Annales Mathematicae Silesianae 8. Katowice 1994, 141-155

Prace Naukowe Uniwérsytetu §l§skiego nr 1444

ON A FACTORIZATION OF MAPPINGS WITH
A PRESCRIBED BEHAVIOUR OF THE
CAUCHY DIFFERENCE

RoMAN GER

Abstract. We deal with functional congruences of the form

fety) - flx)-fly) e U+V

where U and V are given sets subjected to satisfy some "separability” condi-
tions essentially weaker than that occurring in [4] which proved to be pretty"
useful especially while investigating various types of Hyers-Ulam stability
problems. The goal is to factorize f into a sum of two functions whose
Cauchy differences remain in U and V, respectively, or, at least to obtain an
approximation of f by such a sum. An application of the newly established
result in that spirit is given. Moreover, a stability result for the celebrated
cocycle equation is presented and, finally, the behaviour of mappings whose
Cauchy differences fall into a given Hamel basis is described.

1. Introduction. Stability problems in the sense of Hyers & Ulam ma.y'
sometimes be reduced to functional congruences of the form

(%) flz+y)—f(z)=fly) e U+ V.

For instance, in a recent paper of R. Ger & P. Semrl [4] results on represen-
tation of mappings satisfying () were used to investigate various aspects of
the stability of exponential functions. K. Baron, A. Simon & P. Volkmann
[1] have found another application of those results. For convenience, below
we quote explicitly the statement of a basic Theorem 2.1 from [4], using the
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following notational convention: for an arbityrary set U C X of an Abelian
group (X, +) we put

Ut :=U+U and U :=U-U,

getting, in particular, (Ut)" = U+ U - U - U.

- Let '(S, +) be a cancellative Abelian semigroup and let (X,+) be a
torsion-free divisible Abelian group. Let further U,V G X be such that

(+%) - U™ (v = o).

Then each function f : S — X fulfilling condition (%) admits a repiesenta-
tion of the form f = a + 8 where a,3.: § — X satisfy the relationships

a(z+y)-a(z)-a(y) eV, =z,y¢€ S,

and

' ,3(2: + y) _ﬂ(x) - /B(y) € V7 T,y € S’
" The functions o and 3 are determined uniquely up to an additive function.

Obviously, the ”separation” condition (*x) plays here the crucial role.
However, as we shall see later on, in some cases it happens to be too strong.
The aim of the present paper is to obtain a version of the result just quoted
with condition (#*) weakened considerably. For that purpose, a generaliza-
tion of L. Szekélyhidi’s result [8] on the stability of the celebrated cocycle -
equation will be presented, which might be of independent interest.

2. Stability of the cocycle equation. We shall be using the following
notation: given a nonempty set S and a normed linear space (X,]|| -||), by
B(S, X)we denote the real linear space of all bounded functions mapping
S into X, endowed with the norm: || f |loo:= sup{|| f(s)}: s€ S}, f €
B(S,X); by B(z,p) (resp Bg(z,p)) we mean the ball in X (resp. in a
subspace E of X) centered at z and having radius p > 0; whereas B(z, p)
will stand for the closure of B(z,p).

Let us recall that a semigroup (5, +) is termed left (resp. right) amenable
provided that there exists a real linear functional M on B(S,R) such that

inf f(§) < M(f) < supf(S),  fe€B(S,R),

and M is left (resp. right) invariant in the sense that

(1) M(f)=M(f)  (resp.M(fs) = M(f))
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for all f € B(S,R) and all a € ..S"; here (. f)(z) := f(a + z) and fa(:vz:)‘:z
f(z + a), z,a € S. It is well-known that any commutative semigroup is
amenable, :

We begin with the following

TueoreM 1. Let (S,+) be a left (right) amenable semigroup and let
(X, I} -1l) be a real Banach space which is either

(i) reflexive
or S
(ii) has the Hahn-Banach extension property
or

(iii) forms a boundedly complete Banach lattice with a strong unit e.
Given a number £ > 0 and a mapping F : S x S —s X such that

IF(z +y,2) + F(e,y) - F(e,y+2) - F(y,2)| <, @,9,2€ 5,
there exists a function f : S x § — X such that

flety,2)+ f(z,y) = f(z,y+ 2) + f(y,2), =z,9,2€ S,
and
I1F(z,9) - fz, 9l <&, z,y€S8,
in cases (i) and (ii), whereas
N E@ ) = f2, 9l S coe, z,y €S,
with ¢, :=inf{c > 0: B(0,1) C c[~e,e]} in case (iii).

