
Jaroslav Raḿık
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INTRODUCTION

The problem of duality has been investigated since the early stage of fuzzy
linear programming (FLP), see [3; 9; 11; 12]. In this paper we first introduce
a broad class of fuzzy multiple objective linear programming problems (FMOLP
problems) and define the concepts of β-feasible and (α, β)-maximal and minimal
solutions of FMOLP problems. The class of classical MOLP problems can be
embedded into the class of FMOLP ones, moreover, for FMOLP problems we
define the concept of duality and prove the weak and strong duality theorems
– generalizations of the classical ones. The results are compared to the existing
literature [6; 7; 13; 8]. To illustrate the introduced concepts and results we present
and discuss a simple numerical example.

1. PRELIMINARIES

Let X be a nonempty topological space. By F(X) we denote the set of all
fuzzy subsets A of X , where every fuzzy subset A of X is uniquely determined
by the membership function µA : X → [0, 1], and [0, 1] ⊂ R is a unit interval, R
is the Euclidean space of real numbers. We say that the fuzzy subset A is crisp
if µA is a characteristic function of A, i.e. µA : X → {0, 1}. It is clear that the
set of all subsets of X , P(X), can be isomorphically embedded into F(X).

Let
[A]α = {x ∈ X|µA(x) ­ α} for α ∈ (0, 1],
[A]0 = cl{x ∈ X|µA(x) > 0} .

where clB means a topological closure of B, B ⊂ X . For α ∈ [0, 1], [A]α are
called α-cuts. [A]0 is usually called a support of A. A fuzzy subset A of X is
closed, bounded, compact or convex, if [A]α are closed, bounded, compact or
convex subsets of X for every α ∈ [0, 1], respectively. By the strict α-cut we
denote (A)α = {x ∈ X|µA(x) > α}. Moreover, A is said to be normal if [A]1is
nonempty. It is a well known fact that a fuzzy subset A of X is convex if and
only if its membership function µA is quasiconcave on X , see e.g. [6] and also
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Definition 4 below.
In the set theory, a binary relation P on X is a subset of the Cartesian

product X ×X , that is, P ⊂ X ×X . Here, a valued relation P on X is a fuzzy
subset of X ×X . Evidently, any binary relation P on X can be isomorphically
embedded into the class of valued relations on X by its characteristic function
(i.e. membership function) µP . In this sense, any binary relation is valued.

Definition 1 A fuzzy subset P̃ of F(X) × F(X) is called a fuzzy relation on
X , i.e. P̃ ∈ F(F(X)×F(X)).

Definition 2 Let P be a valued relation on X . A fuzzy relation Q̃ on X is called
a fuzzy extension of relation P , if for each x, y ∈ X , it holds

µQ̃(x, y) = µP (x, y) . (1)

A fuzzy relations on X will be denoted by the tilde, e.g. P̃ .
From now on, throughout this paper we shall consider X = Rn, where

Rn is the n-dimensional Euclidean space, particularly X = R1 = R.
In the following definition we first present possibility and necessity indices

introduced originally in [2] and then define a suitable class of fuzzy numbers
called here fuzzy quantities. Then, we shall derive some basic properties of this
class.

Definition 3 Let A,B be fuzzy sets with the membership functions µA : R →
[0, 1], µB : R→ [0, 1], respectively. Let

Pos(A � B) = sup{min(µA (x) , µB (y))|x ¬ y, x, y ∈ R}, (2)

Nec(A ≺ B) = inf{max(1− µA (x) , 1− µB (y))|x > y, x, y ∈ R}. (3)

Here (2) is called the possibility index, (3) is called the necessity index.

The possibility and necessity index has been originally introduced in [2],
where also mathematical analysis and interpretation of the one has been discussed.
The indices (2), (3) can be understood as special fuzzy relations on R introduced
by Definition 1. We write alternatively

Pos(A � B) = µPos (A,B) = (A �Pos B), (4)

Nec(A ≺ B) = µNec (A,B) = (A ≺Nec B), (5)

where µΩ : F(R) × F(R) → [0, 1],Ω ∈ {Pos,Nec} are the membership
functions of the fuzzy relations on R. By A �Pos B or A �Nec B we mean
B �Pos A or B ≺Nec A, respectively.
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It can be easily verified that all possibility and necessity indices are fuzzy
extensions of the classical binary relation ¬ according to Definition 2.

2. FUZZY QUANTITIES

To define a suitable class of fuzzy parameters of FMOLP problems we
start with definitions of particular membership functions.

Definition 4 Let A be a normal and compact fuzzy subset of R with the mem-
bership function µA. A is called the fuzzy quantity if there exist a, b, c, d ∈ R,
−∞ < a ¬ b ¬ c ¬ d < +∞, such that

µA(t) = 0 if t < a or t > d,
µA(t) is strictly increasing if a ¬ t ¬ b,

µA(t) = 1 if b ¬ t ¬ c,
µA(t) is strictly decreasing if c ¬ t ¬ d.

The set of all fuzzy quantities is denoted by F0(R).

By the definition, F0(R) contains well known classes of fuzzy numbers:
crisp (real) numbers, crisp intervals, triangular fuzzy numbers, trapezoidal and
bell-shaped fuzzy numbers etc. However, F0(R) does not contain fuzzy sets with
”step-like” membership functions. The proof of the following proposition is easy
and can be found also in [5], or [4].

Proposition 5 Let A,B ∈ F(R), α ∈ [0, 1]. Then
(i) µPos(A,B) ­ α iff inf[A]α ¬ sup[B]α,
(ii) µNec(A,B) ­ α iff sup(A)1−α ¬ inf(B)1−α.

Proposition 6 Let A ∈ F0(R) be a fuzzy quantity, α ∈ [0, 1]. Then

inf[A]α = inf(A)α, sup[A]α = sup(A)α. (6)

Corollary 7 Let A,B ∈ F0(R) be fuzzy quantities α ∈ (0, 1). Then combining
Propositions 5 and 6 we obtain (i),(ii) as follows

µPos(A,B) ­ α iff inf[A]α ¬ sup[B]α, (7)

µNec(A,B) ­ α iff sup[A]1−α ¬ inf[B]1−α. (8)

Corollary 8 Let A,B ∈ F0(R) be fuzzy quantities α ∈ (0, 1). Then from (7)
and (8) we obtain the following formulae

µPos(B,A) < α iff sup[A]α < inf[B]α, (9)

µNec(B,A) < α iff inf[A]1−α < sup[B]1−α. (10)
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Corollary 8 will be useful in deriving properties of α-efficient solutions of
fuzzy linear problems we deal in the next section.

3. MULTIPLE OBJECTIVE LINEAR PROGRAMMING PRO-
BLEM WITH FUZZY COEFFICIENTS

In this section we introduce a fuzzy multiple objective linear programming
problem (FMOLP problem) where coefficients are fuzzy quantities.

