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Abstract 
This paper deals with the problem of production process control in a job shop 

where the work flow is controlled by Kanban cards. Production may proceed differently 
depending on the lot size, number of Kanban cards used, and the decision rule for choos-
ing the job waiting to be processed. The problem that arises consists in deciding which 
rule should be used, how many Kanbans should be allocated for each operation, and 
what lot size should be applied. Thus, the choice of the best triplet constitutes a 
multicriteria problem. We propose to solve the multicriteria problem by using Rough Set 
Approach. Taking into account operator’s choices we use the dominance-based rough set 
approach to induce the decision rules, which can be applied to choose the best triplet 
from a large number of alternatives. This paper deals with the problem of production 
process control in a job shop where the work flow is controlled by Kaban cards. Produc-
tion may proceed differently according to a lot size, number of Kanban cards used, and 
the decision rule for choosing the waiting job to process. The problem that arises con-
sists in deciding which rule should be used, how many Kanbans should be allocated for 
each operation, and what lot size should be applied. Thus, the choice of the best triplet 
constitutes a multicriteria problem. We propose to solve the multicriteria problem by 
using Rough Set Approach. Based on the choice of the operator and using the domi-
nance-based rough set approach we will be able to induce the decision rules, which can 
be applied to choose the best triplet from a large number of alternatives. 
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INTRODUCTION 

 
This study assumes that Just-in-Time (JIT) approach is used for schedul-

ing the production system. The work flow is controlled by Kanban cards. This 
technique is mainly used in a classic mass production environment with few 
product variations and levelled demand. Gravel and Price [4; 3] have shown how 
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this approach can be adapted to job-shop environment. A more recent variation 
of this problem is known as POLCA (Paired, Over-lapping, Loops of Cards with 
Authorisation); it is applicable in a job-shop environment where each job can be 
unique [8; 9].  

Production may proceed differently depending on the lot size, number of 
Kanban cards used, and the decision rule for choosing the job waiting to be pro-
cessed. The problem that arises consists in deciding which rule should be used, 
how many Kanbans should be allocated for each operation, and what lot size 
should be applied. In general, smaller lot sizes reduce work-in-progress, but also 
increase the number of machine set-ups. Increasing the number of allocated 
Kanbans improves machine utilisation, but may also increase average work-in-
progress level. Finally, the performance of a scheduling rule depends on the per-
formance measure used. Thus, the choice of the best triplet involving the Kanban 
lot size, the decision rule, and the number of Kanbans constitutes a multicriteria 
problem. Gravel et al. [5] considered a similar problem and used Electre method 
[13] to model outranking relations. They assumed that completion time of each 
operation is known and simulated each product separately to evaluate perfor-
mance of the shop under various conditions (various products, various produc-
tion environments). In their study, they assumed that the decision maker (DM) is 
risk-averse. Nowak et al. [11] proposed a modified approach for this problem. 
They assumed that the DM is risk-prone and several products are processed sim-
ultaneously in the shop. The probability distribution of the operation’s comple-
tion times was determined by series of simulations for each decision alternative 
to analyse the performance of a shop. This paper deals with solving the problem 
of production process control as a multicriteria problem such as in [2 ;11] but by 
using the Rough Set approach. By application of the Rough Set approach we 
don’t need the explicit information about criterion weights as it is necessary to 
have for preference modelling with the ELECTRE method. In practice we know 
that criterion weights determination is not the easy task. In the Rough Set ap-
proach the DM shows us how he does his job by ordering the alternatives from 
the efficient set; implicit weights are given by ranking the alternatives. 

This paper is structured as follows: the problem is formulated as a 
multicriteria problem in Section 1. Section 2 presents the rough set approach to 
choose the control production parameters. In Section 3, we give a job shop pro-
duction example. 
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1. PRODUCTION PROCESS CONTROL  
AS A MULTICRITERIA PROBLEM 

 
In this paper, three performance criteria are considered: makespan; aver-

age work-in-progress level; number of set-ups. The first criterion is very im-
portant, since short execution times increase effective capacity of the shop and 
improve the service level. The average work-in-progress level reflects the effec-
tiveness of the firm in reducing investment in semi-finished work. Finally, the 
number of machine set-ups indicates the number of times the operators have to 
adapt to a different operation. All tree criteria will be minimized. 

