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INTRODUCTION

Equity or fairness issues appear in many decision models of Operations
Research. Especially models dealing with allocation of resources try to achieve
some fairness of allocation patterns [9]. More generally, the models related to the
evaluation of various systems which serve many users and the quality of service
for every individual user defines the criteria. This applies among others to networ-
king where a central issue is how to allocate bandwidth to flows efficiently and
fairly [1]. The issue of equity is widely recognized in location analysis of public
services, where the clients of a system are entitled to fair treatment according to
community regulations. In such problems, the decisions often concern the place-
ment of a service center or other facility in a position so that the users are treated
in an equitable way, relative to certain criteria [13]. Moreover, uniform individual
outcomes may be associated with some events rather than physical users, like in
many dynamic optimization problems where uniform individual criteria represent
a similar event in various periods and all they are equally important.

Fairness is, essentially, an abstract socio-political concept that implies im-
partiality, justice and equity [23]. Nevertheless, fairness was usually quantified
with the so-called inequality measures to be minimized [18]. Unfortunately, direct
minimization of typical inequality measures (especially relative ones) contradicts
the maximization of individual outcomes and it may lead to inferior decisions.
Recently, several research publications relating the fairness and equity concepts
to the multiple criteria optimization methodology have appeared [4; 7; 9; 10;
13]. Finally, the novel and distinct mathematical approach denoted by equitable
efficiency has been developed to provide solutions to these examples of multiple
criteria optimization [6]. The concept of equitably efficient solution is a specific
refinement of the Pareto-optimality. This paper deals with generation techniques
for equitably efficient solutions to multiple criteria optimization problems.

*Research supported by grant 3T11C 005 27 from The State Committee for Scientific Research.
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1. EQUITY AND FAIRNESS

The generic decision problem, we consider, may be stated as follows. There
is given a set I of m services (users, clients). There is also given a set Q of
feasible decisions. For each service i ∈ I a function fi(x) of the decision x has
been defined. This function, called the individual objective function, measures
the outcome (effect) yi = fi(x) of the decision for service i. An outcome usually
expresses the service quality. However, outcomes can be measured (modeled)
as service time, service costs, service delays as well as in a more subjective
way. In typical formulations a larger value of the outcome means a better effect
(higher service quality or client satisfaction). Otherwise, the outcomes can be
replaced with their complements to some large number. Therefore, without loss
of generality, we can assume that each individual outcome yi is to be maximized
which results in a multiple criteria maximization model.

max {f(x) : x ∈ Q} (1)

where:

f(x) – is a vector-function that maps the decision space X = Rn into the
criterion space Y = Rm,

Q ⊂ X – denotes the feasible set,
x ∈ X – denotes the vector of decision variables.

Model (1) only specifies that we are interested in maximization of all
objective functions fi for i ∈ I = {1, 2, . . . ,m}. In order to make it operational,
one needs to assume some solution concept specifying what it means to maximize
multiple objective functions.

Typical solution concepts for multiple criteria problems are defined by
aggregation (or utility) functions g : Y → R to be maximized. Thus the multiple
criteria problem (1) is replaced with the maximization problem:

max {g(f(x)) : x ∈ Q} (2)

In order to guarantee the consistency of the aggregated problem (2) with the
maximization of all individual objective functions in the original multiple criteria
problem (or Pareto-optimality of the solution), the aggregation function must be
strictly increasing with respect to every coordinate, i.e., for all i ∈ I ,

g(y1, . . . , yi−1, y
′
i, yi+1, . . . , ym) < g(y1, y2, . . . , ym) (3)

whenever y′i < yi.
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The simplest aggregation functions commonly used for the multiple criteria
problem (1) are defined as the sum of outcomes:

g(y) =
m∑

i=1

yi (4)

or the worst outcome:
g(y) = min

i=1,...,m
yi (5)

The sum (4) is a strictly increasing function while the minimum (5) is only
nondecreasing. Therefore, the aggregation (2) using the sum of outcomes always
generates a Pareto-optimal solution while the maximization of the worst outcome
may need some additional refinement.