ProoOF. Without loss of generality we may assume that the semigroup
(S8,+) is left amenable. An appeal to author’s result. [3, Theorem 1] gives
the existence of a continuous linear operator M : B(S,X) — X satisfying
the first part of (1) for all f € B(S,X), a € S, such that M(c) = c for all
c€ X and -

(2) - TMp<t
‘in cases (i) and (ii), whereas
(3) | M |I< ¢,

in case (iii). In what follows, to'avoid ambiguities, we shall write M ch(é:, Y, 2)
in the case where the operator M is assumed to act on a bounded function
#(z,y,). Since, for arbitrarily fixed variables z,y from .S the function

'F(m‘*'y")_F(z’y‘}"),_E(y',f):S‘_—v"X
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:i's bounded (by || F(z,y)|| + ¢ ), the formula
(4 f(z,y):= M. (F(z,y+2)+ F(y,2) - F(z +9,2)), z,y€S5,

correctly defines a map f : 5xS — X. This map turns out to be a solution

- = of the cocycle equation

flz+y,8)+ f(z,9) = f(z,y+8) + f(y,8), =,9,8€S.

Indeed, on account of the linearity of the operator M and its left invariance
property one has ~ -

f@,y+ 8)+f(v,5) - f(z+9,9)
=M, (F(z,y+s+2z)+ F(y+s,2z) — F(z+y+s z))
+ M, (F(y,5+2) + F(s,2) - F(y +3,2))
~M,(F(z+y,8+2)+ F(s,z) -~ F(z + y + s, 2))
=M, (F(z,y+s+z)+ F(y,s+2)— F(z + y,s+ 2))
=M, (F(z,y+2) + F(3,2) - F(z +,2))
=f(z,y)

for all z,y,s € S.
To finish the proof, it remains to observe that by means of the equality
M(c) = ¢ valid for all constant functions ¢(z) =¢,z € S, c € §, we have

| F(z,9)-f(z, Il
=|| M. (F(z,y)) — M. (F(z,y+2) + F(y,z) — F(z+y,2)) ||
=|| M. (F(z,y) - F(z,y+ z) — F(y,2) + F(z + y,2)) ||
<|| M ||| F(z,y) — F(z,y+ 2) — F(y,2) + F(z + y,2)|
S" Mz” * €,y

which gives the estimation desired because of (2) and (3).
To get the "right” version, instead of (4) one has to put

f(y,2) 1= Mz (F(z +y,2) + F(z,y) - F(z,y+2)), 9,2€S5.
This completes the proof. ‘ O
REMARK 1. The approximating solution of the cocycle equation need not

be unique even in the case of scalar valued mappings. However, with the aid
of Theorem 2.1 from L. Székelyhidi’s paper [8] one can easily show that the
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difference between any two scalar solutions of the cocycle equation that ap-
* proximate the same (scalar) function F on a right amenable semigroup (5, +)
and fulfilling the inequality

IF(IB + y,2)+ F(:E,y)— F(x’y+2) - F(y’z)l <e,
for every z,y,z € S, has to be of the form

o(z+y)— o(z) - o(y), z,y€S,

where ¢, is a bounded scalar function on S.

REMARK 2. In the case where (X, ] - H) = (C,]+|) Theorem 1 has been
proved by L. Székelyhidi [8]. '

3. Main result. Armed with the stability result _]ust established we are
able to prove the following '

THEOREM 2. Let (S,+) be a cancellative Abelian semigroup and let
(X,]l - II) be a real Banach space. Assume that U and V are nonempty
subsets of X such that the set

B:=(UY)"n({V*)"~
is bounded and put ¢ := sup{||b]| : b€ B}. Let f:S — X be such that
f(:l:+y)—f(w.)—f(y)€ U+Va x,yeS.

If the spaces Xy := cl LinU and Xy := cl LinV satisfy at least one of the
conditions (i), (ii) or (iii) spoken of in Theorem 1 (not necessarily the same),
then there exist functions o, : S — X satisfying the relations

a(z+y)_a(z)_a(y) € U+FXu(0,E)’ T,y € S’

Bz +y) — B(z) - B(y) € V+§xv('0,6), Coz,y € S,
and such that '
| f(z) - (a +B8)()l| < 28 |

for all z € S; here & stands for ¢ or €oC dependmg on whether condmon (i),
(ii) or (iii), respectively, is assumed.

PROOF. There exist functions ¢ : § X S —Uc XU a.ud P:5x S5 —
V CXv such that

() dz,9):=fa+1) - F(2) - (3) = o(2,3) + $(2,8), 2, € 5.

10 - Annales...
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Obviausly, d is a symmetric solution to the cocycle equation. Moreover,

(U) 3 ¢z +9,2) + ¢(,9) - p(z,y + 2) — p(y, 2)
=d(z +y,2) + d(z,y) - d(z,y + 2) - d(y,2)
- Yz +y,2) - P(z,9) + P(z, 9+ 2) + ¥(y,2)
=~ (e +y,2) - (e, ¥) + P(z,y + 2) + ¥(y,2) € (V)

which states that

p(z+9,2)+ ¢(2,y) — o(z,y + 2) - 9(y,2) € B,

or, equivalently, that

le(z + 9, 2) + (2, y) — o(z,y + 2) = o(y, 2)|| < e,

for all z,y,2 € §. Plainly, Xy is a Banach space and, by assumption, it does
have at least one of the properties (i), (i) or (iii). So, by Theorem 1 there
exists a solution ® : § X § — Xy of the cocycle equation such that

(6) le(z9) - @(z,9)| <& z,y€S.