The set of alternatives includes all triplets (the lot size, the number of 
kanban cards and the decision rule). The set of attributes includes all criteria 
(makespan, average stock and the number of set-ups). Performances of each 
alternative with respect to the attributes are evaluated by distribution functions. 
The knowledge base used for the construction of these functions was obtained 
by using a simulation model of the process where several products are manufac-
tured simultaneously such as in Nowak [12].  

The decision situation considered here may be conceived as a problem (A, 
X, E) where A is a finite set of alternatives (triplets), i = 1, 2, ..., m; X is a finite 
set of attributes (criteria) Xk, k = 1, 2, ..., n; and E is a set of evaluations of tri-
plets with respect to the criteria: 
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We assume that the attributes are probabilistically independent and also satis-
fy the independence conditions which allows us to use additive utility function. 

Our approach consists in building global preferences on the set of parame-
ter triplets by first comparing their distributional evaluations in relation to each 
criterion to model the partial preferences and then by aggregating them into 
global preferences. With respect to each criterion the preferences are modelled 
by using the Stochastic Dominances [18; 17; 10]. The comparison of alternatives 
can be conducted by means of First Degree Stochastic Dominance (FSD), Se-
cond Degree Inverse Stochastic Dominance (SISD) [1] and Third Degree Inverse 
Stochastic Dominance (TISD1 and TISD2). The FSD is defined, if the difference 
between two cumulated distributions is non-positive for all x, and for at least one 
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x this difference is strictly negative. The Second Inverse Stochastic Dominance 
(SISD) is defined, if the difference between two integrals from right to left on 
two cumulated distributions is non-positive for all x, and for at least one x this 
difference is strictly negative. The Third Inverse Stochastic Dominance (TISD2) 
is defined, if the difference between two double integrals from right to left on 
two cumulated distributions is non-positive for all x, and for at least one x this 
difference is strictly negative. Generally, if one of the inverse stochastic domi-
nances is verified, it has been proven for increasing convex class of utility func-
tions that the expected utility of distributional evaluation which dominates is 
greater or equal to the expected utility of distributional evaluation which is dom-
inated. 
 

Let Fik and Fjk be cumulative distribution functions: 
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where [ ]c, d  is the interval of definition of two random variables Xik, Xjk. 
 
 
2. THE ROUGH SET APPROACH 

 
The rough set approach is based on the Rough Set theory developed by 

Pawlak (1991), Pawlak and Slowinski (1994) and Greco, Matarazzo and 
Slowinski (1999). This theory was proposed in this paper for ranking a large 
number of parameter triplets from the efficient set. The Rough Set Theory relies 
on a tabular representation of the preferential information expressed by the DM. 

These preferences are expressed using the following procedure. First,  
a small number (4-7) of parameter triplets chosen from different parts of effi-
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cient set are presented , and the DM is asked to order triplets from the most pre-
ferred to the least preferred. 

Second, this ranking represents the DM’s preferences, which are noted in 
a decision table with respect to the decisional attributes.  

Let B be a finite subset of parameter triplets which are considered 
by the DM as the basis for exemplary pairwise comparisons. In addition, 
let C be the set of attributes (condition attributes) describing the parame-
ter triplet, and D, the decision attribute. The decision table is defined as 
the 4-tuple: T = (H, C ∪ D, VC ∪ VD, g) where H ⊆ B × B is a finite set of 
pairs of parameter triplets, C ∪ D is the union of two subsets of attributes, 
called condition and decision attributes, VC ∪ VD is the union of the do-
mains of these attributes respectively, and g: H × (C ∪ D) → VC ∪ D is  
a total function where VC  = ∪ Vk. 

