( ))1 2 (1 )
2 ( , ( ))( ) 2 ( , ( ))( )

3
0 ( ( )) 2

1
0

0

1( , ) ( , ) ( , )
2 ( ) 2

( ( )) ( , )( , )
( , ( ))( )

( ) || || ( ( )
2 ( ) 2

− −
− − −

− −

= Ψ = ×

 −  × Ψ − ≤
 

−  

≤ −

∫

∫ ∫ ∫

∫

t

s

y X X s Xt
b X s b X s

s D X s

V s t K s t d
q s

y X s s dyt d d e e
b X s

c d y X s
bq s b

δ

τ τθ θ
τ τ τ τ τ τ

τ τ τ
π

µτ τ θ
τ τ τ

δ ϕ θ
π

2( ( ))1 3 (1 )
2 2 ( )2 2

( ( ))

) ( , ) ( ) ( ) ,
−

− −− − ⋅ −− −∫ ∫
y X st

B s

D X s s

s dy t s e d
δ

θ θ
τµ τ τ τ

 

where b and B are constants in 1.  
Denote by ( ),I s τ  the inner integral in the last relation. Write it in the form 

( )
2

2 2

( ( ))1 3 (1 )
2 ( )2 2

( ( )) ( ( ))1 3(1 ) (1 )
2 ( ) 2 ( )2 2

, ( ) ( )

          ( ) ( ) .

−
− −− − ⋅ −

− − −
− − − −− −⋅ − ⋅ − −

= − − =

= − −

∫

∫

y X st
B s

s

y X s y X s tt
B t s B t s s

s

I s t s e d

e t s e d

θ θ
τ

τθ θ θ θ
τ

τ τ τ τ

τ τ τ
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Changing the variable of integration τ  into −
=

−
tz

s
τ

τ
, we obtain 

 ( )
2 2( ( )) ( ( ))1(1 ) (1 )

2 ( ) 2 ( )2

0

1,
− −∞− − − −−⋅ − ⋅ −= =

− ∫
y X s y X s z

B t s B t sI s e z e dz
t s

θ θ θ θ
τ  

                                   
2( ( ))(1 )

2 ( )2 1 .
( ) (1 ) ( ( ))

−
− −

⋅ −=
− − −

y X s
B t sB e

t s y X s

θ θπ
θ θ

 (18) 

In view of (18), we get 

 
1

(1) 2
2 0( , ) ( ) ( ) || || ( ) ,

−
≤ −sV s t c t sδ λ δ ϕ  (19) 

where 

 
( ( ))

( ) ( ( )) ( , )
2 ( )

= −∫s
D X s

B y X s s dy
q s b

δ

πλ δ µ . 

Combining (17) and (19), we conclude that 

 
1 1

(1) 2 2
0

1( )
2 2( , ) ( ) || || ( ) ( ) ( ) ,

1
2

−

    Γ Γ        ≤ − − +
+  Γ    

s

c
V s t c t s t s

α
αδ

δ ϕ λ δ
α

 

Choose 0=δ δ  so small that 0( ) 1<sλ δ  and denote 
 0 0 0 0 1 1 0( ),  ( ),  ( ).= = =s s c c c cλ λ δ δ δ  

Proceeding by induction, we derive the following estimates for terms ( ) ( , )kV s t  
of series (15) 

 
1

( ) ( )2
0 ,

0
( , ) || || ( ) ( ) ,  0,1,2,

− −

=

 
≤ − = 

 
∑ …

k
k k n n

s t s
n

k
V s t c t s h k

n
ϕ λ  (20) 

where 

1
( ) 2
,

1
2 2

( ) ,  0,1,2,
1

2

⋅

    Γ Γ        = − =
+ Γ 

 

…

n

nn
s t

c
h t s n

n

α
α

α
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Hence, for 0 ≤ < ≤s t T , we have 
1

( ) ( )2
0 ,

0 0 0

1
( )2

0 ,
0 0

( )1
,2

0 1
0

( , ) || || ( ) ( )

                    = || || ( ) ( )
   

                  || || ( ) .
(1 )

∞ ∞− −

= = =

∞−

= =

∞−

+
=

 
≤ − = 

 

+ 
− = 

 

= −
−

∑ ∑∑

∑ ∑

∑

k
k k n n

s t s
k k n

k
k n

s t s
k n

k
s t

k
k s

k
V s t c t s h

n

n k
c t s h

n

h
c t s

ϕ λ

ϕ λ

ϕ
λ

 

This implies that series (15) is absolutely convergent in 0 ≤ < ≤s t T  and therefore 
the function ( , )V s t  exists and satisfies the inequality 

 
1
2( , ) || || ( ) ,  0 .

−
≤ − ≤ < ≤V s t c t s s t Tϕ  (21) 

We have thus constructed a solution ( , , )u s x t  of the boundary-value problem 
(1)-(3) of the form (9). From relations (4)-(6) and (21) it follows that 

1,2 ( ) ( )∈ ∩t tu C S C S  
and 

 ( , , ) || || .≤u s x t c ϕ  (22) 

The proof of uniqueness of solution of (1)-(3) is based on the maximum princi-
ple for parabolic equations and is a repetition of the proof of the analogous asser-
tion in [3] with obvious changes. 
 

