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O N T H E C A U C H Y E Q U A T I O N O N S P H E R E S 

R O M A N G E R AND J U S T Y N A SIKORSKA 

Abstract. We deal with a conditional functional equation 

<p(x) = v>(y) implies f(x + y) = f(x) + f(y). 

Under some assumptions imposed on function (p, the domains and ranges 
of tp and / we derive the additivity of / . As a consequence we obtain two 
Hyers-Ulam stability results related to the equation considered. 

C. Alsina and J . L. Garcia-Roig [1] considered a conditional functional 
equation 

(1) ||*|| = ||y|l implies /(* + ») = /(*)+ /(y), 

where / : X —> Y is a continuous function mapping a real inner product 
space (X, (-|-)) with dim X ^ 2 into a real topological vector space Y. They 
obtained the linearity of such a function / in the case where Y = R n . Their 
results are contained in the following two theorems. 

T H E O R E M A . Let (X, (•{•)) be a real inner product space with dim X ^ 2 
and let Y be a real linear topological space. A continuous mapping f : X —*Y 
satisfies (1) if and only if f is a continuous linear transformation. 

T H E O R E M B. A mapping f from a real inner product space (X, (•]•)) with 
dim X ^ 2 and with values in R n satisfies (1) if and only if f is additive. 

On the other hand, Gy. Szabó [3] has obtained the following 
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T H E O R E M C . Suppose that (X, || • ||) is a real normed linear space with 
dim X ^ 3 and (Y, +) is an abelian group. Then a mapping f : X —ł Y 
satisfies the conditional Cauchy equation (1) if and only if f is additive. 

The method of the proof of this nice result is by no means elementary. In 
particular, some sophisticated connectivity results on intersection of spheres 
of equal radii in normed linear spaces are involved. Moreover, the method 
spoken of requires the dimension of the space considered to be greater than 
or equal 3. 

In what follows we proceed with the study of equation (1) with the norm 
replaced by an abstract function fulfilling suitable conditions. In a natural 
way this motivates us to deal simultaneously with more general structures 
than those considered in Theorems A, B and C. Our first result reads as 
follows. 

T H E O R E M 1. Let X be a real linear space with dim X ^ 2, (Y, +) be an 
abelian group, Z be a given nonempty set and let ip : X Z be an even 
mapping such that 

(i) for any two linearly independent vectors x, y € X there exist linearly 
independent vectors u,v £ Lin {x, y) such that <p(u + v) = <p(u — v); 

(ii) ifx,yeX, ip(x + y) = <f(x - y), then (p(ax + y) = ip(ax - y) for all 
a € R; 

(iii) for all x € X and A € R+ := (0, oo) there exists a y € X such that 
cp(x + y) = <p(x - y) and (p((\ + l)x) = (p((X - l)x - 2y). 

If f : X —> y satisfies the condition 

(2) tp(x) = <p{y) implies f{x + y) = f{x) + f{y), x,y € X. 

then f is additive. 

P R O O F . From condition (2) we have /(2s) = 2/(x) for all x 6 X whereas 
the evenness of <p jointly with the equation imply the oddness of / . 

Fix arbitrarily x, y € X such that <p(x + y) = <p(x — y). From the evenness 
of ip we have <p(x + y) — <p(y — x) as well. Thus 

/(2s) = f{{x + y) + (x- y)) = f{x + y) + f(x - y), 

/(2y) = /((* + y) + (y - »)) = /(* + v) + /(y -

Summing these two equations side by side and applying the oddness of / we 
get 

f(x) + f(y) = f{x + y). 
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Consequently, we infer that 

<p(x + y) = <p(x - y) implies /(x + y) = f(x) + f(y), x,y£X. 

This is a substantial generalization of the so called isosceles orthogonal ad-
ditivity equation in normed spaces, corresponding to the case where tp = || • || 
(see e.g. R. C. James [2] and Gy. Szabó [3]). To solve such an equation we 
first show that / has to be additive on parallel arguments. Assume that 
x € X and A G R+. By condition (iii) there exists a y 6 X such that 
<p(x + y) = <p(x — y) and <p((\ + l)x) = <p((A — l)x — 2y), whence by means 
of (ii) and the oddness of / we have 

/(x + Xx) = f(x + y + Ax - y) = f(x + y) + /(Ax - y) 

= /(*) + f(y) + /(Ax) + f(-y) = /(x) + /(Ax). 