This function is such that: 
( )[ ] ; and ,  verifiedis SD  if 1,   (1) k  H) , a (a C  Xff, k, aag jikjkikji ∈∀∈∀=  
( )[ ] ; and ,  verifiedis SDnot   if 0,   (2) k  H) , a (a C  Xff, k, aag jikjkikji ∈∀∈∀= and

( )[ ] ( )[ ] . and  and ,  H) , a (a,  V , D, aag H) , a (a C  X,  V , k, aag jiDjijikkji ∈∀∈∈∀∈∀∈
 

In our decision table ( )[ ], D, aag ji  can also have two values on H ⊆ B × B: 
 

( )[ ] , H) , a (aaa P , D, aag Pjijiji ∈∀=    topreferred is  if , )1(  

( )[ ] .   topreferrednot  is  if , )2( Njijiji  H) , a (aaa N , D, aag ∈∀=  

These two values will be expressed with respect to the decisional attribute. 
The subset HP expresses the preferences and HN expresses non-preferences.  

In general, the decision table can be presented as in Table 1. 
 

Table 1 
 

Decision table 
 

                                    X1             X2  ...            Xm            D  

 

HP  ( )ji , aa  ( )[ ]1, , aag ji   
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In the decision table, with respect to each conditional attribute, the pair-
wise evaluation of each ranked parameter triplet provides decision rules. In our 
approach, we suggest the approximation of the global preference relation P by 
the Multiattribute Stochastic Dominance for reduced number of attribute MSDR. 
This dominance can be defined as follows: 
 
Definition 1 [15; 14]   

ai MSDR aj if and only if fik SDk fjk  for all Xk ∈ R ⊆ X (1) 
The MSDR is the particular case of the MSD dominance defined for given ai, aj 
∈ A by [6] as follows: 
 
Definition 2 [6]  
 

ai MSD aj if and only if fik SDk fjk  for all Xk ∈ X (2) 
In the Rough set theory, the approximation of the global preference rela-

tion P by MSDR can be done by lower and upper approximations. According to 
Greco et al. [5], the lower approximation can be defined as follows: 
   

 
The application of the lower approximation allows us to induce the fol-

lowing kind of decision rules: 
 
Rule: If aj MSDR3 aj then aj P aj 
 

The upper approximation (4) may contain the Multiattribute Stochastic 
Dominances for reduced number of attributes which leads to the conclusion for 
preference or non preference. These dominances usually introduce uncertainty in 
the induction of the decision rules and are referred to as the boundary region (5) 
which added to lower approximation give us an upper approximation of the 
preferences. According to Greco et al. [5], the upper approximation can be de-
fined as follows: 
 

 
                                       
 
The decision rules from upper approximation of the preference P are for-

mulated as follow: 
 
Rule: If ai MSDR2 aj then ai P aj or ai N aj  
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These uncertain rules obtained from upper approximation must be dis-
carded to eliminate inconsistencies. The decision rules obtained from the lower 
approximation of the global preference P are kept and they are used to rank all 
parameter triplets belonging to the efficient set.  

All parameter triplets in the efficient set are compared two by two to de-
termine if they satisfy a decision rule. If the comparison of two parameter tri-
plets with the procedure used to define the set of rules leads to a decision rule, 
the score associated with the first parameter triplet is incremented by one and the 
score for the second parameter triplet is decremented by one. Following the 
comparisons of all parameter triplets in the efficient set, all parameter triplets are 
ranked in decreasing order of score. 
 
 
3. APPLICATION 

 
We consider a company which produces sport equipment. The firm manu-

facturers 12 different products which are processed simultaneously in the shop. 
The production process of each product includes a number of operations per-
formed on different machines (see Table 2). The number and type of operations 
are different for each product. Parts may return to the same machining centre in 
the process. 24 devices are installed in the work centre: 6 machines of type M1, 6 
machines of M2 type, 4 machines of M3 type, 4 machines of M4 type, 2 machines 
of M5 type and 2 machines of M6 type. 

