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TRANSFORMING THE FUNCTIONAL EQUATION
OF GOLAB-SCHINZEL INTO ONE OF CAUCHY

PETER KAHLIG AND JENS SCHWAIGER

Abstract. It is shown that Golab-Schinzel’s equation may be transformed
into one of Cauchy’s equations by an embedding and limit process concerning
the general continuous solution.

.C

A meteorological problem of interpolation

f(z+h(z,y) = f(2)9(y), f.9:R—R, h:R® SR,

where. f,g,h are functions to be determined, comprises Golab-Schinzel’s
functional equation ([1], [2], [4])

(1) f(@+yf(z)) = f(=)f(y)

by choosing g(y) = f(y), h(z,y) = yf(x), but also one of Cauchy’s functional
equations ([1]) -

(2) f(z +9) = f2)f(v)

by specializing g(y) = f(y), h(z,y) = y. Now the question may be raised if
there exists a connection between (1) and (2) via an embedding.

Replacing in (1) the value f(z) by f(z)'/™ where n is an odd positive
integer, we obtain a family of modified Golab-Schinzel equations with a
parameter n € 2Ng + 1 = {1,3,5,...},

(30) et @) = f@)1).
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Golgb-Schinzel’s original equatlon (1) is recovered for n = 1. Concerning
the meteorological problem, (3,) is the special case g(y) = f(y), h(, y) =

Y f(:c)l/ ™. Nicole Bnllouet Belluot’s generalization ([3]) of (1)

7 (7 @le+ £ @)5) = Flo,0,0(0), £0), 120,

g where k,l are integers and F'is a 'given function, ev1dently does, not co,mprlse
(3a). It is well known from [1, p. 312] that

a continuous f :R > R isa solution of (1) if, and only if, f has one of
the mutually ezclusive forms:

(4) . ' f(z) =azr+1 (a € R), '
- ® - . f@)=
(6) - fz)= ma.x(a:c +1,0) (aeR*=R\{0}).

Using this and the fact that a function f solves (3n) 1f and only if,
z + f(z)1/" solves (1) we get

THEOREM 1. A ‘continuous f : R — R is a solution of (3,) (n a positive
odd integer) if, and only if, f has one of the mutually exclusive forms:

(4n) f(z)=(az+1)" (aeR),
(52) | f(z) =0,
(6)  fz)=max((az+1),0) (2R =R\{0}).

Now, let us cons1der a sequence (fn)ne2N,+1 Of continuous solutions f,, of
(35)- Then we may ask for conditions implying that this sequence converges.
We want to show that this is the case if, and only if, the limiting function is
a, continuous solution of (2). Suppose that the sequence (f,,) converges and
let ‘

. @)= Jim ).

Since fn(0) € {0,1} and f,(0) = 0 if, and only if, f, = 0, we have f(0) =

0(1) if, and only if, f, = 0(# 0) for almost all n. Thus; excluding the case

that f, = 0 for almost all n, Theorem 1 gives a sequence bn, n=13,... of
* real numbers such that :

0 fa@)=(baz+ 1) or f,.(x)=m,ésc((bn¢,+r1>",o>



Y 35

for almost all n € 2Np + 1. Then by (7) and Bernoulh s inequality, (and
‘since max(f,,(z) fa(-2)) 2 1)

14 nlb,| < (1 + |bn|)." <M, (n > nyp),
where (sa.y) M= ma.x(f(l) f=1))+1 (> 1). Thus

M-1.
® bl € o (n2m)
This implies SR
lim V'b,.v: 0
n-—+00
n€2Ng+1

and (since [byz| < 1 for n > n(z)) |
flz)= lim fa(z)= lim (1+buz)"
) nezno-u S nEaNg 41 .

for all z € R. Next we want to show tha.t f is a solution of (2). Fixing z
~ and putting M’ : —1.(2> 0) we see that for sufficiently large n the value
14 b,z is posxtxve and that

M’ g . M\
(1 _—,7|z|) $(1+bnz) 5(1+T|zl) .