Equity is, essentially, an abstract socio-political concept, but it is usually
quantified with the so-called inequality measures to be minimized. Inequality
measures were primarily studied in economics [18] while recently they become
very popular tools in Operations Research. For instance, Marsh and Schilling
[10] describe twenty different measures proposed in the literature to gauge the
level of equity in facility location alternatives. The simplest inequality measures
are based on the absolute measurement of the spread of outcomes, like the mean
(absolute) difference:

D(y) =
1

2m2

m∑

i=1

m∑

j=1

|yi − yj | (6)

or the maximum (absolute) difference:

R(y) =
1
2

max
i,j=1,...,m

|yi − yj | (7)

In most application frameworks better intuitive appeal may have inequality
measures related to deviations from the mean outcome like the mean (absolute)
deviation:

δ(y) =
1

2m

m∑

i=1

|yi − µ(y)| (8)

In economics one usually considers relative inequality measures norma-
lized by mean outcome. Among many inequality measures perhaps the most
commonly accepted by economists is the Gini coefficient, which is the relative
mean difference. One can easily notice that direct minimization of typical ine-
quality measures (especially the relative ones) may contradict the optimization
of individual outcomes. As pointed out by Erkut [2], it is rather a common flaw
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of all the relative inequality measures that while moving away from the spatial
units to be serviced one gets better values of the measure as the relative distances
become closer to one-another. As an extreme, one may consider an unconstrained
continuous (single-facility) location problem and find that the facility located at
(or near) infinity will provide (almost) perfectly equal service (in fact, rather lack
of service) to all the spatial units. Unfortunately, these flaws of the inequality
measure minimization remains also valid when the inequality measure is added
as an additional criterion [13].

In order to guarantee fairness (equitability) of the solution concept (2),
additional requirements on the class of aggregation (utility) functions may be
introduced. In particular, the aggregation function must be additionally symmetric
(impartial), i.e. for any permutation τ of I ,

g(yτ(1), yτ(2), . . . , yτ(m)) = g(y1, y2, . . . , ym) (9)

as well as be equitable (to satisfy the principle of transfers)

g(y1, . . . , yi′ − ε, . . . , yi′′ + ε, . . . , ym) > g(y1, y2, . . . , ym) (10)

for any 0 < ε < yi′ − yi′′ . In the case of an aggregation function satisfying
all the requirements (3), (9) and (10), we call the corresponding problem (2)
a fair (equitable) aggregation of problem (1). Every optimal solution to the fair
aggregation (2) of a multiple criteria problem (1) defines some fair (equitable)
solution.

Note that symmetric functions satisfying the requirement

g(y1, . . . , yi′ − ε, . . . , yi′′ + ε, . . . , ym)  g(y1, y2, . . . , ym) (11)

for 0 < ε < yi′ − yi′′ are called (weakly) Schur-concave [11] while the stronger
requirement of equitability (10), we consider, is related to strictly Schur-concave
functions. In other words, an aggregation (2) is fair if it is defined by a strictly
increasing and strictly Schur-concave function g.

Note that both the simplest aggregation functions, the sum (4) and the mi-
nimum (5), are symmetric and satisfy the requirement (11), although they do not
satisfy the equitability requirement (10). Hence, they are Schur-concave but not
strictly Schur-concave. To guarantee the fairness of solutions, some enforcement
of concave properties is required.

For any strictly concave, increasing utility function s : R→ R, the function

g(y) =
m∑

i=1

s(yi) (12)

is a strictly monotonic and strictly Schur-concave function [11]. This defines
a family of the fair aggregations according to the following proposition [12].
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Proposition 1 For any strictly convex, increasing function s : R → R, the
optimal solution of the problem

max {
m∑

i=1

s(fi(x)) : x ∈ Q} (13)

is a fair solution for decision problem (1).