The production planning and control are organized according to the “Just-
in-Time” rules. Production orders are broken into small Kanban lots treated in-
dividually. The firm uses Kanban cards to control the work flow. Each operation 
has its Kanban. One or more Kanbans may be used for each operation. Before 
starting his work, an operator has to choose one of the waiting operations. 
Scheduling rules are often used to determine the order in which operations 
should be processed on workstations. Thus, the worker is able to decide which 
job queuing at the station needs to be processed first. In our study, eight decision 
rules are considered: (1) The first come – first served (FCFS) rule; (2) The short-
est processing time (SPT) rule; (3) The same job as previously (SJP) rule; (4) 
The shortest next queue (SNQ) rule; (5) The minimal total time of the rest opera-
tions on the path (MTP) rule, (6) The maximal number of Kanbans awaiting 
processing at the workstation (MKW) rule; (7) The maximal total number of 
Kanbans awaiting processing at all workstations on the path (MKP) rule; (8) The 
priority ratio (PR) rule. 
 
 
 



Kazimierz Zaraś, Hamdjatou Kane, Maciej Nowak 64 

Table 2 
  

he number of operations and units of products 
 

Products W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 

Number of operations 21 20 22 20 23 21 23 19 25 21 14 40 

Number of units 120 120 120 120 120 120 60 60 60 60 60 60 
 

The FCFS rule gives priority to a job that has been queuing at the station 
for the longest time. The SPT rule chooses the job with shortest planned pro-
cessing time. The SJP rule assumes that the job which is the same as previously 
processed on the station should be chosen. The SNQ rule gives priority to the job 
for which the queue at the next station is the shortest. The MPT rule chooses the 
operation for which the total time for the remaining operations that have to be 
completed is minimal. The MKW rule assumes that the job with the greatest 
number of Kanbans waiting at the workstation should be performed first. The 
MKP rule is similar, but it considers all operations that have to be performed to 
complete the processing. The rule selects the operation, for which the total num-
ber of Kanbans for all operations on the path is maximal. Finally PR rule is 
based on the following ratio (6): 
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Where: 
A: the set of operations waiting for processing at the workstation i, 
K: the set of final operations, 
li: the number of unavailable Kanbans for operation i, 
Ei: the set of operations which produce components, that are used together with 
the component produced by operation i in the next stage of the process. 

Four values of lot size are considered: 5, 10, 15, and 20, while the number 
of Kanbans is assumed to be between 2 and 5 and eight scheduling rules. Thus, 
128 triplets of parameters are considered. Three criteria are used for evaluating 
performance of the alternatives: makespan (measured in seconds); average work-
in-progress level (measured by the average number of jobs queuing at stations); 
number of set-ups (the whole number of set-ups done on all stations). 

The solution to the problem is as follows: (a) simulation of the production 
of selected products for each triplet of parameters; (b) construction of distribu-
tion functions for each triplet with respect to each attribute; (c) identification of 
stochastic dominances between triplets of parameters in relation to each attrib-
ute; (d) ranking of parameter triplets according to decision rules. 

(6) 
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First, a series of one hundred simulations had been done for each triplet to 
build distributional evaluations with respect to each criterion. In our case, the set 
of alternatives includes 128 triplets but a certain number of triplets were rejected 
because of the constraints involved by the DM such that makespan cannot be 
longer than 85 hours by week; the average number of jobs waiting for all opera-
tions no more than 4600 by week; and the number of set-ups for all machines no 
more than 4000 by week. It was also assumed that the probability of reaching 
unsatisfactory attribute value should not exceed 0,05. The result of this verifica-
tion was that 71 triplets were rejected. Next we started to identify types of sto-
chastic dominance between alternatives with respect to attributes. According to 
prospect theory [7], we assumed that the decision-maker is risk-prone and so we 
used FSD, SISD, TISD1 and TISD2 (as defined in section 2) to explain relations 
between alternatives. Tables 3, 4 and 5 show the relations between selected al-
ternative pairs explained by stochastic dominance with respect to the attribute X1 
(makespan). These dominances can be used to determine the multi-attribute sto-
chastic dominance (MSD). By verification of the multi-attribute dominance rule 
(see definition 1, in Section 3) on the remaining subset of 57 alternatives, we 
obtained 44 efficient triplets as shown in Table 6. 
 

