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Abstract 
In this paper we investigate an economic diagnostic system in the situation of 

lack of data. We propose a diagnostic model working both with statistical and expert 
data. In case there exists statistical data, the diagnostic model should supply the results 
based on the well known Bayes’ approaches, otherwise, the model should combine sta-
tistical and expert data by a generalized approach. Hence, this model is a generalization 
both the classical statistical approach and also expert one, which is allowed by Analytic 
Network Process. 
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INTRODUCTION 
 
Solving problems of diagnostics of economical systems, particularly en-

terprises, we meet usually difficulties with interdependences among individual 
symptoms, i.e. the symptoms of economical systems and also causes of these 
symptoms. By the diagnostics we understand here a test (or system of tests) for 
predicting a state of the system in the future. 

Recently, many diagnostic approaches are based on artificial intelligence, 
e.g. neural networks, see [3], the classical statistical approach based on Bayes 
theory is, however, still attractive, see e.g. [1], [2], [7]. This approach is focused 
on the assumption that the decision under uncertainty should utilize information 
about the decision environment, i.e. information about the history of the solution 
of the problem, expert knowledge etc.  

Subjective probabilities in Bayes’ theory allow for revision of the original 
prior information acquired from a large sample of population by means of the 
results of experiments, i.e. by so called posterior probabilities, see [7].  
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In economical diagnostics we often meet a situation with the lack of statis-
tical data, the data are either out of reach or the sample is too small due to signif-
icant changes during the time and the dynamics of the process. That is why di-
agnostic systems utilizing both statistical and at the same time expert data are 
needed. In case there exists statistical data, the diagnostic model should supply 
the results based on the well known Bayes’ approaches, otherwise, the model 
should combine statistical and expert data by a generalized approach, see [6]. In 
this paper we shall deal with the case of expert data i.e. a situation where no 
statistical data exists. This case is based on multi-criteria approach, particularly 
analytic hierarchy process (AHP), see [5] − [7]. 
 
 
1. BAYES’ THEORY 
  

Consider two-stage decision system: On the first stage we consider n dis-
joint events – states of the system:  S1, S2,...,Sn, such that Si∩Sj = ∅ for i≠j and 

( ) 1
1

=∑
=

n

i
iSP , P(Si) > 0, i=1,2,...,n, is a probability of state Si , see  Fig.1.  On 

the second stage consider m outcomes of the experiment E1, E2,...,Em such that 

Er∩Es= ∅ for r≠s and ( ) 1
1

=∑
=

m

r
ir SEP , where P(Er⏐Si), i=1,2,...,n, is  

a subjective probability of Er on condition the existence of state Si. 
 

               Decision system 

 

 

    S1     S2         S3  S4 ... Sn-1       Sn 

 

 

 

  E1               E2            E3    ...    Em-1  Em 

Fig. 1. Two-stage experiment – Diagnostic system  
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Subjective probability can be calculated by the well known Bayes’ formula: 

P(Er⏐Si) = 
( )

( )i
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P
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S
SE ∩

 

By disjointness of states Si and properties of probabilities we get: 
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i
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Substituting from (1) to (2) we obtain for r = 1,2,...,m: 
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Then (3) can be expressed as follows: 

P(E) = P(E⏐S) P(S) 

P(Si) are called prior probabilities, they are known in advance - “a priori”, 
usually as relative frequencies of populations. Also P(Er⏐Si) are usually known 
in advance as statistical characteristics of the experiment. Bayes’ theorem, the 
essence of the theory with the same name answers the question what is the prob-
ability of state Si assuming that the outcome of the experiment is Er. We look for 
posterior probability P(Si⏐Er). Using the above defined notation the posterior 
probabilities are given by the following formula (called Bayes’ theorem): 

 
(1) 

 
 
 
 

(2) 
 
 
 

(3) 
 
 
 
 
 

(4) 
 
 
 
 
 

(5) 
 
 
 
 
 

(6) 
 
 
 
 
 

(7) 
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is called the diagonal matrix to vector c. Then Bayes’ formula (8) can be also 
expressed in the following matrix form: 

                   P(S⏐E) = diag(P(S))·P(E⏐S)T·[diag(P(E⏐S)·P(S))]-1  (9) 
 
 
2. MULTI-CRITERIA DECISIONS AND AHP/ANP 

 
Consider a decision system with three hierarchical levels: 

 
 
 

Goal 
 
 
 

Criteria 
 
 
 

Variants 
 
 
Fig. 2. Hierarchical system with 3 levels 
 

This system is characterized by the supermatrix (see [7]): 
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here W21 is the n×1 matrix (weighting vector of the criteria), W32 is the m×n matrix 
(the columns of this matrix are evaluations of variants by the criteria), I is the unit 
m×m matrix. The limit matrix W∞ = k

k
W

+∞→
lim  (see [6]) is given as follows: 

                       W∞ =
⎥
⎥
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⎤

⎢
⎢
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⎡

IWWW
000
000

322132

 (11) 

Here Z = W32W21 is the m×1 matrix, i.e. the resulting priority vector of the var-
iants. The variants can be ordered according to these priorities. 