Various concave functions utility s can be used to define fair aggregations
(13) and the resulting fair solution concepts. In the case of the outcomes restricted
to positive values, one may use logarithmic function thus resulting in the so-called
proportional fairness model [5]. A parametric class of utility functions:

s(yi, α) =

{
y1−α
i /(1− α) if α 6= 1

log(yi) if α = 1

may be used for this purpose generating various solution concepts for α  0. In
particular, for α = 0 one gets the total output maximization which is the only
linear criterion within the entire class. For α = 1, it represents the Proportio-
nal Fairness approach [5] that maximizes the sum of logarithms of the flows
while with α tending to the infinity it converges to the lexicographic max-min
optimization which represents the Rawlsian [17] concept of justice. However,
every such approach requires to build (or to guess) a utility function prior to
the analysis and later it gives only one possible compromise solution. It is very
difficult to identify and formalize the preferences at the beginning of the decision
process. Moreover, apart from the trivial case of the total output maximization
all the utility functions that really take into account any fairness preferences are
nonlinear. Many decisions models considered with fair outcomes are originally
LP or MILP models. Nonlinear objective functions applied to such models may
results in computationally hard optimization problems. In the following, we shall
describe an approach that allows to search for such compromise solutions with
multiple linear criteria rather than the use nonlinear objective functions.

2. ORDERED OUTCOMES

Multiple criteria optimization defines the dominance relation by the stan-
dard vector inequality. The theory of majorization [11] includes the results which
allow us to express the relation of fair (equitable) dominance as a vector in-
equality on the cumulative ordered outcomes [6]. This can be mathematically
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formalized as follows. First, introduce the ordering map Θ : Rm → Rm such that
Θ(y) = (θ1(y), θ2(y), . . . , θm(y)), where θ1(y) ¬ θ2(y) ¬ · · · ¬ θm(y) and
there exists a permutation τ of set I such that θi(y) = yτ(i) for i = 1, . . . ,m.
Next, apply to ordered outcomes Θ(y), a linear cumulative map thus resulting
in the cumulative ordering map Θ̄(y) = (θ̄1(y), θ̄2(y), . . . , θ̄m(y)) defined as:

θ̄i(y) =
i∑

j=1

θj(y) for i = 1, . . . ,m (14)

The coefficients of vector Θ̄(y) express, respectively: the smallest outcome, the
total of the two smallest outcomes, the total of the three smallest outcomes etc.
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Fig. 1. Structure of the equitable dominance

Note that fair solutions to problem (1) can be expressed as Pareto-optimal
solutions for the multiple criteria problem with objectives Θ̄(f(x)):

max {(θ̄1(f(x)), θ̄2(f(x)), . . . , θ̄m(f(x))) : x ∈ Q} (15)
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Proposition 2 A feasible solution x ∈ Q is a fair solution of the problem (1),
iff it is a Pareto-optimal solution of the multiple criteria problem (15).

Proposition 2 provides the relationship between fair solutions and the stan-
dard Pareto-optimality. One may notice that the set D(y) of directions leading
to outcome vectors being dominated by a given y is, in general, not a cone and
it is not convex. Although, when we consider the set S(y) of directions leading
to outcome vectors dominating given y we get a convex set. Figure 1 shows both
S(y) and D(y) fixed at y.

Hence, the multiple criteria problem (15) may serve as a source of fair
solution concepts. Although the definitions of quantities θ̄k(y), used as criteria
in (15), are very complicated, the quantities themselves can be modeled with
simple auxiliary variables and constraints. It is commonly known that the smallest
outcome may be defined by the following optimization: θ̄1(y) = max {t : t ¬
yi for i = 1, . . . ,m}, where t is an unrestricted variable. It turns out that this
can be generalized to provide an effective modeling technique for quantities θ̄k(y)
with arbitrary k [16]. Let us notice that for any given vector y, the quantity θ̄k(y)
is defined by the following LP:

θ̄k(y) = min
m∑

i=1

yiuki

s.t.
m∑

i=1

uki = k, 0 ¬ uki ¬ 1 for i = 1, . . . ,m
(16)

Exactly, the above problem is an LP for a given outcome vector y while
it begins nonlinear for a variable y. This difficulty can be overcome by taking
advantages of the LP dual to (16):

θ̄k(y) = max ktk −
m∑

i=1

dik

s.t. tk − yi ¬ dik, dik  0 for i = 1, . . . ,m
(17)

where tk is an unrestricted variable while nonnegative variables dik represent,
for several outcome values yi, their downside deviations from the value of t [16].