We have proved the following theorem: 
Theorem 1. Let the conditions 1-6 hold. Then the problem (1)-(3) has a unique 
solution ( , , )u s x t  in 1,2 ( ) ( )∩t tC S C S . Furthermore, this solution has the form (9) 
and satisfies the estimate (22). 

3. Construction of the Feller semigroup 

Consider the following problem: construct the two-parameter semigroup of 
operators , ,  0 ,≤ < ≤s tT s t T  which describes the inhomogeneous Feller process 
on [ ( ), )≡ ∞sD X s  connected with (1)-(3). Such a Feller process coincides in sD  
with the diffusion process given by (1), (2) (with drift ( , )a s x  and diffusion 
coefficient ( , )b s x ) and its behavior at boundary point ( )X s  is determined by 
the Feller-Wentzell boundary condition (3). Note that the two terms of boundary 
condition (3) 
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( , ( ), )( ) ∂−
∂

u s X s tq s
x

 and ( ( , ( ), ) ( , , )) ( , )−∫
sD

u s X s t u s y t s dyµ  

are supposed to correspond to the reflection phenomenon and the jump phenome-
non on the boundary ( ).X s  

We introduce the two-parameter family of linear operators , ,  0 ,≤ < ≤s tT s t T  
acting on the space ( )ℝbC  by the rule 

 , ( ) ( , , , ),=s tT x u s x tϕ ϕ  (23) 

where ( , , , ) ( , , )≡u s x t u s x tϕ  is the solution of problem (1)-(3) defined by formulas 
(9), (15). 

Let us show that the family of operators ,s tT  is the desired semigroup. To do 
this, we first note that the operators ,s tT  have the following property: if the se- 
quence ( )∈ ℝn bCϕ  is such that lim ( ) ( )

→∞
=nn

x xϕ ϕ  for all ∈ sx D  and sup || || ,< ∞n
n

ϕ  

then , ,lim ( ) ( )
→∞

=s t n s tn
T x T xϕ ϕ  for all 0 ,  .≤ < ≤ ∈ ss t T x D  The proof of this property 

is based on well-known assertions of calculus on the passage of the limit under the 
summation and integral signs (here this concerns series (15) and integrals on the 
right side of the expression (9)). This property allows us to prove the next proper-
ties of the operator family ,s tT , without loss of generality, under the assumption 
that the function ϕ  has a compact support. 

The next lemma asserts that the operators ,s tT  are positivity preserving: 
Lemma 1. If ( )∈ ℝbCϕ  and ( ) 0≥xϕ  for all ∈ sx D , then , ( ) 0≥s tT xϕ  for all 
0 ,  .≤ < ≤ ∈ ss t T x D  
Proof. Let ϕ  be any nonnegative function in ( )ℝbC  having compact support. 
Denote by γ  the minimum of , ( )s tT xϕ  in ( , ) [0, ]∈ × ss x t D  and assume that 0<γ . 
From the minimum principle it follows that there exists 0 (0, )∈s t  such that 

0 , 0( ( )) =s tT X sϕ γ . But then the inequalities 

0 , 0( ( ))
0

∂
≥

∂
s tT X s

x
ϕ

 and ( )0 0, 0 ,( ( )) ( ) ( , ) 0− ≤∫
s

s t s t
D

T X s T y s dyϕ ϕ µ  

hold. Furthermore, Theorem 14 in [9, p. 69] assures us that 

0 , 0( ( ))
0.

∂
>

∂
s tT X s

x
ϕ

 

Next, since 0( ) 0,>q s  it becomes clear that the fulfillment of condition (3) is 
impossible. The contradiction we arrived at indicates that 0.≥γ  This completes 
the proof of the lemma.        □  
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Another important property of operators ,s tT  is that they are contractive, i.e., 

,|| || || ||,  0 .≤ ≤ < ≤s tT s t Tϕ ϕ  
This property follows from Lemma 1 together with the fact that if 0 ( ) ≡xϕ 1 then 

, 0 ( ) 1=s tT xϕ  for all 0 ,  ≤ < ≤ ∈ ss t T x D . 
Finally, we show that operator family ,s tT  has the semigroup property 

, , , ,  0 .= ≤ < < ≤s t s tT T T s t Tτ τ τ  
This property is a consequence of the assertion of uniqueness of the solution 
of the problem (1)-(3). Indeed, to find ( , , )u s x t  when lim ( , , ) ( )

↑
=

s t
u s x t xϕ , we can 

solve the problem (1)-(3) first in the time interval [ , ]tτ  with the “initial” function 
( )xϕ , and then in the time interval [ , ]s τ  with the “initial” function , ( )tT xτ ϕ . 

In other words, ( ), , ,( ) ( ),=s t s tT x T T xτ τϕ ϕ  ( ),∈ ℝbCϕ  or , , , .=s t s tT T Tτ τ  
The above properties of operators ,s tT  imply the following assertion (see [10, 

Ch. II], §1): 
Theorem 2. Let the conditions of Theorem 1 hold. Then the two parameter semi-
group of operators , ,  0 ,≤ < < ≤s tT s t Tτ  defined by (23) describes the inhomoge- 
neous Feller process on sD  which coincides in sD  with the diffusion process given 
by (1), (2) and its behavior at point ( )X s  is determined by the Feller-Wentzell 
boundary condition (3). 
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