Let K = {1, 2, ..., k},M = {1, 2, ...,m}, N = {1, 2, ..., n}, k,m, n be
positive integers. The multiple objective linear programming problem (MOLP
problem) is a problem

maximize zq = cq1x1 + · · ·+ cqnxn , q ∈ K,
subject to

ai1x1 + · · ·+ ainxn ¬ bi, i ∈M,
xj ­ 0, j ∈ N .

(11)

In contrast to the classical MOLP problem, here, the coefficients cqj , aij
and bi will be fuzzy quantities. The fuzzy quantities will be denoted by symbols
with the tilde above. Let µc̃qj : R → [0, 1], µãij : R → [0, 1] and µb̃i : R →
[0, 1], q ∈ K, i ∈ M, j ∈ N , be membership functions of the fuzzy quantities
c̃qj , ãij and b̃i, respectively. Applying the Extension principle we can easily prove
the following property.

Proposition 9 Let c̃qj , ãij ∈ F0(R), xj ­ 0, q ∈ K, i ∈ M, j ∈ N . Then
the fuzzy sets c̃q1x1+̃· · ·+̃c̃qnxn, ãi1x1+̃· · ·+̃ãinxn defined by the Extension
principle are again fuzzy quantities.

Let P̃ be a fuzzy relation - fuzzy extension of the usual binary relation
¬ on R.

The fuzzy multiple objective linear programming problem (FMOLP pro-
blem) associated with a standard MOLP problem (11) is denoted as

”maximize” z̃q = c̃q1x1+̃· · ·+̃c̃qnxn , q ∈ K,
”subject to”

(ãi1x1+̃· · ·+̃ãinxn) P̃ b̃i, i ∈M,
xj ­ 0, j ∈ N .

(12)

In (12) the value ãi1x1+̃· · ·+̃ãinxn ∈ F0(R) is “compared” with a fuzzy quantity
b̃i ∈ F0(R) by some fuzzy relation P̃ . The ”maximization” of the objective
functions denoted by ”maximize” z̃q = c̃q1x1+̃· · ·+̃c̃qnxn (in quotation marks)
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will be investigated later on. Now, we shall deal with the constraints of FMOLP
problem (12), see also [5; 55; 8].

4. FEASIBLE REGION, β-FEASIBLE SOLUTION

Definition 10 Let µãij : R → [0, 1] and µb̃i : R → [0, 1], i ∈ M, j ∈ N , be
membership functions of fuzzy quantities ãij and b̃i, respectively. Let P̃ be a
fuzzy extension of a binary relation ¬ on R.
A fuzzy set X̃ , whose membership function µX̃ is defined for all x ∈ Rn by

µX̃(x) =





min{µP̃ (ã11x1+̃· · ·+̃ã1nxn, b̃1), · · ·, µP̃ (ãm1x1+̃· · ·+̃ãmnxn, b̃m)}
if xj ­ 0 for all j ∈ N ,

0 otherwise,
(13)

is called the fuzzy set of feasible region or shortly feasible region of the FMOLP
problem (12).
For β ∈ (0, 1], a vector x ∈ [X̃]β is called the β-feasible solution of the FMOLP
problem (12).

Notice that the feasible region X̃ of a FMOLP problem is a fuzzy set.
On the other hand, β-feasible solution is a vector belonging to the β-cut of the
feasible region X̃ . It is not difficult to show, that if all coefficients ãij and b̃i are
crisp fuzzy quantities, i.e. they are isomorfic to the corresponding real numbers,
then the fuzzy feasible region is isomorfic to the set of all feasible solutions of
the corresponding classical LP problem, see [5], or [6].

Let d̃ be a fuzzy quantity, i.e. d̃ ∈ F0(R), β ∈ [0, 1]. We shall use the
following notation:

d̃L(β) = inf
{
t|t ∈ [d̃]β

}
= inf[d̃]β , (14)

d̃R(β) = sup
{
t|t ∈ [d̃]β

}
= sup[d̃]β .

Proposition 11 Let ãij and b̃i be fuzzy quantities and let xj ­ 0 for all i ∈M,
j ∈ N , let β ∈ (0, 1). Moreover, let �Pos, ≺Nec be fuzzy extensions of the
binary relation ¬ defined by (4) and (5). Then for i ∈M it holds
(i) µ�Pos(ãi1x1+̃· · ·+̃ãinxn, b̃i) ­ β if and only if

∑

j∈N
ãL
ij(β)xj ¬ b̃Ri (β), (15)
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(ii) µ≺Nec(ãi1x1+̃· · ·+̃ãinxn, b̃i) ­ β if and only if
∑

j∈N
ãR
ij(1− β)xj ¬ b̃Li (1− β). (16)

Proof The proof follows directly from notation 14, Corollary 7, (7), and
(8).

Corollary 12 (i) Let P̃ =�Pos. A vector x = (x1, · · ·, xn) is a β-feasible solu-
tion of the FMOLP problem (12) if and only if it is a nonnegative solution of
the system of inequalities

∑

j∈N
ãL
ij(β)xj ¬ b̃Ri (β), i ∈M.

(ii) Let P̃ =≺Nec. A vector x = (x1, · · ·, xn) is a β-feasible solution of the
FMOLP problem (12) if and only if it is a nonnegative solution of the system of
inequalities ∑

j∈N
ãR
ij(1− β)xj ¬ b̃Li (1− β), i ∈M.

5. MAXIMIZING OBJECTIVE FUNCTIONS

Now, we return to the problem of ”maximization” of objective functions
z̃q = c̃q1x1+̃· · ·+̃c̃qnxn in (12). We look for the ”best” fuzzy quantities z̃q with
respect to the given fuzzy constraints, or, in other words, with respect to the
fuzzy set of feasible region of (12).

Definition 13 Let P̃ be a fuzzy relation on R, let α ∈ (0, 1].
Let ã, b̃ be fuzzy quantities, we write

ã P̃α b̃, if µP̃ (ã, b̃) ­ α. (17)

and call P̃α the α-relation on R associated to P̃ . We also write

ã P̃ ∗α b̃, if ãP̃αb̃ and µP̃ (b̃, ã) < α, (18)

and call P̃ ∗α the strict α-relation on R associated to P̃ .

Notice that P̃α and P̃ ∗α are binary relations on the set of fuzzy quantities
F0(R) being constructed from a fuzzy relation P̃ on the level α ∈ (0, 1]. P̃ ∗α is
a strict relation to the relation P̃α.
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If ã and b̃ are crisp fuzzy numbers corresponding to real numbers a and
b, respectively, and P̃ is a fuzzy extension of relation ¬, then aP̃αb if and only
if a ¬ b. Then for α ∈ (0, 1), aP̃ ∗α b if and only if a < b.