3. MULTICRITERIA APPROACHES

Proposition 2 allows one to generate equitably efficient solutions of (1) as
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efficient solutions of multicriteria problem:

max (η1, η2, . . . , ηm) (18)

subject to x ∈ Q

ηk = ktk −
m∑

i=1

dik for k = 1, . . . ,m (19)

tk − dik ¬ fi(x), dik  0 for i, k = 1, . . . ,m (20)

The aggregation maximizing the sum of outcomes, corresponds to ma-
ximization of the last (m-th) objective (ηm) in problem (18)-(20). Similar, the
maximin scalarization corresponds to maximization of the first objective (η1). For
modeling various fair preferences one may use some combinations the criteria.
In particular, for the weighted sum

∑m
i=1 wiηi on gets equivalent combination

of the cumulative ordered outcomes θ̄i(y):

m∑

i=1

wiθ̄i(y) (21)
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Fig. 2. Isoline contours for an equitable OWA aggregation
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Note that, due to the definition of map Θ̄ with (14), the above function can
be expressed in the form with weights vi =

∑m
j=iwj (i = 1, . . . ,m) allocated

to coordinates of the ordered outcome vector. Such an approach to aggregation
of outcomes was introduced by Yager [22] as the so-called Ordered Weighted
Averaging (OWA). When applying OWA to problem (1) we get:

max {
m∑

i=1

viθi(f(x)) : x ∈ Q} (22)

The OWA aggregation is obviously a piece wise linear function since it
remains linear within every area of the fixed order of arguments. If weights vi
are strictly decreasing and positive, i.e. v1 > v2 > · · · > vm−1 > vm > 0, then
each optimal solution of the OWA problem (22) is a fair solution of (1).

While equal weights define the linear aggregation, several decreasing se-
quences of weights lead to various strictly Schur-concave and strictly monotonic
aggregation functions. Thus, the monotonic OWA aggregations provide a family
of piece wise linear aggregations filling out the space between the piece wise
linear aggregation functions (4) and (5) as shown in Fig. 3.
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Actually, formulas (21) and (17) allow us to formulate any monotonic (not
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necessarily strictly) OWA problem (22) as the following LP extension of the
original multiple criteria problem:

max
m∑

k=1

wkηk (23)

subject to x ∈ Q

ηk = ktk −
m∑

i=1

dik for k = 1, . . . ,m (24)

tk − dik ¬ fi(x), dik  0 for i, k = 1, . . . ,m (25)

where wm = vm and wk = vk − vk+1 for k = 1, . . . ,m− 1.
When differences among weights tend to infinity, the OWA aggregation

approximates the lexicographic ranking of the ordered outcome vectors [13]. That
means, as the limiting case of the OWA problem (22), we get the lexicographic
problem:

lexmax {Θ(f(x)) : x ∈ Q} (26)

which represents the lexicographic maximin ordering approach to the original
problem (1). Problem (26) is a regularization of the standard maximin optimi-
zation (5), but in the former, in addition to the worst outcome, we maximize
also the second worst outcome (provided that the smallest one remains as large
as possible), maximize the third worst (provided that the two smallest remain as
large as possible), and so on. Due to (14), the MMF problem (26) is equivalent
to the problem:

lexmax {Θ̄(f(x)) : x ∈ Q}
which leads us to a standard lexicographic optimization with predefined linear
criteria defined according to (17).