To get a similar relationship for nonpositive A's let us distinguish three cases: 
L A = 0; 
2. AG (-1,0); 
3. A 6 (-oo,- l ] . 

The case 1. is trivial. Assuming 2., on account of the previous considera­
tions, having 1 + A > 0 and —J^J; > 0, we deduce that 

/(x) = /(( l + A)x - Ax) = / ((1 + A)x + ("Y^) (1 + A)*) 

= / ( ( l + A)x)-/(Ax), 

whence 

/(x + Ax) = /(x) + /(Ax). 

Finally, assuming 3. we have — 1 — A ̂  0 and, consequently, 

/(Ax) = / ( -x + (1 + A)x) = / ( -x + (-1 - A)(-x)) 

= /(-x) + /(( l + A)x) = -f{x) + /(( l + A)x), 

whence 
/(x + Ax) = /(x) + /(Ax). 

Observe that, on account of hypothesis (ii), the relationship <p(s +1) = 
<p(s - t) implies the equality (p(as + (it) = cp(as - /3t) whenever a, /3 € R 
and s,t 6 X. 

Now, let x,y 6 X be arbitrary linearly independent vectors. On account 
of (i) there exist linearly independent vectors u, v € Lin {x,y} such that 
<p(u + v) = <p(u - v). Clearly, x and y can be represented in the form x = 
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au + /3v and y = ju + Sv with some uniquely determined real coefficients 
a, /?,7 and S. Hence 

/(* + y) = /((" + 7)« + (/? + = /((a + 7 ) « ) + /((/J + S)v) 
= /(aru) + /(7«) + /(/?«) + /(fo) 
= /(cm + /3v) + f(yu + 5u) = /(s) + /(y), 

which completes the proof. • 

E X A M P L E 1. Let (X, (•{•)) be a real inner product space with dim X ^ 2, 
Z = R and <p(x) := ||xj|, i C l . Such a function <p satisfies all the hypotheses 
of Theorem 1; therefore, we get Szabo's result from [3] in an inner product 
space, including the dimension 2. 

E X A M P L E 2. Let X, Z be real linear spaces and let A : X2 —• Z be a 
bilinear and symmetric mapping such that 

a) for every positive A and every x € X there exists a y € X fulfilling 
the conditions 

A(x, y) = 0 and A(y, y) - \A{x, x); 

b) for each two linearly independent vectors x, y G X there exist linearly 
independent vectors u, v 6 Lin {x, y} such that A(u, v) = 0. 

Then it is easy to check that a function <p : X —t Z defined by the formula 
<p(x) := A(x, x), x G X, satisfies all the requirements spoken of in Theorem 
1. 

Let Z be a nonempty set. Let us recall that a binary relation •< C Z x Z 
is termed connected provided that 

x-<y or y < x or x = y 

for all x, y € Z. 

T H E O R E M 2. Let (X, +), (Y, +) and (Z, +) be topological groups. Assume 
that (X, +) and (Y, +) are commutative, (Y, +) has no elements of order 
2 and that (Z, +) is equipped with a connected binary relation •< C Z x Z 
having the following two properties: 

(a) for every x € Z the relationship 0 < x implies that —x -< 0; 
(b) the half-lines {x € Z : x •< 0} and {x £ Z : 0 -< x} are disjoint and 

open in Z. 
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Moreover, let <p : X —»• Z be a continuous mapping satisfying the condition 

for every x,y £ X the set {t G X : <p(x +1) = <p(x — t) = <p(y)} 
^ is nonempty and connected provided that <p{x) -< <p(y). 

Then f : X Y is a solution to the conditional functional equation (2) if 
and only if f is a group homomorphism. 

P R O O F . Fix arbitrarily x, y € X with <p(x) -< <p(y) and put 

K{x, y):={teX : ip{x + t) = <p(x -t) = <p(y)} + x. 

Then, setting Ly := we infer that 

K(x,y) = Lyn{2x-Ly). 