Table 3  
 

Stochastic dominance for attribute X1 (makespan) 
 

X1 5_3_2 5_3_3 5_4_4 10_3_3 10_3_4 10_4_2 10_4_3 10_6_2 10_6_3 
5_3_2 X FSD SISD FSD FSD SISD FSD SISD TISD1 
5_3_3 X X X FSD FSD X SISD X X 
5_4_4 X TISD1 X FSD FSD FSD FSD X X 
10_3_3 X X X X TISD1 X X X X 
10_3_4 X X X X X X X X X 
10_4_2 X TISD1 X FSD FSD X FSD X X 
10_4_3 X X X FSD FSD X X X X 
10_6_2 X FSD SISD FSD FSD SISD FSD X X 
10_6_3 X FSD SISD FSD FSD FSD FSD TSD X 

 
Table 4  

 
Stochastic dominance for attribute X2 (number of set-ups) 

 
X2 5_3_2 5_3_3 5_4_4 10_3_3 10_3_4 10_4_2 10_4_3 10_6_2 10_6_3 

5_3_2 X X FSD X X X X X X 
5_3_3 FSD X FSD X X X X FSD FSD 
5_4_4 X X X X X X X X X 
10_3_3 FSD FSD FSD X X FSD FSD FSD FSD 
10_3_4 FSD FSD FSD FSD X FSD FSD FSD FSD 
10_4_2 FSD TISD1 FSD X X X X FSD FSD 
10_4_3 FSD FSD FSD X X FSD X FSD FSD 
10_6_2 FSD X FSD X X X X X X 
10_6_3 FSD X FSD X X X X TISD1 X 
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Table 5  
 

Stochastic dominance for attribute X3 (average stock) 
 

X3 5_3_2 5_3_3 5_4_4 10_3_3 10_3_4 10_4_2 10_4_3 10_6_2 10_6_3 
5_3_2 X FSD FSD FSD FSD FSD FSD FSD FSD 
5_3_3 X X FSD FSD FSD FSD FSD X FSD 
5_4_4 X X X FSD FSD FSD FSD X X 
10_3_3 X X X X FSD X FSD X X 
10_3_4 X X X X X X X X X 
10_4_2 X X X FSD FSD X FSD X X 
10_4_3 X X X X SSD X X X X 
10_6_2 X FSD FSD FSD FSD FSD FSD X FSD 
10_6_3 X X FSD FSD FSD FSD FSD X X 

  
Table 6 

  
Alternatives analyzed in the last step of the procedure 

 

Alternative Lot-
size 

Scheduling 
rule 

No. of 
Kanbans Alternative Lot-

size 
Scheduling 

rule 
No. of 

Kanbans 
1 5 SJP 2 23 15 MKW 4 
2 5 SJP 3 24 15 MKW 5 
3 5 SNQ 4 25 15 MKP 2 
4 10 SJP 3 26 15 MKP 3 
5 10 SJP 4 27 15 MKP 4 
6 10 SNQ 2 28 15 MKP 5 
7 10 SNQ 3 29 15 PR 4 
8 10 MKW 2 30 15 PR 5 
9 10 MKW 3 31 20 SPT 2 

10 10 MKW 4 32 20 SPT 5 
11 10 MKW 5 33 20 SNQ 2 
12 10 MKP 2 34 20 MKW 2 
13 10 MKP 3 35 20 MKW 3 
14 10 MKP 4 36 20 MKW 4 
15 10 MKP 5 37 20 MKW 5 
16 10 PR 5 38 20 MKP 2 
17 15 SPT 2 39 20 MKP 3 
18 15 SJP 2 40 20 MKP 4 
19 15 SJP 3 41 20 MKP 5 
20 15 SNQ 2 42 20 PR 3 
21 15 MKW 2 43 20 PR 4 
22 15 MKW 3 44 20 PR 5 