Moreover, in the case of LP models, every fair solution can be identi-
fied as an optimal solution to some OWA problem with appropriate monotonic
weights [6] but such a search process is usually difficult to control. Better con-
trollability and the complete parameterization of nondominated solutions even
for non-convex, discrete problems can be achieved with the direct use of the
reference point methodology introduced by Wierzbicki [20] and later extended
leading to efficient implementations of the so-called aspiration/reservation based
decision support (ARBDS) approach with many successful applications [8]. The
ARBDS approach is an interactive technique allowing the DM to specify the
requirements in terms of aspiration and reservation levels, i.e., by introducing
acceptable and required values for several criteria. Depending on the specified
aspiration and reservation levels, a special scalarizing achievement function is
built which may be directly interpreted as expressing utility to be maximized.
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Maximization of the scalarizing achievement function generates an efficient so-
lution to the multiple criteria problem. The solution is accepted by the DM or
some modifications of the aspiration and reservation levels are introduced to con-
tinue the search for a better solution. The ARBDS approach provides a complete
parameterization of the efficient set to multi-criteria optimization. Hence, when
applying the ARBDS methodology to the ordered cumulated criteria in (15), one
may generate all (fairly) equitably efficient solutions of the original problem (1).

While building the scalarizing achievement function the following proper-
ties of the preference model are assumed. First of all, for any individual outcome
ηk more is preferred to less (maximization). To meet this requirement the func-
tion must be strictly increasing with respect to each outcome. Second, a solution
with all individual outcomes ηk satisfying the corresponding reservation levels
is preferred to any solution with at least one individual outcome worse (smal-
ler) than its reservation level. Next, provided that all the reservation levels are
satisfied, a solution with all individual outcomes ηk equal to the corresponding
aspiration levels is preferred to any solution with at least one individual outcome
worse (smaller) than its aspiration level. That means, the scalarizing achievement
function maximization must enforce reaching the reservation levels prior to fur-
ther improving of criteria. In other words, the reservation levels represent some
soft lower bounds on the maximized criteria. When all these lower bounds are
satisfied, then the optimization process attempts to reach the aspiration levels.

The generic scalarizing achievement function takes the following form [20]:

σ(η) = min
k=1,...,m

{σk(ηk)}+ ε
m∑

k=1

σk(ηk) (27)

where ε is an arbitrary small positive number and σk, for k = 1, . . . ,m, are
the partial achievement functions measuring actual achievement of the individual
outcome ηk with respect to the corresponding aspiration and reservation levels (ηak
and ηrk, respectively). Thus the scalarizing achievement function is, essentially,
defined by the worst partial (individual) achievement but additionally regularized
with the sum of all partial achievements. The regularization term is introduced
only to guarantee the solution efficiency in the case when the maximization of
the main term (the worst partial achievement) results in a non-unique optimal
solution.

The partial achievement function σk can be interpreted as a measure of
the DM’s satisfaction with the current value (outcome) of the k-th criterion. It is
a strictly increasing function of outcome ηk with value σk = 1 if ηk = ηak , and
σk = 0 for ηk = ηrk. Thus the partial achievement functions map the outcomes
values onto a normalized scale of the DM’s satisfaction. Various functions can
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be built meeting those requirements [21]. We use the piece wise linear partial
achievement function introduced in [12]. It is given by:

σk(ηk) =





γ(ηk − ηrk)/(ηak − ηrk), for ηk ¬ ηrk
(ηk − ηrk)/(ηak − ηrk), for ηrk < ηk < ηak
β(ηk − ηak)/(ηak − ηrk) + 1, for ηk  ηak

(28)

where β and γ are arbitrarily defined parameters satisfying 0 < β < 1 < γ. This
partial achievement function is strictly increasing and concave which guarantees
its LP computability with respect to outcomes ηk.

Recall that in our model outcomes ηk represent cumulative ordered outco-
mes, i.e. ηk =

∑k
i=1 θi(y). Hence, the reference vectors (aspiration and reserva-

tion) represent, in fact, some reference distributions of outcomes. Moreover, due
to the cumulation of outcomes, while considering equal outcomes φ as the refe-
rence (aspiration or reservation) distribution, one needs to set the corresponding
levels as ηk = kφ. Certainly, one may specify any desired reference distribution
in terms of the ordered values of the outcomes (quantiles in the probability langu-
age) φ1 ¬ φ2 ¬ . . . ¬ φm and cumulating them automatically get the reference
values for the outcomes ηk representing the cumulated ordered values. However,
such rich modeling technique may be too complicated to control effectively the
search for a compromise solution.