Moreover, K(x, y) is nonempty and connected as a translation of a set with 
the same properties. 

Define a function i>: K(x, y) —¥ Z by the formula 

(4) i,(t) :=<p(y + t)-<p{2x + y-t), t€K{x,y), 

and observe that 2x — t G K(x,y) whenever t G K(x, y). Since <p is continu­
ous, the function ^ is continuous as well. We are going to show that 

(5) V(*o) = 0 for some t0 G K(x,y). 

To this end, we may assume that tj) ^ 0 (otherwise, each t G K(x,y) satisfies 
(5) ). Thus, there exists a ti 6 K(x,y) such that 0 -< i>(ti) or ip(ti) -< 0. 
Assume that 0 -< ip(ti) (in the remaining case the proof is literally the 
same). By means of (4) and (a) we obtain 

j){2x - ti) = -(y{y + ti) - <p(2x + y- tx)) = -tpfa) -< 0. 

If we had ip(t) ^ 0 for all t G K(x,y) then, in view of (b) and the conti­
nuity of ij) already observed, the connected set ij)(K(x, y)) would be splitted 
into two disjoint nonempty (relatively) open parts, which is a contradiction. 
Therefore, there exists a to G K(x, y) with V>(*o) = 0, which says that 

(6) <p(y + t0) = (p{2x + y-tQ). 

On the other hand, to € K(x,y) implies that to € Ly and to G 2x — Ly, 
whence 

(7) <p(to) = <p(2x-to) = (p{y). 
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Now, putting u := to and v 2x — to we get t0 = 2x — v and u + v — 2x 
whence, by using (6) and (7), we arrive at 

/(2s + 2y) = f(u + y + v + y) = f(u + y) + f(v + y) 

= f(u) + f(y) + f(v) + f(y) = f(u) + f(v) + 2f(y) 
= f(u + v) + 2f(y) = /(2x)+ 2f(y). 

Since equation (2) immediately implies that f(2t) = 2f{t) for all t € X, we 
finally have 

f(x + y) = f(x) + f(y), 

because, by assumption, (Y, +) has no elements of order 2. 
Assume now that the condition <p(x) •< <p(y) is invalid. Then either <p(y) -< 

<p(x) or <p(x) = <p{y). In the former case the same reasoning applies after 
interchanging the roles of x and y. In the latter case the desired additivity 
relationship is forced directly by equation (2). This completes the proof. • 

R E M A R K 1. Let (X, \\ • ||) be a real normed space with dim X ^ 3. If 
Z = R and -< stands for the usual inequality < and if <p : X - » R is defined 
as <p(x) := ||x|| for all x G X, we get Szabo's result [3]. Nevertheless, we 
have to stress once more that the verification of (3) in that case is slightly 
sophisticated (cf. [3]). 

R E M A R K 2. A careful inspection of the proof of Theorem 2 shows that the 
assumption of the connectivity of the set {t € X : (p(x+t) = <p(x—t) = <p(y)} 
and the continuity of function <p were used exclusively to get a solution to of 
the following system of equations 

' <f{to) = ¥>(y) 
(8) < y(2x - t0) = ¥>(y) 

. <p(y + to) = ip{2x + y-t0), 

where x and y are arbitrarily given. 
In many instances we may get the existence of such a to in a direct way 

whenever <p(x) -< y(y). To visualize this let us consider the following situ­
ation: 

EXAMPLE 3. Let A" be a real linear space. Assume that (if, (•{•)) is a real 
inner product space with dim H ^ 3, and L : X —)• H is a linear surjection. 
Define a function <p : X —> R by the following formula: 

<p(x):=\\L(x)\\, xeX. 
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For x,y e X arbitrarily fixed, system (8) reads now as follows: 

(9) 

' \\L(t0)\\ = \\L(y)\\ 
< {L(x)\L(x))=(L(x)\L(t0)) 
, (L(y)\L(t0)) = (L(y)\L(x)). 

For a fixed u € H define function <f>u : H ->• R by the formula 

<f>u := (u\ • ). 