 

Next, we attempt to build a decision table (Table 7) for pairwise compari-
son between 5 triplets chosen to make an exercise with industrial operator. The 
preferences in the decision table were supposed finally to be the same as those 
analyzed by ELECTRE method in Nowak et al. [11] case. The evaluations with 
respect to the decisional attribute partition the set of pairs of triplets H into: 
those which express preferences and those which express non preferences. With 
respect to the conditional attributes, for each pair of triplets, we can identify the 
Multiattribute Dominances for reduced number of attributes (MSDR).  

This table shows for the first three pairs of triplets, two attribute domi-
nances with respect to X2 and X3. 
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Table 7 
  

Decision table 
 

0 1 1 P 
0 1 1 P 
0 1 1 P 
1 0 1 P 
0 1 0 P 
0 1 0 P 
1 0 1 P 
1 0 0 P 
1 0 1 P 
1 0 1 P 
0 0 0 N 
1 0 0 N 
1 0 0 N 
0 1 0 N 
1 0 0 N 
1 0 0 N 
0 1 0 N 
0 1 1 N 
0 1 0 N 
0 1 0 N 

 
In our approach, we suggest the approximation of the global preference 

relation P by the Multiattribute Stochastic Dominance to reduce the number of 
attribute MSDR. The application of the lower approximation (3) for twenty ex-
amples (see Table 5) of the pairwise comparison of the triplets using the soft-
ware package 4eMKA2 allows us to induce the first decision rule which is based 
on the two attribute dominances with respect to the attributes X1 (makespan) and 
X3 (number of set-ups). 
 
Rule 1: If ai MSDx1,x3 aj then ai P aj 

 

By application of the upper approximation (4) of preferences we can iden-
tify the boundary region, which contains 15 pairs of triplets out of 20 in the deci-
sion table (Table 5). Larger boundary region implies the weaker quality of ap-
proximation. This is why the quality of approximation of preference is equal to 
only 0.21. 
 

                                                                                                                  (7) 
  
Rules 2 and 3 are induced from upper approximation of preferences. 

 

Rule 2: If ai 2XMSD  aj then ai P aj or ai N aj  

Rule 3: If ai 1XMSD  aj then ai P aj or ai N aj  

21.0
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Finally, we keep the first certain decision rule to model the overall binary 
preference relation. The last step of the suggested methodology is to apply this 
decision rule to order the entire set of forty-four triplets. The extraction of the 
list of pairs of triplets supporting the decision rule of 44 triplets is presented in 
Table 6.  For each triplet ai we have: 
SC++ (ai ) = card({ aj ∈ A: there is at least one D++ decision rule stating that ai P aj }), 
SC+- (ai) = card({ aj ∈ A: there is at least one D++ decision rule stating that aj P ai }), 

If we identify the pairs of triplets with the decision rule which it corre-
sponds to, we have one of two following situations for each triplet. The triplet ai 
dominates the others or is dominated by them.  

To each triplet ai, we assign a score NFS(ai) called the net flow score [5] 
where:  

NFS(ai) = S++
 (ai) – S+-

 (ai). 

In the ranking problem, the final recommendation is the total pre-order es-
tablished by SNF (ai) on the set of triplets shown in Table 9. By comparing two 
rankings obtained by the ELECTRE method and the Rough Set method, we find 
them very similar because the preferences were supposed to be the same in the 
decision table. Usually, the preferences are given by the DM while ranking small 
number of alternatives from the efficient set (Table 10). 