Thus - :
) 0 < exp(~M'|z]) < f(z) < exp(M’ |a]).

Put gn(2) := (1 + bsz)™ and fix z,y € R. Then g,(z + y) # 0 for almost all

n. Thus we may form the expressnon 9n(2)gn(y) (gn(z +9) = (14 en),

where
blzy

T TG+
But |ep,] < M'"n~2 for some constant M" dependmg on z and y. This
~ implies limy,_,o(1 + ¢5,)® = 1 as can be seen from the followmg
-~ LEMMA. Let (as) be a sequence, of real aumbers such tbat |a,,,| < Cn?
for-all n. Then (1+ a,)" converges tol when ‘n tends to oo.

PROOF It is enough to use the estlmate v N
lnln(l +ax)| = |n (an - an/2+ A3 +.. ) |
1
< Inaal(1 + lan| + Ianl2 ) = lnanl—-—
» 1- | il
which is true for large n. It clearly shows that hm,._,oo nin(l1+4a,) =0, as
desired. - o

3*
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Thus g,(2)gn(y) (gulz + ¥))~" tends to | for n tending to . But this
means that f is a solution of (2). By (9) this solution is bounded from
above on (any) bounded interval. This implies ([1. p. 29]).that there is some
constant b such that

fla) = exp(bx) (r € R).

Moreover, by using the logarithmic series again, it can be seen that 1lu-
sequence (nb,) converges (with b as its limit).

We have the following.

THEOREM 2. Let (fy)neaNy+1 be a sequence of solutions of (3,,). Then
the limit _
j = llm Ia

E"No+l

exists if, and only if, either f, = 0 for almost all n (and f = 0) or if there is
a sequence (b, )nean,+1 of real numbers such that

b:= lim nd,

n—oo
n€2Ng+1

exists and f, is of one of the forms (7) (and f(z) = exp(bz) for all z).

One part of the proof has been given above. The other part is obvious.

Let us point out the following: (3;) admits continuous nondifferentiable
solutions. This is not the case for solutions of (3,) when n > 3. Each
continuous solution in this case is (n — 1)-times differentiable. But there are
solutions which are not n-times differentiable.

Furthermore we have the following.

[y ST Y. S

(142/3)° . max(0,(1+z/5)"%)
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-9
(1+2/7)"
Figur; 1
REMARK. If, for p > 0 and z € R, we define z[?) := sign(z)|z|?, we may
consider
(3,) 1 (r+uf @) = ). |

Then, since a — a2l s a stnctly increasing power function mapping R

bijectively onto itself and because of zlrdl = (x“”])” Theorem 1 may be
generalized to hold in this situation, too. Theorem 2 also holds in this new
setting. In detail we may formulate the following.

THEOREM 1°. A continuous f : R — R is a solution of (3,) (p a positive
real number) if, and only if, f has one of the mutually exclusive forms:

(4p) f(z)=(ex+ )P (a€R),
(5p) flz2)=0 |
(6,) f(z) = max({(az + 1)[”],0) (a € R* =R\ {0}).

THEOREM 2°. Let (p,)nen be a sequence of positive real numbers such
that p,, — oo as n. — oo, and let (f,)nen be a sequence of solutions of (3, ).
Then the limit f := lim,_ ., f, exists if; and only if, either f; = 0 for almost
all n (and f = 0) or if there is a sequence (bn)nEN of real numbers such that

“b:= lim Pnbn

n—oo
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'éx_ists and such that, for almost all n, fu(x) is of one of the forms (byz 4 1)[Ps]
“or max((b,z + 1)[P»),0). Furthermore, in this case, f is given by f(z) :=
exp(bz).

“To illustrate the behaviour of certain sequences ( f,) we include two fig- |
ures. In figures 1 and 2 we have b, = 1/n and b, = 1/n? respectively
 resulting in the limit functions exp(z) and 1..

(1+z/9)° i >max(0,(l+z/25)5)

(1+2/49)
Figure2
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