The following proposition is a simple consequence of the above results
applied to particular fuzzy relations P̃ = �Pos and P̃ = ≺Nec, see [5]

Proposition 14 Let ã and b̃ be fuzzy quantities, α ∈ (0, 1].
(i) Let P̃ = �Pos be a fuzzy relation on R defined by (4). Then

ã P̃α b̃ iff ãL(α) ¬ b̃R(α),
ã P̃ ∗α b̃ iff ãR(α) < b̃L(α).

(19)

(ii) Let P̃ = ≺Nec be a fuzzy relation on R defined by (5). Then

ã P̃α b̃ iff ãR(1− α) ¬ b̃L(1− α),
ã P̃ ∗α b̃ iff ãR(1− α) ¬ b̃L(1− α) and

ãL(1− α) < b̃R(1− α).
(20)

Proof The proof follows from Definition 13, (14), Corollary 7 and Corol-
lary 8 applied to fuzzy relations P̃ = �Pos and P̃ = ≺Nec.

An interpretation of the α-relation and strict α-relation on R associated
to P̃ when comparing fuzzy quantities ã and b̃ is as follows. For a given level
of satisfaction α ∈ (0, 1], a fuzzy quantity ã ”is not better than” fuzzy quantity
b̃ with respect to fuzzy relation �Pos if the smallest value of [ã]α is less or
equal to the largest value of [b̃]α. In a sense, it is the optimistic approach to
the comparison of fuzzy quantities ã and b̃ which means that among values of
[ã]α and [b̃]α there exists a value a of [ã]α and value b of [b̃]α such that a ¬ b.
Moreover, fuzzy quantity ã ”is worse than” fuzzy quantity b̃ with respect to fuzzy
relation �Pos if the largest value of [ã]α is strictly less than the smallest value
of [b̃]α.

On the other hand, a fuzzy quantity ã ”is not better than” fuzzy quantity b̃
with respect to fuzzy relation ≺Nec if the largest value of [ã]1−α is less or equal
to the smallest value of [b̃]1−α. This could be called the pessimistic approach to
the comparison of fuzzy quantities. The meaning of that is as follows: among
all values a of [ã]1−α and b of [b̃]1−α it holds a ¬ b. Moreover, fuzzy quantity
ã ”is worse than” fuzzy quantity b̃ with respect to fuzzy relation ≺Nec if ã ”is
not better than” b̃ and the smallest value of [ã]1−α is strictly less than the largest
value of [b̃]1−α.

Now, modifying the well known concept of efficient solution in multi-
criteria optimization we define ”maximization” (or ”minimization”) of the objec-
tive functions of FMOLP problem (12). We shall consider a fuzzy relation P̃ on
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R being a fuzzy extension of the usual binary relation ¬ on R. Here, P̃ is used
both for the objective function, and for the constraints. However, we allow for
independent, i.e. different satisfaction levels: α 6= β,where α is considered for the
objective functions and β for the constraints, α, β ∈ (0, 1]. For our convenience
we denote the value of the objective functions of (12) alternatively as follows
z̃q = c̃Tq x = c̃q1x1+̃· · ·+̃c̃qnxn =

∑
j∈N c̃qjxj .

Definition 15 Let c̃qj , ãij and b̃i, q ∈ K, i ∈M, j ∈ N , be fuzzy quantities on
R. Let P̃ be a fuzzy relation on R, being also a fuzzy extension of the usual
binary relation ¬ on R, let α, β ∈ (0, 1]. A β-feasible solution of (12) x ∈ [X̃]β
is called the (α, β)-maximal solution of (12) if there is no x′ ∈ [X̃]β , x 6= x′,
such that c̃Tq xP̃αc̃

T
q x
′ for all q ∈ K and c̃Tq xP̃

∗
α c̃
T
q x
′ for at least one q ∈ K. Here,

P̃ ∗α is the strict α-relation on R associated to P̃ .

Notice that any (α, β)-maximal solution of the FLP problem is a β-feasible
solution of the FMOLP problem with some additional property concerning the
values of the objective functions. Clearly, if all coefficients of FMOLP problem
(12) are crisp fuzzy quantities, then (α, β)-maximal solution of the FLP problem
is isomorphic to the classical Pareto-optimal solution of the corresponding LP
problem (11). Comparing to the approach of satisficing solution, see [5; 6], we
do not need any exogenously given additional fuzzy goal in order to optimize the
objective functions.

In the following lemmas and corollary we show some important properties
of (α, β)-maximal solutions of (12) in case of special fuzzy extensions of the
binary relation ¬ , particularly �Pos, and ≺Nec. The corresponding proofs are
straightforward.

Lemma 16 Let c̃qj , q ∈ K, j ∈ N , be fuzzy quantities on R and let α ∈ (0, 1).
Let P̃ = �Pos be a fuzzy relation on R defined by (4) and let P̃ ∗α be the strict
α-relation on R associated to P̃ . Nonnegative vectors x = (x1, · · ·, xn), x′ =
(x′1, · · ·, x′n) satisfy

c̃Tq xP̃
∗
α c̃
T
q x
′

if and only if ∑

j∈N
c̃R
qj(α)xj <

∑

j∈N
c̃L
qj(α)x′j . (21)

Corollary 17 If (21) is satisfied then
∑

j∈N
c̃L
qj(α)xj <

∑

j∈N
c̃L
qj(α)x′j , (22)
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∑

j∈N
c̃R
qj(α)xj <

∑

j∈N
c̃R
qj(α)x′j . (23)

Lemma 18 Let c̃qj , q ∈ K, j ∈ N , be fuzzy quantities on R and let α ∈ (0, 1).
Let P̃ = ≺Nec be a fuzzy relation on R defined by (5) and let P̃ ∗α be the strict
α-relation on R associated to P̃ . Nonnegative vectors x = (x1, · · ·, xn), x′ =
(x′1, · · ·, x′n) satisfy

c̃Tq xP̃
∗
α c̃
T
q x
′

if and only if ∑

j∈N
c̃R
qj(1− α)xj ¬

∑

j∈N
c̃L
qj(1− α)x′j , (24)

∑

j∈N
c̃L
qj(1− α)xj <

∑

j∈N
c̃R
qj(1− α)x′j . (25)

The following two propositions give some sufficient conditions for x∗to be
an (α, β)-maximal solution of FMOLP problem (12).

Proposition 19 Let c̃j , ãij and b̃i be fuzzy quantities for all q ∈ K, i ∈ M and
j ∈ N , let α, β ∈ (0, 1).
Let X̃ be a feasible region of FMOLP problem (12) with P̃ =�Pos. Let cqj be
such that c̃L

qj(α) ¬ cqj ¬ c̃R
qj(α) for all q ∈ K, j ∈ N . If x∗ = (x∗1, · · ·, x∗n) is a

Pareto-optimal solution of the MOLP problem

maximize zq =
∑
j∈N cqjxj , q ∈ K,

subject to
∑
j∈N ãL

ij(β)xj ¬ b̃Ri (β), i ∈M,

xj ­ 0, j ∈ N ,
(26)

then x∗ is an (α, β)-maximal solution of FMOLP problem (12).