In real decision systems with 3 levels there exist typical interdependences 
among individual elements, e.g. criteria. Consider now the dependences among 
the criteria, see Fig. 3. Such a system can be solved by the method named Ana-
lytical Network Process (ANP), an extension of AHP, see [6]. 
 
 
 

Goal 
 
 
 

Criteria 
 
 
 

Variants 
 
 
Fig. 3. Dependencies amongst criteria 
 
This system is given by the supermatrix: 
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⎥
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where the interdependences are characterized by n×n matrix W22. It is clear that 
matrix (12) need not be column-stochastic, i.e. sum of the elements in each col-
umn is equal to one, hence in general the limiting matrix does not exist. 
Stochasticity of this matrix can be saved by additional normalization of the col-
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umns of the submatrix ⎥
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, by applying e.g. the Saaty’s pairwise comparison 

method. Then there exists a limiting matrix W∞ such that 
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Hence the vector 

( ) 21
1

2232 WWIWZ −−=  

is used for ordering the variants i.e. for the decision making process.  
In the systems with 3 levels there are usually interdependences among cri-

teria and variants, see Fig. 4. 
 

 
 

Goal 
 
 
 

Criteria 
 
 
 

Variants 
 
 
Fig. 4. Dependences amongst criteria and variants  

 
This system is characterized by the supermatrix: 
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where the dependences are given by the m×n matrix W32, resp. by n×m matrix 
W23. Evidently, matrix (14) is stochastic, however, it is neither primitive nor 
irreducible, hence for the limiting matrix we apply Perron-Frobenius theorem, 
see [4]. 
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Let W21, W32, W23 be column stochastic matrices with positive elements. Then 
for the limiting matrix W∞  of the supermatrix W it holds: 
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where  
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Remark 
 

Matrices W32 a W23 are supposed to be stochastic with positive elements, conse-
quently they are primitive. The same holds for W32W23 and W23W32. Then there 
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M , is the n-dimensional, resp. m- dimensional vector. The matrix A is then 

stochastic n×n matrix, where all its columns are identically equal to vector a, 
similarly, B is a stochastic square m×m matrix where all its columns are identi-
cally equal to vector b.  The priority vector Z is located in the third row of the 
limit matrix W∞, i.e. 

                                                       2132WBWZ =   (17) 

Consider the following matrices of prior probabilities:  
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And the matrix of posterior probabilities: 
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Bayes’ theorem (9) gives the relationship among prior and posterior prob-
abilities as follows: 

                                 W23= diag(W 21)·W32
T·[diag(W32W21)]-1  (21) 

If in the supermatrix W the block W23 is defined by (13), then it holds:  

                                                W23W32W21 = W21  (22) 

On the other hand, if in the supermatrix W the block W23 is defined by (16), then 
for the limiting matrix W∞ we get: 
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In the limiting matrix (23) the first column is important as in the second 
row we have the vector of prior probabilities P(S)= W21  and in the third row we 
get the vector of posterior probabilities P(E) = W32W21. The form (21) of marix 
W23, i.e. Bayes’ theorem, is a sufficient condition for W∞ of the feedback system 
given by W in (14) can be written as (23), however, this condition is not suffi-
cient. A natural question arises whether in W there exists a block W23 different to 
(21), with the same limiting matrix W∞ . The question is what is a sufficient 
condition for W23, such that limit matrix W∞ to matrix W from (21) has the form 
(23). The following theorem gives the answer to this question, see [6]. 
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Theorem 1 
 

Let W21, W32, W23 be column stochastic with positive elements in blocks of W 
defined by (14). Then W∞ is in the form (23) if and only if the following equa-
tion holds: 
                                                  W23W32W21 = W21  (24) 

In a particular system (e.g. diagnostic system) the matrices W21 and W32 
are given beforhand. In case statistical data are at disposition they are prior 
probabilities P(S) and P(E⏐S), otherwise, in case of expert data the matrices of 
priorities might be collected by Saaty’s method of pairwise comparisons. We 
have to find matrix W23 of posterior probabilities P(S⏐E) (case of statistical da-
ta), or, the feedback matrix of priotrities (case of expert data).  

System (24) is a reasonable model for finding matrix W23, which is, how-
ever, not uniquely solvable. In the stochastic case of matrix (21) classical Bayes’ 
approach is a suitable method for finding solution of (24).  However, in case of 
expert data this approach need not be the unique possible solution, there exist 
also some other solutions, different to Bayes’ one, that might also be sufficient or 
even more advantageous. Here ANP is a new method generalizing the classical 
Bayes’ approach allowing for a mix of statistical and expert data. We have the 
following theorem. 
 