Then (9) may be rewritten in the form 

' L(t0) e S(0,\\L(y)\\) 
< L(t0) - L(x) e ker <j>L(x) 
, L ( t 0 ) - i ( s ) € ker0L ( j,), 

where 5(a, r) stands for a sphere centered a t o g H with radius r ^ 0. This 
means that 

Plainly, in the present case we have Z = R and -< = < whereas the assump­
tion cp(x) -< <p(y) implies that So is nonempty which jointly with surjectivity 
of L gives the existence of such a to-

We continue our considerations with two Hyers-Ulam type stability results 
regarding the conditional functional equation (2). 

T H E O R E M 3. Suppose that either 

(a) X is a real linear space with dim X ^ 2, Z is a given nonempty 
set and (p : X -> Z is an even mapping satisfying conditions (i), (ii) 
and (iii), 

or 

(/?) (X, +), (Z, +) are topological groups, (X, +) is commutative, {Z,+) 
is equipped with a connected binary relation •< C Z x Z having pro­
perties (a) and (b) and (p : X Z is a continuous mapping satisfy­
ing (3). 

Moreover, let (Y, || • ||) be a Banach space. Given ane > 0, let f : X -+Y be 
a mapping such that for all x,y € X one has 

L(t0) € 5(0, \\L(y)\\) D (L(x) + (ker <f>L{x) n ker <f>L{y))) =: S0. 

(10) ip{x) = <p(y) implies \\f(x + y) - f(x) - f(y)\\ ^ e. 
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If <p admits a solution $ : Z -> Z of the functional equation (p(2x) — 
$(<p(x)),x G A", then there exists exactly one additive mapping g : X ~¥Y 
such that 

(U) \\f(x)-g(x)\\^s, xeX. 

P R O O F . By means of (10) we obtain the inequality ||/(2a:) — 2/(s)|| ^ s 
valid for all x € X. It is well known that the classical Hyers function sequence 
(/n)n€N defined by the formula 

fn(x):=^f(2nx), x€X,n€N, 

is then (uniformly) convergent to a function g : X -¥Y satisfying (11). 
Assume that <p(x) = <p(y) for some x, y € X. Then, an easy induction 

shows that 
9(2"*) = $"(¥>(*)) = $ n My)) = <p(2ny) 

for all n £ N, where $ n denotes the n—th iteration of Consequently, 
relation (10) implies that \\fn{x + y) - /„ (x) - /n(j/)|| < holds 
true for every n € N whence, by letting n tend to infinity, we infer that 
g(x + y) = g(x) + g(y). In other words, g yields a solution of equation (2). 
An appeal to Theorem 1 in the case where condition (a) is assumed (resp. 
to Theorem 2 whenever (/3) is satisfied) proves that g has to be additive. 

If we had two additive functions g\, g% : X -*Y satisfying the estimations 
\\f{x) - gi(x)\\ ^ e, x € X, i = 1,2, then for every n c N and every x e X 
we would get 

n\\gi{x) - 52(a:)|| = \\gi(nx) - g2{nx)\\ 

Ś \\9i{nx) - f{nx)\\ + \\f(nx) - g2{nx)\\ < 2e, 

i.e. 51 = 5 2 - This finishes the proof. • 

As a matter of fact, to get a "pure" stability result on equation (2) regar­
dless of its solutions we do not need any assumptions forcing a solution of 
(2) to be additive. This remark leads to the following 

T H E O R E M 4. Let (S, +) be an abelian semigroup and let (Y, || • ||) be a 
Banach space. Assume that we are given a nonempty set Z and a function 
<p : S —• Z admitting a solution $ : Z —> Z of the functional equation 

(12) <p(2x) = $(<p{x)), xeS. 
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Given an e > 0 and a solution f : S Y of (10) there exists exactly one 
solution g : S —• Y of equation (2) such that estimation (11) holds true. 

P R O O F . The existence may be derived along the same lines as in the first 
part of the proof of Theorem 3. To show the uniqueness, note that each 
solution g of (2) satisfies the equality g{2nx) = 2ng(x) for all a; 6 5 and all 
n G N. Hence we may repeat the reasoning applied in the last part of the 
preceding proof with n replaced by 2 n, n G N. • 

So, equation (12) turns out to be crucial while dealing with the stability 
problem in connection with equation (2). We terminate this paper with an 
observation that equation (12) happens also to be essential in answering 
the following question. As it has already been mentioned in the proof of 
Theorem 1, equation (2) can be reduced to a generalized isosceles orthogonal 
additivity equation. What about the converse? Our last result gives a partial 
answer to that question. 