The next proposition is a modification of Proposition 19 for P̃ =≺Nec.
Proposition 20 Let c̃j , ãij and b̃i be fuzzy quantities for all q ∈ K, i ∈ M and
j ∈ N , α, β ∈ (0, 1). Let X̃ be a feasible region of FMOLP problem (12) with
P̃ =≺Nec. Let cqj be such that c̃L

qj(α) ¬ cqj ¬ c̃R
qj(α) for all q ∈ K, j ∈ N . If

x∗ = (x∗1, · · ·, x∗n) is a Pareto-optimal solution of the MOLP problem

maximize z =
∑
j∈N cqjxj , q ∈ K,

subject to
∑
j∈N ãR

ij(β)xj ¬ b̃Li (β), i ∈M,

xj ­ 0, j ∈ N ,
(27)

then x∗ is an (1− α, 1− β)-maximal solution of FMOLP problem (12).
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6. DUAL PROBLEM

In this section we shall investigate the well known concept of duality
in LP for FMOLP problems based on possibility and necessity fuzzy relations
�Pos, and ≺Nec. Similar approach for single objective FLP problems can be
found in [8], some results for different concept of ”optimal” solution of FLP
based on satisficing solutions, can be found in [5] and [4]. Here, we derive some
innovation of weak and strong duality theorems which extend the known results
for LP problems.

Consider the following FMOLP problem

(P)

”maximize” z̃q = c̃q1x1+̃ · · · +̃c̃qnxn, q ∈ K,
”subject to” (ãi1x1+̃ · · · +̃ãinxn) P̃ b̃i, i ∈M,

xj ­ 0, j ∈ N ,
(28)

where c̃qj , ãij and b̃i are fuzzy quantities with membership functions µc̃jq : R→
[0, 1], µãij : R→ [0, 1] and µb̃i : R→ [0, 1], q ∈ K, i ∈M, j ∈ N .

FMOLP problem (28) will be called the primal FMOLP problem (P). The
feasible region of (P) is introduced by Definition 10 and (α, β)-maximal solution
is defined by Definition 15.

The dual FMOLP problem (D) can be formulated as follows

(D)

”minimize” w̃ = b̃1y1+̃ · · · +̃b̃mym
”subject to” c̃qj Q̃(ã1jy1+̃ · · · +̃ãmjym), q ∈ K, j ∈ N ,

yi ­ 0, i ∈M.

(29)

Here, either P̃ =�Pos, Q̃ =≺Nec, or P̃ =≺Nec, Q̃ =�Pos. In problem (P),
”maximization” is considered with respect to fuzzy relation P̃ , in problem (D),
”minimization” is considered with respect to fuzzy relation Q̃. Notice that the dual
problem (D) is a single criterion FLP problem. The pair of FMOLP problems (P)
and (D), i.e. (28) and (29), is called the primal - dual pair of FMOLP problems.
Now, we define a concept of feasible region of (D), that is, a modification of
Definition 10.

Definition 21 Let µãij : R → [0, 1] and µc̃qj : R → [0, 1], q ∈ K, i ∈ M,
j ∈ N , be membership functions of fuzzy quantities ãij and c̃qj , respectively.
Let P̃ be a fuzzy extension of a binary relation P on R.
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A fuzzy set Ỹ , whose membership function µỸ is defined for all y ∈ Rm by

µỸ (y) =





min{µP̃ (c̃11, ã11y1+̃· · ·+̃ãm1ym), · · ·, µP̃ (c̃kn, ã1ny1+̃· · ·+̃ãmnym)}
if yi ­ 0 for all i ∈M,

0 otherwise,
(30)

is called a fuzzy set of feasible region or shortly feasible region of dual FMOLP
problem (29).
For β ∈ (0, 1], a vector y ∈ [Ỹ ]β is called the β-feasible solution of dual FMOLP
problem (29).

Now, we define an ”optimal solution” of the dual FMOLP problem (D).

Definition 22 Let c̃qj , ãij and b̃i, q ∈ K, i ∈ M, j ∈ N , be fuzzy quantities on
R. Let Q̃ be a fuzzy relation on R - fuzzy extension of the usual binary relation
¬ on R, and let α, β ∈ (0, 1]. A β-feasible solution of (29) y ∈ [Ỹ ]β is called
the (α, β)-minimal solution of (29) if there is no y′ ∈ [Ỹ ]β , y′ 6= y, such that
b̃T y′ Q̃∗α b̃T y. Here, Q̃∗α is the strict α-relation on R associated to Q̃.

Let P be the usual binary relation ¬ on R. Now, we shall investigate
FMOLP problems (28) and (29) with pairs of dual fuzzy relations in the constra-
ints, particularly, either P̃ =�Pos, Q̃ =≺Nec or P̃ =≺Nec, Q̃ =�Pos, see (4),
(5). The values of objective functions z̃q and w̃ are ”maximized ” and ”minimi-
zed”, with respect to fuzzy relation P̃ and Q̃, respectively.

The feasible region of the primal FMOLP problem (P) is denoted by X̃ ,
the feasible region of the dual FMOLP problem (D) by Ỹ . Clearly, X̃ is a fuzzy
subset of Rn, Ỹ is a fuzzy subset of Rm.

The following proposition is a useful modification of Proposition 11.

Proposition 23 Let c̃qj and ãij be fuzzy quantities and let yi ­ 0 for all
q ∈ K, i ∈ M, j ∈ N , α ∈ (0, 1). Let �Pos and ≺Nec be fuzzy extensions of
the binary relation ¬ defined by (4), (5). Then for q ∈ K, j ∈ N , it holds

(i) µ�Pos(c̃qj , ã1jy1+̃· · ·+̃ãmjym) ­ β iff
∑

i∈M
ãR
ij(β)yi ­ c̃L

qj(β), (31)

(ii) µ≺Nec(c̃qj , ã1jy1+̃· · ·+̃ãmjym) ­ β iff
∑

i∈M
ãL
ij(1− β)yi ­ c̃R

qj(1− β). (32)
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Corollary 24 (i) Let P̃ =�Pos. A vector y = (y1, · · ·, ym) is an β-feasible
solution of the FLP problem (29) if and only if it is a nonnegative solution of
the system of inequalities

∑

i∈M
ãR
ij(β)yi ­ c̃L

qj(β), q ∈ K, j ∈ N .

(ii) Let P̃ =≺Nec. A vector y = (y1, · · ·, ym) is an α-feasible solution of the
FLP problem (29) if and only if it is a nonnegative solution of the system of
inequalities ∑

i∈M
ãL
ij(1− β)yi ­ c̃R

qj(1− β), j ∈ N .