 
Table 8  

 
Pairs of alternatives supporting decision Rule 1 

 

(5_3_2 ; 5_3_3) (5_3_2 ; 5_4_4) (5_3_2 ; 10_3_3) (5_3_2 ; 10_3_4) (5_3_2 ; 10_4_2) (5_3_2 ; 10_4_3) 

(5_3_2 ; 15_6_4) (5_3_2 ; 15_6_5) (5_3_2 ; 15_7_2) (5_3_2 ; 15_7_3) (5_3_2 ; 15_7_4) (5_3_2 ; 15_7_5) 

(5_3_2 ; 20_7_5) (5_3_3 ; 10_3_3) (5_3_3 ; 10_3_4) (5_3_3 ; 10_4_3) (5_3_3 ; 15_2_2) (5_3_3 ; 15_3_2) 

(5_3_3 ; 20_6_3) (5_3_3 ; 20_6_4) (5_3_3 ; 20_6_5) (5_4_4 ; 10_3_3) (5_4_4 ; 10_3_4) (5_4_4 ; 10_4_2) 

(5_4_4 ; 20_6_4) (5_4_4 ; 20_6_5) (10_3_3 ; 10_3_4) (10_3_3 ; 15_3_2) (10_3_3 ; 15_3_3) (10_3_3 ; 20_2_5) 

(10_4_2 ; 20_4_4) (10_4_2 ; 20_6_2) (10_4_2 ; 20_6_3) (10_4_2 ; 20_6_4) (10_4_2 ; 20_6_5) (10_4_3 ; 10_3_4) 

(10_6_2 ; 15_2_2) (10_6_2 ; 15_3_2) (10_6_2 ; 15_3_3) (10_6_2 ; 15_4_2) (10_6_2 ; 15_6_2) (10_6_2 ; 15_6_3) 

(10_6_2 ; 20_7_4) (10_6_2 ; 20_7_5) (10_6_3 ; 5_4_4) (10_6_3 ; 10_3_3) (10_6_3 ; 10_3_4) (10_6_3 ; 10_4_2) 

(10_6_3 ; 20_2_5) (10_6_3 ; 20_4_2) (10_6_3 ; 20_6_2) (10_6_3 ; 20_6_3) (10_6_3 ; 20_6_4) (10_6_3 ; 20_6_5) 

(10_6_4 ; 15_6_2) (10_6_4 ; 15_6_3) (10_6_4 ; 15_6_4) (10_6_4 ; 15_6_5) (10_6_4 ; 20_2_2) (10_6_4 ; 20_2_5) 

(10_6_5 ; 15_2_2) (10_6_5 ; 15_3_2) (10_6_5 ; 15_3_3) (10_6_5 ; 15_4_2) (10_6_5 ; 15_6_2) (10_6_5 ; 15_6_3) 

(10_7_2 ; 10_3_3) (10_7_2 ; 10_3_4) (10_7_2 ; 10_4_3) (10_7_2 ; 10_7_5) (10_7_2 ; 15_2_2) (10_7_2 ; 15_3_2) 

(10_7_2 ; 20_2_2) (10_7_2 ; 20_2_5) (10_7_2 ; 20_4_2) (10_7_2 ; 20_6_2) (10_7_2 ; 20_6_3) (10_7_2 ; 20_6_4) 

(10_7_3 ; 15_2_2) (10_7_3 ; 15_3_2) (10_7_3 ; 15_3_3) (10_7_3 ; 15_4_2) (10_7_3 ; 15_6_2) (10_7_3 ; 15_6_3) 

(10_7_3 ; 20_6_3) (10_7_3 ; 20_6_4) (10_7_3 ; 20_6_5) (10_7_3 ; 20_7_2) (10_7_3 ; 20_7_3) (10_7_3 ; 20_7_4) 
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Table 9 
 