T H E O R E M 5. Suppose that either 
(7) X is a real linear space with dim X ^ 2, (Y, +) is an abelian group, 

Z is a given nonempty set and <p : X —> Z is an even mapping 
satisfying (i), (ii) and (iii), 

o r 

(5) (X, +), (Y, +) and (Z, +) are topological groups, {X, +) and (Y,+) 
are commutative, (Y, +) has no elements of order 2 and that (Z, +) is 
equipped with a connected binary relation -< C ZxZ having properties 
(a), (b) and tp : X —> Z is a continuous mapping satisfying (3) and 
such that for all x € X we have <p(0) -< <p(x) or y>(0) = <p{x). 

If <p admits a solution $ : Z Z of equation (12), then f : X —> Y is an 
odd solution to the functional equation 

(13) <p(x + y) = <p(x - y) implies f(x + y) = f(x) + f(y), 

if and only if f is a group homomorphism. 

P R O O F . Clearly, only the "only i f part requires a motivation. Assume 
that / : X —> Y is an odd solution of (13). First we are going to show that 
each of the assumptions (7) and (6) separately implies the equality 

(14) /(2s) = 2/(a;) for all xeX. 

Indeed, assume (7) and observe that for an arbitrarily fixed x G X axiom 
(iii) applied for A = 1 jointly with the evenness of (p ensures the existence 

7. Annates . 
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of a y e X such that <p(x + y) = <p(x — y) and <p(2x) = <p(2y). Hence, using 
(13) and the oddness of / , we obtain 

f(2x) = f((x + y) + (x- y)) = f(x + y) + f(x - y) 

= /(*) + /(y) + /(*) + /(-y) = 2/(x). 

Assume (6) and fix an x 6 X arbitrarily. If <p{x) = <p(0) then <p(2x) = <p(0) 
as well, because of (12). Hence, setting y = x in (13) we get (14). Suppose 
now that <p(0) -< ip(x)- Then assumption (3) applied for x = 0 and with y 
replaced by x, states that the set 

Tx := {t e X : <p{t) = <p(-t) = <p{x)} 

is nonempty and connected. Obviously, t 6 Tx if and only if —£ G T^, and 
the function ^ : Tx —)• Z defined by the formula 

i>{t) := <p{x + t)- <p{x -t), teTx, 

is odd and continuous. This forces rj) to vanish at some point y 6 Tx which 
means that <p(x + y) = <p(x — y). Moreover, <p(x) = <p(y) in virtue of the 
definition of Tx, whence with the aid of (12) we get ip(2x) — y(2y). Now, 
it suffices to repeat the reasoning applied in case (7). Thus (14) has been 
proved. 

Now, we are in a position to show that the conditional functional equation 
(2) is a consequence of (13). In fact, fix x, y € X with ip(x) = (p(y) and put 
u := x + y, v := x — y. Since, by (12), <p(2x) = ¥'(2y), we conclude that 
(p(u + v) = <p{u — v) getting 

2f(x) + 2/(y) = /(2s) + /(2y) = / ( « + v) + f(u - v) = /(«) + /(«) 
+ / ( « ) + / ( - » ) = 2 / ( « ) = 2/(x + y) = /(2(x + y)) 
= /(2x + 2y). 

Now each of the assumptions (7) and (6) separately implies the equality 

f{x + y) = f(x) + f(y). 

Indeed, if (7) is assumed, it suffices to observe that the function X 3 x 1—> 
F(x) := /(2x) G Y is additive on account of Theorem 1. Obviously, so is 
also the function X 3 x \—> F{\x) = /(x) e Y. 

Finally, if (5) holds true, then the assumptions upon (Y, +) jointly with 
the equality 

2/(x) + 2/(y) = 2/(x + y) 

imply the additivity of / and it remains to apply Theorem 2. Thus the proof 
has been finished. • 
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