Lemma 25 Let b̃i, i ∈ M, be fuzzy quantities on R. Let P̃ = �Pos be fuzzy
relations on R defined by (4) and α ∈ (0, 1). Then y = (y1, · · ·, ym), y′ =
(y′1, · · ·, y′m) are nonnegative vectors such that b̃T y′ P̃ ∗α b̃T y, where P̃ ∗α is the
strict α-relation on R associated to P̃ , if and only if

∑

i∈M
b̃Ri (α)y′i <

∑

i∈M
b̃Li (α)yi. (33)

Corollary 26 If (??) is satisfied then
∑

i∈M
b̃Li (α)y′i <

∑

i∈M
b̃Li (α)yi, (34)

∑

i∈M
b̃Ri (α)y′i <

∑

i∈M
b̃Ri (α)yi. (35)

Lemma 27 Let b̃i, i ∈M, be fuzzy quantities on R. Let P̃ = ≺Nec be a fuzzy
relation on R defined by (4) and α ∈ (0, 1). The vectors y = (y1, · · ·, ym), y′ =
(y′1, · · ·, y′m) are nonnegative with b̃T y′ P̃ ∗α b̃T y, where P̃ ∗α is the strict α-relation
on R associated to P̃ , if and only if

∑

i∈M
b̃Ri (1− α)y′i ¬

∑

i∈M
b̃Li (1− α)yi, (36)

∑

i∈M
b̃Li (1− α)y′i <

∑

i∈M
b̃Ri (1− α)yi. (37)

The following propositions give sufficient conditions for y∗ to be an (α, β)-
minimal solution of FMOLP problem (D).
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Proposition 28 Let c̃j , ãij and b̃i be fuzzy quantities for all q ∈ K, i ∈ M
and j ∈ N , α, β ∈ (0, 1). Let Ỹ be a feasible region of FMOLP problem (29)
with P̃ =�Pos. Let bi be such that b̃Li (α) ¬ bi ¬ b̃Ri (α) for all i ∈ M. If
y∗ = (y∗1, · · ·, y∗m) is an optimal solution of the LP problem

minimize w =
∑
i∈M biyi

subject to
∑
i∈M ãR

ij(β)yi ­ c̃L
qj(β), q ∈ K, j ∈ N ,

yi ­ 0, i ∈M,

(38)

then y∗ is a (α, β)-minimal solution of FMOLP problem (D).

The following proposition is a simple and useful modification of Proposi-
tion 28.

Proposition 29 Let c̃j , ãij and b̃i be fuzzy quantities for all q ∈ K, i ∈ M
and j ∈ N , α, β ∈ (0, 1). Let X̃ be a feasible region of FMOLP problem (P)
with P̃ =≺Nec. Let bi be such that b̃Li (α) ¬ bi ¬ b̃Ri (α) for all i ∈ M. If
y∗ = (y∗1, · · ·, y∗m) is an optimal solution of the LP problem

minimize w =
∑
i∈M biyi

subject to
∑
i∈M ãL

ij(β)yi ­ c̃R
qj(β), q ∈ K, j ∈ N ,

yi ­ 0, i ∈M,

(39)

then y∗ is an (1− α, 1− β)-minimal solution of FMOLP problem (D).

7. WEAK AND STRONG DUALITY THEOREMS

Now, we focus our attention to duality theory for FMOLP problems (see
also [7; 12; 8]). In the following duality theorems we present always two ver-

sions: (i) for fuzzy relation �Pos in problem (P) and (ii) for fuzzy relation ≺Necin
problem (P). In order to prove duality results we assume that the level of satis-
faction α of the objective function is equal to the level of satisfaction β of the
constraints. Otherwise, the duality theorems in our formulation do not hold.

Moreover, we assume that each objective function is associated with a
weight wq > 0, q ∈ K, such that

∑
q∈K wq = 1, where wq may be interpreted as

a relative importance of the q-th objective function.
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Theorem 30 First Weak Duality Theorem. Let c̃qj , ãij and b̃i be fuzzy quantities,
q ∈ K, i ∈M and j ∈ N , α ∈ (0, 1).
(i) Let X̃ be a feasible region of FMOLP problem (28) with P̃ =�Pos , Ỹ be
a feasible region of FMOLP problem (29) with Q̃ =≺Nec.
If a vector x = (x1, . . . , xn) ­ 0 belongs to [X̃]α and y = (y1, . . . , ym) ­ 0
belongs to [Ỹ ]1−α, then

∑

j∈N
c̃R
qj(α)xj ¬

∑

i∈M
b̃Ri (α)yi. (40)

(ii) Let X̃ be a feasible region of FMOLP problem (28) with P̃ =≺Nec , Ỹ be
a feasible region of FMOLP problem (29) with Q̃ =�Pos.
If a vector x = (x1, . . . , xn) ­ 0 belongs to [X̃]1−α and y = (y1, . . . , ym) ­ 0
belongs to [Ỹ ]α, then

∑

j∈N
c̃L
qj(α)xj ¬

∑

i∈M
b̃Li (α)yi. (41)

Proof (i) Let q ∈ K, x ∈ [X̃]α and y ∈ [Ỹ ]1−α, xj ­ 0, yi ­ 0 for
all i ∈ M, j ∈ N . Then by Proposition 23 (ii), multiplying both sides by
nonnegative xj and summing up for j ∈ N we obtain

∑

j∈N

∑

i∈M
ãL
ij(α)yixj ­

∑

j∈N
c̃R
qj(α)xj . (42)

In a similar way, by Proposition 11 (i) we obtain
∑

j∈N

∑

i∈M
ãL
ij(α)xjyi ¬

∑

i∈M
b̃Ri (α)yi. (43)

Combining inequalities (42) and (43), we obtain
∑

j∈N
c̃R
qj(α)xj ¬

∑

j∈N

∑

i∈M
ãL
ij(α)xjyi ¬

∑

i∈M
b̃Ri (α)yi,

which is the desired result.

(ii) Let q ∈ K, x ∈ [X̃]1−α and y ∈ [Ỹ ]α, xj ­ 0, yi ­ 0 for all i ∈ M,
j ∈ N . Then by Proposition 23 (i), multiplying both sides by xj and summing
up we obtain ∑

j∈N

∑

i∈M
ãR
ij(α)yixj ­

∑

j∈N
c̃L
qj(α)xj .
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In a similar way, by Proposition 11 (ii) with α instead of 1− α we obtain
∑

j∈N

∑

i∈M
ãR
ij(α)xjyi ¬

∑

i∈M
b̃Li (α)yi.

Combining the last two inequalities, we obtain
∑

j∈N
c̃L
qj(α)xj ¬

∑

j∈N

∑

i∈M
ãR
ij(α)xjyi ¬

∑

i∈M
b̃Li (α)yi.

Corollary 31 Let wq > 0, for all q ∈ K, such that
∑
q∈K wq = 1.