Although defined with simple linear constraints the auxiliary conditions
(17) introduces m2 additional variables and inequalities into the original model.
This may cause a serious computational burden for real-life problems containing
numerous outcomes. In order to reduce the problem size one may attempt the
restrict the number of criteria in the problem (15).

Let us consider a sequence of indices K = {k1, k2, . . . , kq}, where 1 =
k1 < k2 < . . . < kq−1 < kq = m, and the corresponding restricted form of the
multiple criteria model (15):

max {(ηk1 , ηk2 , . . . , ηkq) : ηk = θ̄k(f(x)) for k ∈ K, x ∈ Q} (29)

with only q < m criteria. Following Proposition 2, multiple criteria model (15)
allows us to generate any fairly efficient solution of problem (1). Reducing the
number of criteria we restrict these opportunities. Nevertheless, one may still
generate reasonable compromise solutions. First of all the following assertion is
valid.

Theorem 1 If xo is an efficient solution of the restricted problem (29), then it is
an efficient (Pareto-optimal) solution of the multiple criteria problem (1) and it
can be fairly dominated only by another efficient solution x′ of (29) with exactly
the same values of criteria: θ̄k(f(x′)) = θ̄k(f(xo)) for all k ∈ K.
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Proof Suppose, there exists x′ ∈ Q which dominates xo. This means, y′i =
fi(x′)  yoi = fi(x0) for all i ∈ I with at least one inequality strict. Hen-
ce, θ̄k(y′)  θ̄k(yo) for all k ∈ K and θ̄kq(y

′) > θ̄kq(y
o) which contradicts

efficiency of xo within the restricted problem (29).
Suppose now that x′ ∈ Q fairly dominates xo. Due to Proposition 2, this

means that θ̄i(y′)  θ̄i(yo) for all i ∈ I with at least one inequality strict.
Hence, θ̄k(y′)  θ̄k(yo) for all k ∈ K and any strict inequality would contradict
efficiency of yo within the restricted problem (29). Thus, θ̄k(y′) = θ̄k(yo) for
all k ∈ K which completes the proof.

It follows from Theorem 1 that while restricting the number of criteria in
the multiple criteria model (15) we can essentially still expect reasonably fair
efficient solution and only unfairness may be related to the distribution of flows
within classes of skipped criteria. In other words, we have guaranteed some rough
fairness while it can be possibly improved by redistribution of flows within the
intervals (θkj (y), θkj+1(y)] for j = 1, 2, . . . , q−1. Since the fairness preferences
are usually very sensitive for the smallest flows, one may introduce a grid of
criteria 1 = k1 < k2 < . . . < kq−1 < kq = m which is dense for smaller indices
while sparser for lager indices and expect solution offering some reasonable
compromise between fairness and throughput maximization.

CONCLUSIONS

Due to additional requirements on the utility functions the fairly efficient
solutions represent a specific subset of all the Pareto-optimal solutions. However,
they can be expressed as Pareto-optimal solutions to the problem with modified
(ordered and cumulated) criteria. Hence, the simplest way to model a large gamut
of fairly efficient decisions may depend on the use some combinations of the orde-
red criteria, i.e. the so-called Ordered Weighted Averaging (OWA) aggreagtions.
If the weights are strictly decreasing each optimal solution corresponding to the
OWA maximization is a fair (fairly efficient) solution. Moreover, in the case of LP
models every fairly efficient solution can be identified as an OWA optimal solu-
tion with appropriate strictly monotonic weights. Several decreasing sequences of
weights provide us with various aggregations. Better controllability and the com-
plete parameterization of nondominated solutions even for non-convex, discrete
problems can be achieved with the use of the reference point methodology.
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