Theorem 2 
 

Let Q be the (m×n) column stochastic matrix with positive elements such that: 

                                                   QW21 = W32W21  (25) 

Then matrix: 

                                  W23* = diag(W21)·QT·[diag(W32W21)]-1  (26) 

is a column stochastic solution of the system: 

                                                 W23*W32W21 = W21  (27) 

Let W23*, W32 , W21 satisfy (25) – (27). Then the limiting matrix W∞  to 
supermatrix  

W* =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0W0
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is written in the form (23). If Q ≠ W32, then the solution of (27) is different to 
W23 in (21). This property is illustrated in the next section. 
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3. APPLICATION – A DIAGNOSTIC SYSTEM 
 

In this part we apply the model described in the previous section to partic-
ular feedback system (14) of small and medium enterprises (SMEs). In the diag-
nostic system we consider three states: S1 – the enterprise will bankrupt, S2 – the 
enterprise will survive, S3 – the enterprise will succeed.   The prior probabilities 
– relative frequencies from statistical data of about 200 SMEs in Ostrava – 
Karviná region – are listed in the following table:  

 

States P(S) 
S1 0.20 
S2 0.70 
S3 0.10 

 

To find out the economic state of the enterprise we applied a special test 
(experiment) with 4 outcomes (results):  

E1 – very bad result, E2 – bad result, E3 – good result and E4 – excellent result.  
In the next table the prior subjective probabilities are listed. They are 

based again on the above mentioned statistical data. 
 

P(E⏐S) SS1 S2 S3 
E1 0.70 0.30 0.15 
E2 0.20 0.40 0.20 
E3 0.07 0.20 0.25 
E4 0.03 0.10 0.40 

 

Probabilities of the symptoms are calculated as: P(E) = P(E⏐S)·P(S), the 
results is in the next table: 

 
Symptoms P(E) 

E1 0.365 
E2 0.340 
E3 0.179 
E4 0.116 

 
The posterior  probabilities are calculated from (9) as: 

P(S⏐E) = diag(P(S))·P(E⏐S)T·[diag(P(E⏐S)·P(S))]-1. 

The results are summarized in the following table: 
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P(S⏐E) E1 E2 E3 E4 
S1 0.38 0.12 0.08 0.05 
S2 0.58 0.82 0.78 0.60 
S3 0.04 0.06 0.14 0.35 

 

The values e.g. from the first column of the previous table can be interpreted 
as follows: If the outcome of the test of an enterprise is very bad (symptom E1), 
then the probability that the enterprise would bankrupt (state S1) is equal to 0.38, 
the probability that this enterprise would survive (state S2) is 0.58 and probability 
the same enterprise would be successful (state S3) is only 0.04. Analogically we 
could interprete the other three columns of the table, i.e. the other outcomes of the 
test. Now, let W21 = P(E), W32 = P(E⏐S), W23 = P(S⏐E). 

As an example consider the matrix Q defined below which satisfies (25) 
and (27), hence: 

W23*·W32·W21 = W21, 
Q·W21 = W32·W21, 

with the following matrices: 
W23* = diag(W21)·QT·[diag(W32W21)]-1. 

 

Q S1 S2 S3 
E1 0.52 0.33 0.33 
E2 0.38 0.37 0.02 
E3 0.03 0.20 0.33 
E4 0.07 0.10 0.32 

 
W32 S1 S2 S3 
E1 0.70 0.30 0.15 
E2 0.20 0.40 0.20 
E3 0.07 0.20 0.25 
E4 0.03 0.10 0.40 

 

W23* E1 E2 E3 E4 
S1 0.29 0.22 0.03 0.12 
S2 0.62 0.77 0.78 0.60 
S3 0.09 0.01 0.18 0.28 
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By Theorem 1 and 2 the limiting matrices to the following matrices W and W*: 
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are identical, in spite of Q ≠ W32. 
 
 
CONCLUSION 

 
In this paper we have investigated an economic diagnostic system in the 

situation of lack of data. We have proposed a diagnostic model working both 
with statistical and expert data. In case there exists statistical data, the diagnostic 
model should supply the results based on the well known Bayes´ approach, oth-
erwise, the model should combine statistical and expert data by a generalized 
approach. Hence, this model is a generalization both the classical statistical ap-
proach and also expert one, which is allowed by Analytic Network Process. 
 
 
REFERENCES 
 
1. Berger J.: Statistical decision theory and Bayesian analysis. Springer-Verlag, Berlin 

1985. 
2. Blair A., Nachtmann, R. Olson J., Saaty T.L.: Forecasting foreign exchange rates: 

An expert judgement approach. Socio-Economic Planning Sci. 21, pp. 363-369.  
3. Charniak E., McDermott D.: Introduction to artificial intelligence. Addison Wesley, 

New York 1995. 
4. Gantmacher F.R.: Teorija matric (in Russian). Nauka, Moskva, 1966. 
5. Saaty T.L.: Multicriteria decision making - the Analytical Hierarchy Process. RWS 

Publications, Pittsburgh 1991, Vol. I, pp. 502. 
6. Saaty T.L.: Decision Making with Dependence and Feedback – The Analytic Net-

work Process. RWS Publications, Pittsburgh 1996, pp. 370. 
7. Saaty T.L., Vargas T.L.: Diagnosis with dependent symptoms: Bayes theorem and the 

Analytic Hierarchy Process. Operations Research 1998, Vol. 46, No 4, pp. 491-501. 