(i) If a vector x = (x1, . . . , xn) ­ 0 belongs to [X̃]α and y = (y1, . . . , ym) ­ 0
belongs to [Ỹ ]1−α, then

∑

q∈K

∑

j∈N
wq c̃

R
qj(α)xj ¬

∑

i∈M
b̃Ri (α)yi. (44)

(ii) If a vector x = (x1, . . . , xn) ­ 0 belongs to [X̃]!−α and y = (y1, . . . , ym) ­ 0
belongs to [Ỹ ]α, then

∑

q∈K

∑

j∈N
wq c̃

L
qj(α)xj ¬

∑

i∈M
b̃Li (α)yi. (45)

Theorem 32 Second Weak Duality Theorem. Let c̃qj , ãij and b̃i be fuzzy quan-
tities for all q ∈ K, i ∈ M and j ∈ N , α ∈ (0, 1), moreover, wq > 0, q ∈ K,
such that

∑
q∈K wq = 1.

(i) Let X̃ be a feasible region of FMOLP problem (28) with P̃ =�Pos, Ỹ be a
feasible region of FMOLP problem (29) with Q̃ =≺Nec.
If for some x = (x1, ..., xn) ­ 0 belonging to [X̃]α and y = (y1, ..., ym) ­ 0
belonging to [Ỹ ]1−α it holds

∑

q∈K

∑

j∈N
wq c̃

R
qj(α)xj =

∑

i∈M
b̃Ri (α)yi, (46)

for some q ∈ K, then x is an (α, α)-maximal solution of FMOLP problem (P),
(28) and y is an (1− α, 1− α)-minimal solution of FMOLP problem (D), (29).

(ii) Let X̃ be a feasible region of FMOLP problem (28) with P̃ =≺Nec, Ỹ be
a feasible region of FMOLP problem (29) with Q̃ =�Pos.
If for some x = (x1, ..., xn) ­ 0 belonging to [X̃]1−α and y = (y1, ..., ym) ­ 0
belonging to [Ỹ ]α it holds

∑

q∈K

∑

j∈N
wq c̃

L
qj(α)xj =

∑

i∈M
b̃Li (α)yi, (47)
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for some q ∈ K, then x is an (1 − α, 1 − α)-maximal solution of FMOLP pro-
blem (P), (28) and y is an (α, α)-minimal solution of FMOLP problem (D), (29).

Proof (i) Let x ∈ [X̃]α and y ∈ [Ỹ ]1−α, xj ­ 0, yi ­ 0 for all i ∈ M,
j ∈ N . Then by Theorem 30 (i), inequality (40) is satisfied.

By equality (46), x is a Pareto-optimal solution of LP problem (26) with
β = α, zq =

∑
j∈N

cqjxj =
∑
j∈N

c̃Rqj(α)xj and y is an optimal solution of MOLP

problem (39) with β = α, w =
∑
i∈M

biyi =
∑
i∈M

b̃Ri (α)yi. By Proposition 19, x

is an (α, α)-maximal solution of FMOLP problem (P) and by Proposition 29, y
is an (1− α, 1− α)-minimal solution of FMOLP problem (D).

(ii) Let x ∈ [X̃]1−α and y ∈ [Ỹ ]α, xj ­ 0, yi ­ 0 for all i ∈ M, j ∈ N .
Then by Theorem 30 (ii), inequality (41) is satisfied.

By equality (47), x is an optimal solution of MOLP problem (27) with
β = α, zq =

∑
j∈N

cqjxj =
∑
j∈N

c̃Lqj(α)xj and y is an optimal solution of MOLP

problem (39) with β = α, w =
∑
i∈M

biyi =
∑
i∈M

b̃Li (α)yi. By Proposition 20, x is

an (1− α, 1− α)-maximal solution of FLP problem (P) and by Proposition 28,
y is an (α, α)-minimal solution of FLP problem (D).

Remarks.

1. In the crisp and single-objective case, Theorems 30 and 32 are the
standard LP Weak Duality Theorems.

2. Let α ­ 0, 5 . Then [X̃]α ⊂ [X̃]1−α, [Ỹ ]α ⊂ [Ỹ ]1−α, hence in the First
Weak Duality Theorem we can change the assumptions as follows: x ∈ [X̃]α and
y ∈ [Ỹ ]α. However, the statements of the theorem remain unchanged. The same
holds for the Second Weak Duality Theorem.

Finally, let us turn to the strong duality. Motivated by the pairs of Propo-
sitions 19, 29 and Propositions 20, 28 in Theorem 32, we consider a pair of dual
LP problems corresponding to FLP problems (28) and (29) with fuzzy relations
P̃ =�Pos, Q̃ =≺Nec, assuming α = β, particularly

(P1)
maximize zq =

∑
j∈N c̃R

qj(α)xj , q ∈ K,
subject to

∑
j∈N ãL

ij(α)xj ¬ b̃Ri (α), i ∈M,

xj ­ 0, j ∈ N ,
(48)

(D1)
minimize w =

∑
i∈M b̃Ri (α)yi

subject to
∑
i∈M ãL

ij(α)yi ­ c̃R
qj(α), q ∈ K, j ∈ N ,

yi ­ 0, i ∈M.

(49)
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Moreover, we consider a pair of dual LP problems with fuzzy relations P̃ =≺Nec,
P̃D =�Pos:

(P2)
maximize zq =

∑
j∈N c̃L

qj(α)xj , q ∈ K,
subject to

∑
j∈N ãR

ij(α)xj ¬ b̃Li (α), i ∈M,

xj ­ 0, j ∈ N ,
(50)

(D2)
minimize w =

∑
i∈M b̃Li (α)yi

subject to
∑
i∈M ãR

ij(α)yi ­ c̃L
qj(α), q ∈ K, j ∈ N ,

yi ­ 0, i ∈M.

(51)

Notice that in case of single objective problem, (P1) and (D1) are classical dual
LP problems and the same holds for (P2) and (D2).

Theorem 33 Strong Duality Theorem. Let c̃qj , ãij and b̃i be fuzzy quantities for
all q ∈ K, i ∈M and j ∈ N , let wq > 0, for all q ∈ K, such that

∑
q∈K wq = 1.

(i) Let X̃ be a feasible region of FMOLP problem (28) with P̃ =�Pos, Ỹ be a
feasible region of FMOLP problem (29) with Q̃ =≺Nec . If for some α ∈ (0, 1),
[X̃]α and [Ỹ ]1−α are nonempty, then there exists x∗- an (α, α) -maximal solution
of FMOLP problem (P), and there exists y∗ - an (1−α, 1−α)-minimal solution
of FMOLP problem (D) such that

∑

q∈K

∑

j∈N
wq c̃

R
qj(α)x∗j =

∑

i∈M
b̃Ri (α)y∗i . (52)

(ii) Let X̃ be a feasible region of FMOLP problem (28) with P̃ =≺Nec, Ỹ be a
feasible region of FMOLP problem (29) with Q̃ =�Pos. If for some α ∈ (0, 1),
[X̃]1−α and [Ỹ ]α are nonempty, then there exists x∗- an (1−α, 1−α)-maximal
solution of FLP problem (P), and y∗ - an (α ,α)-minimal solution of FLP problem
(D) such that ∑

q∈K

∑

j∈N
wq c̃

L
qj(α)x∗j =

∑

i∈M
b̃Li (α)y∗i . (53)

Proof (i) Clearly, [X̃]α is the set of all α−feasible solutions of MOLP
problem (P1) and [Ỹ ]1−α is the set of all (1 − α)−feasible solutions of MOLP
problem (D1), we assume that they are both nonempty. As (P1) and (D1) are
dual MOLP problems in the usual sense, there exists x∗ ∈ [X̃]α- a Pareto-
optimal solution of (P1), and y∗ ∈ [Ỹ ]1−α- an optimal solution of (D1), such
that (52) holds.