Ranking of triplets according to the Rough Set approach 
 

Triplet S++ S+- NFS Rang Triplet S++ S+- NFS Rang 
5_3_2 33 0 33 1 20_8_3 0 0 0 23 
10_7_2 28 0 28 2 15_8_5 0 0 0 24 
10_7_4 28 0 28 3 15_8_4 0 0 0 25 
10_7_3 28 0 28 4 10_8_5 0 0 0 26 
10_7_5 27 3 24 5 15_6_2 16 18 -2 27 
10_6_2 24 1 23 6 15_6_3 15 19 -4 28 
15_7_3 25 5 20 7 15_6_4 13 20 -7 29 
10_6_4 21 1 20 8 15_6_5 12 21 -9 30 
15_7_2 24 5 19 9 15_2_2 11 22 -11 31 
10_6_3 20 1 19 10 10_4_3 5 16 -11 32 
10_6_5 20 2 18 11 20_6_2 9 24 -15 33 
15_7_5 23 6 17 12 20_6_4 7 26 -19 34 
15_7_4 23 7 16 13 20_2_2 4 25 -21 35 
5_4_4 15 5 10 14 20_6_5 6 27 -21 36 
20_7_2 18 9 9 15 20_6_3 5 26 -21 37 
5_3_3 18 10 8 16 15_4_2 3 25 -22 38 
20_7_5 17 10 7 17 15_3_2 3 28 -25 39 
10_4_2 14 7 7 18 10_3_3 4 30 -26 40 
20_7_4 17 11 6 19 20_4_2 1 30 -29 41 
20_7_3 17 11 6 20 10_3_4 1 33 -32 42 
20_8_4 0 0 0 21 15_3_3 0 34 -34 43 
20_8_5 0 0 0 22 20_2_5 0 35 -35 44 

 
Table 10 

 
Results obtained from Rough Set and Electre methods 

 
Rough Set approach Electre method 

Rank Triplet Rank Triplet Rank Triplet Rank Triplet 
1 5_3_2 23 20_8_3 1 10_7_2 23 5_3_3 
2 10_7_2 24 15_8_5 2 10_7_3 24 10_4_2 
3 10_7_4 25 15_8_4 3 5_3_2 25 10_8_5 
4 10_7_3 26 10_8_5 4 10_7_4 26 15_6_2 
5 10_7_5 27 15_6_2 5 15_7_2 27 15_6_3 
6 10_6_2 28 15_6_3 6 15_7_3 28 15_2_2 
7 15_7_3 29 15_6_4 7 10_7_5 29 15_6_4 
8 10_6_4 30 15_6_5 8 15_7_5 30 15_6_5 
9 15_7_2 31 15_2_2 9 15_7_4 31 20_6_2 

10 10_6_3 32 10_4_3 10 20_8_4 32 5_4_4 
11 10_6_5 33 20_6_2 11 20_8_5 33 20_2_2 
12 15_7_5 34 20_6_4 12 10_6_2 34 20_6_4 
13 15_7_4 35 20_2_2 13 20_8_3 35 20_6_5 
14 5_4_4 36 20_6_5 14 10_6_4 36 20_6_3 
15 20_7_2 37 20_6_3 15 20_7_2 37 10_3_3 
16 5_3_3 38 15_4_2 16 10_6_3 38 10_4_3 
17 20_7_5 39 15_3_2 17 10_6_5 39 15_3_2 
18 10_4_2 40 10_3_3 18 20_7_3 40 15_4_2 
19 20_7_4 41 20_4_2 19 15_8_5 41 15_3_3 
20 20_7_3 42 10_3_4 20 20_7_4 42 10_3_4 
21 20_8_4 43 15_3_3 21 20_7_5 43 20_4_2 
22 20_8_5 44 20_2_5 22 15_8_4 44 20_2_5 
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CONCLUSION 
 

The given procedure constitutes a dynamic decision aid in the production 
process control. By changing parameters and attributes, we can adapt it to other 
production environments. 

We have used a Rough Set approach to choose the best triplet (Kanban lot 
size, the decision rule and the number of Kanbans). The set of decision rules 
induced by application of Rough Set techniques represents the preference model 
of the DM and can be used to order very large efficient set of triplets.  
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