It remains to prove that x∗ is an (α, α)-maximal solution of FMOLP pro-
blem (28), and y∗is an (1−α, 1−α)-minimal solution of FMOLP problem (29).
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By Proposition 19, x∗ is an (α, α)-maximal solution of FLP problem (P1) and by
Proposition 29, y∗ is an (1− α, 1− α)-minimal solution of FLP problem (D1).

Part (ii) can be proven analogically using Propositions 20 and 28.

Remarks.

1. In the crisp and single-objective case, Theorem 33 is a standard LP
(Strong) Duality Theorem.

2. Let α ­ 0, 5 . Then [X̃]α ⊂ [X̃]1−α, [Ỹ ]α ⊂ [Ỹ ]1−α, hence in the
Strong Duality Theorem we can assume x ∈ [X̃]α and y ∈ [Ỹ ]α. Evidently, the
statement of the theorem remains unchanged.

3. Theorem 33 provides only the existence of the (α, α)-maximal solution
(or (1−α, 1−α)-maximal solution) of FMOLP problem (P), and (1−α, 1−α)-
minimal solution ((α, α)-minimal solution) of FMOLP problem (D) such that
(52) or (53) holds. However, the proof of the theorem gives also the method for
finding the solutions by solving (MO)LP problems (P1) and (D1).

4. The following questions remain open and can be investigated in the
future:

(1) How the theorems could be modified for more general fuzzy extensions
of ¬.

(2) Duality theorems allowing for different satisfaction levels α and β
would be interesting.

8. ILLUSTRATIVE EXAMPLE

In this section we discuss a simple illustrative example to clarify the intro-
duced concepts and results, to provide some interpretation and features of possible
applications. Last but not least, to solve the multi-objective FLP problem (P) by
the single-objective FLP problem (D).

Let two new products A and B be manufactured. The manufacturing pro-
cess is composed of two sub-processes, Processes 1 and 2. The estimated pro-
cessing resources (e.g. processing time, materials) for manufacturing a batch of
Product A for each process are the following: ã11 units for Process 1 and ã21 units
for Process 2. On the other hand, the processing resources for manufacturing a
batch of Product B for each process are as follows: ã12 units for Process 1, ã22

units at Process 2. The working resource for Process 1 is restricted by b̃1 units,
for Process 2 by b̃2 units. The ”profit” rates (1000 CZK/batch) of Products A and
B are estimated as c̃11 and c̃12, respectively. The ”utility” rates (1000 CZK/batch)
of Products A and B are estimated as c̃21 and c̃22, respectively. The weights of
the criteria are w1 = 0, 6 and w2 = 0, 4. All mentioned parameters ãij , b̃i and
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c̃qj are subjected to uncertainty and they are expressed by fuzzy quantities. We
shall investigate what quantity of Products A and B should be manufactured in
order to ”maximize” the total ”profit” and total ”utility”. For this purpose we
formulate the following FMOLP problem (primal problem)

(PE)

”maximize” z̃1 = c̃11x1+̃c̃12x2,
z̃2 = c̃21x1+̃c̃22x2

”subject to” (ã11x1+̃ã12x2) P̃ b̃1,

(ã21x1+̃ã22x2) P̃ b̃2,

x1, x2 ­ 0,

(54)

where c̃qj = (cLqj , cqj , c
R
qj), ãij = (aLij , aij , a

R
ij) and b̃i = (bLi , bi, b

R
i ) are trian-

gular fuzzy quantities (with triangular piecewise linear membership functions)
given by the triples, as usual. Here, we shall consider the following triangular
fuzzy quantities

c̃11 = (3, 4, 5), c̃12 = (2, 4, 6),
c̃21 = (2, 3, 4), c̃21 = (3, 4, 5),
ã11 = (1, 3, 5), ã12 = (1, 1, 1),
ã21 = (1, 3, 5), ã22 = (3, 3, 3),
b̃1 = (8, 11, 14), b̃2 = (11, 12, 15).

(55)

Notice that ã12 and ã22 are crisp fuzzy numbers.
The dual FLP problem to (PE) is formulated as follows

(DE)

”minimize” w̃ = b̃1y1+̃b̃2y2

”subject to” c̃11Q̃(ã11y1+̃ã21y2),

c̃12 Q̃(ã12y1+̃ã22y2),

c̃21Q̃(ã11y1+̃ã21y2),
c̃22Q̃(ã12y1+̃ã22y2),
y1, y2 ­ 0,

(56)

Here, P̃ and Q̃ is a pair of dual fuzzy relations, particularly P̃ =�Pos and
Q̃ =≺Nec, see (4), (5).

Given α, β ∈ (0, 1), α = β, by (48) and (49) we obtain the following
couple of dual problems

maximize z1 = c̃R
11(α)x1+̃c̃R

12(α)x2,
z2 = c̃R

21(α)x1+̃c̃R
22(α)x2,

subject to ãL
11(α)x1+̃ãL

12(α)x2 ¬ b̃R1 (α),
ãL

21(α)x1+̃ãL
22(α)x2 ¬ b̃R2 (α),

x1, x2 ­ 0,

(57)
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minimize w = b̃R1 (α)y1+̃b̃R2 (α)y2,
subject to ãL

11(α)y1+̃ãL
21(α)y2 ­ c̃R

11(α),
ãL

12(α)y1+̃ãL
22(α)y2 ­ c̃R

12(α),
ãL

11(α)y1+̃ãL
21(α)y2 ­ c̃R

21(α),
ãL

12(α)y1+̃ãL
22(α)y2 ­ c̃R

22(α),
y1, y2 ­ 0,

(58)

As �Pos is an ”optimistic” fuzzy relation and ≺Nec is a ”pessimistic” one, this
couple can be called ”optimistic-pessimistic” dual couple. Particularly, substitu-
ting (55) into (57), (58), we obtain

maximize z1 = (5− α)x1 + (6− 2α)x2,
z2 = (4− α)x1 + (5− α)x2,

subject to (1 + 2α)x1 + x2 ¬ 14− 3α,
(1 + α)x1 + 3x2 ¬ 15− 3α,

x1, x2 ­ 0,

(59)

minimize w = (14− 3α)y1 + (15− 3α)y2,
subject to (1 + 2α)y1 + (1 + α)y2 ­ 5− α,

y1+ 3y2 ­ 6− 2α,
(1 + 2α)y1 + (1 + α)y2 ­ 4− α,

y1+ 3y2 ­ 5− α,
y1, y2 ­ 0.

(60)

On the other hand, let P̃ =≺Nec and Q̃ =�Pos. Then by (50) and (51),
with α = β we obtain the following couple of dual problems

maximize z1 = c̃L
11(α)x1+̃c̃L

12(α)x2,
z2 = c̃L

21(α)x1+̃c̃L
22(α)x2,

subject to ãR
11(α)x1+̃ãR

12(α)x2 ¬ b̃L1 (α),
ãRL

21 (α)x1+̃ãR
22(α)x2 ¬ b̃L2 (α),

x1, x2 ­ 0,

(61)

minimize w = b̃L1 (α)y1+̃b̃L2 (α)y2,
subject to ãR

11(α)y1+̃ãR
21(α)y2 ­ c̃L

11(α),
ãR

12(α)y1+̃ãR
22(α)y2 ­ c̃L

12(α),
ãR

11(α)y1+̃ãR
21(α)y2 ­ c̃L

21(α),
ãR

12(α)y1+̃ãR
22(α)y2 ­ c̃L

22(α),
y1, y2 ­ 0,

(62)
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This couple can be called ”pessimistic-optimistic” dual couple. Again, substitu-
ting (55) into (62), we obtain

maximize z1 = (3 + α)x1 + (2 + 2α)x2,
z2 = (2 + α)x1 + (3 + α)x2,

subject to (5− 2α)x1 + x2 ¬ 8 + 3α,
(3− α)x1 + 3x2 ¬ 11 + α,

x1, x2 ­ 0,

(63)

minimize w = (8 + 3α)y1 + (11 + α)y2,
subject to (5− 2α)y1 + (3− α)y2 ­ 3 + α,

y1+ 3y2 ­ 2 + 2α,
(5− 2α)y1 + (3− α)y2 ­ 2 + α,

y1+ 3y2 ­ 3 + α,
y1, y2 ­ 0.

(64)

Let α = β = 0, 7 be an appropriate level of satisfaction (degree of satis-
faction or, necessity degree) for the objective function and for the constraints. By
Simplex method we obtain the following numerical results. The optimal solutions
of problems (59), (60), i.e. ”optimistic-pessimistic” dual couple are displayed in
Table 1.

Table 1
P̃ = �Pos Q̃ = ≺Nec
x∗1 = 4,15 y∗1 = 0,74
x∗2 = 1,95 y∗2 = 1,25
z∗ = 24,91 w∗ = 24,91

The optimal solutions of problems (63), (64), i.e. the ”pessimistic - opti-
mistic” dual couple are displayed in Table 2.

Table 2
P̃ = ≺Nec Q̃ = �Pos
x∗∗1 = 2,19 y∗∗1 = 0,39
x∗∗2 = 2,22 y∗∗2 = 1,00
z∗∗ = 15,65 w∗∗ = 15,65

As is evident from Table 1, the value z∗ = 24,91 of the optimal solution
of the ”optimistic” primal problem is greater than the value z∗∗ = 15,65 of the
optimal solution of the ”pessimistic” primal one. This result is in a correspon-
dence with our expectation. By Strong Duality Theorem x∗ = (4, 15; 1, 95) is a
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(0,7; 0,7)-maximal solution of FLP problem (PE), and y∗ =(0,74; 1,25) is a (0,3;
0,3)-minimal solution of FLP problem (DE) such that (52) holds, i.e. z∗ = w∗.
Moreover, y∗ =(0,74; 1,25) is a vector of dual (shadow) prices of the resources
b̃i at disposition. The vector y∗ is a (1−α, 1−α)-minimal solution of the ”pes-
simistic” dual problem with the meaning that the smallest value of ã1jy1+̃ã2jy2

with the degree of satisfaction at least 1−α, is less or equal to the largest value
of c̃j with the degree of satisfaction at least 1− α = 0,3.

Analogical explanation could be formulated for the other dual couple (PE)
and (DE) with P̃ =≺Nec and Q̃ =�Pos, i.e. for ”pessimistic - optimistic” dual
couple. Again by Strong Duality Theorem x∗∗ = (2,19; 2,22) is a (0,3; 0,3)-
maximal solution of FLP problem (PE), and y∗∗ = (0,39; 1,00) is a (0,7; 0,7)-
minimal solution of FLP problem (DE) such that (52) holds, i.e. z∗∗ = w∗∗ =
15,65. Here, y∗∗ =(0,39; 1,00) is a vector of dual (shadow) prices of the resources
b̃i at disposition. The vector y∗ is a (0,7; 0,7)-minimal solution of the ”optimistic”
dual problem with the meaning that the largest value of ã1jy1+̃ã2jy2 with the
degree of satisfaction at least 0,7 is at most equal to the smallest value of c̃j with
the degree of satisfaction at least 0,7.

CONCLUSION

In this paper we introduced a class of FMOLP problems and defined the
concepts of β-feasible and (α, β)-maximal and minimal solutions. Our approach
here is different to the approaches used in [5] and [6]. Particularly, in [5] and [6]
we investigated different concept of ”optimal” solution of FLP problem, namely,
the concept of satisficing solution, for the comparison of these approaches (see
[8]).

In [8], we used a similar concept of α-efficient solutions, however, it was
applied in a different way to the single objective FLP problem. Here, we pre-
sent a more detailed analysis of the MFLP problems focused on duality theory,
moreover, an illustrative example is discussed.

In [11] a problem of LP with coefficients belonging to given usual sets
have been investigated and duality results have been derived (see also [1]).

Recently, in [13], duality in FLP is investigated for a special relation used
for comparing fuzzy numbers, based on other two possibility and necessity indi-
ces, namely (2) and (3). A fuzzy relation investigated in [13] is a fuzzy extension
of the usual binary relation ¬, in the sense of Definition 2, however, it is different
to fuzzy relations �Posor ≺Nec investigated here.

It is possible to investigate duality in FLP problems even in more general
settings. There exist several ways of generalization. For instance, it is possible
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to extend the duality results to some other classes of fuzzy relations, or, to find
some necessary conditions that fuzzy relations for comparing fuzzy numbers
should satisfy in order to provide a duality result, or, eventually a duality gap.
Moreover, in [6], the concept of dual couples of t-norms and t-conorms has been
formulated and dual fuzzy relations have been defined. The role of dual relations
in the couple of dual FLP problems should be also clarified and a more general
duality theory could be derived. The other way of generalization is based on
introducing interactive fuzzy coefficients, or oblique fuzzy vectors (see e.g. [6]).
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