Now, under the assumptions imposed upon the semigroup (S, +), with the
aid of M. Hosszi’s theorem from [5], we infer that there exists a skew-
-symmetric and biadditive map A : § x § — Xy and a map a,: 5 — XU
such that

(M) 2(z,9) = Ale,9) + ao(z + y) — ao(2) —ao(y),  z,y€S.
However, |
(U*)” DU -U 3 ¢(2,9) - ¢(y,2) = d(,y) — $(z,y) — d(y,z) + w(y,x;)
eV-vcyhH,
ie. |lo(z,y) — ¢(y,z)|| < cfor all z,y € S, whence, by meéns of (6), we gét

|A(z, y)—A(y, z)|l
:|I¢(z’ y) - (I)(yaz)”
<@z, y) - (2, Y|l + lle(z, y) — @(y, )| + Ilso(y,w) B(y, )|l
<é+c+é

for all z,y € S. Thus, the biadditive mapping

§ %53 (2,9) — Az,y) - A(y,2) € X
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“remains bounded which is possible if and only if A(z,y) = A(y,z) for every

~z,y € 5. Since A is skew-symmetric this implies that A = 0, and, conse-
quently, in view of (7), we obtain the representation

(I)(:z:, y) = a,,(:z: + y) - Oto(fl?) - ao(y)’ z,y € S.

Setting v
,T‘f’(x’y) = ‘I’(a”y)—ﬁo(l',y), x,y€ Sa
by virtue of (6)we obtain
r(p(x’y)\eEXu(O,é), z,y€ S?

whence

(8) ao(z+y)—ao(2)—ao(y) = ®(z,y) = ¢(2,y)+7y(2,y) € U+Bx,(0,8)

for all z,y € §.

Applying literally the same procedure with respect to the function P Sx
§ — V C Xv (see (5)) we deduce the existence of functions 8, : § — Xy
and ry : § x § — Byx,(0,&), such that

(9) ﬂo(z + y) - ﬂo(m) "‘ﬂo(y) = 1/’(1'9 y) + 7',1,(:1:, y) eV + FXV (036)

for all z,y € S. From (8), (9) and (5) it follows that for any z,y € S, one
has : :

F@+9) = 1(2) = 1) = ao(z + 3) = au(e) — ao(y) - rol(z,3)
+ Bo(z + '!/) - ﬂo(m) - Bo(y) — ry(z, y)’

ie. | ’
8+ 9= 9(2) = 90) = ~ro(2,) = ro(e.9) € By 0,9+ B, (0,)
for all z,y € S, where g:= f — (a6 + B5). In other words, we have
l9(z+9)—9(z) -9l < 28, =,y€5,

whence, by J. Ritz’s [7] generalization of the classical Hyers-Ulam stability
result, there exists (a unique) additive mapping a : § — X such that

10  le@) —a(@)| <2, zes.

10*
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Obviously, by virtue of the properties (8) and (9), respectively, functions
1 1
o= ao+§a and ﬂ:=ﬂo+§a
fulfil the conditions

oz +y) — a(z) — a(y) € U + Bx,(0,8), z,y €S,

and '
-ﬂ(z+y)—ﬂ(z)—ﬂ(y)€V+—B—xv(0,é), l‘,yES.
Finally, in view of (10),

(11) f(z) = (a+B)(=)|| < 2.
for all z,y € S, as claimed. Thus the proof has been €ompleted a

REMARK 3. Once we have ¢ = 0, which is equivalent to the statement
that B = {0}, relation (11) says that f = a + 3 along with the relatlonshlps

a(z +) - a(z) - a(y) € U
é,nd
Bz +y)-B(z)-By) eV
valid for all z,y € S. Therefore, in such a case, the result just proved re-
duces itself to Theorem 2.1 from [4], quoted explicitely in the Introduction;

however, merely in the case where the target group (X, +) yields a suitable
Banach space.

REMARK 4. Unfortunately, among the three properties (i), (ii) and (iii)
nothing but reflexivity is inherited by closed subspaces of a given Banach
space. This forced us to assume that the subspaces Xy and Xy occurring
in Theorem 2 enjoy at least one of these properties. Dealing with reflexive
spaces we obtain more concise statement which reads as follows.

THEOREM. 3. “Let (S,+) be a cancellative Abelian semigroup and let

(X1l - 1) be a real reflexive normed linear space. Assume that U and V are
nonempty subsets of X such that the set
B:=(U")"nv*"

is bounded and put ¢ := sup{||b||: b € B}. Let Xy :=cl LinU and Xy :=
cdLlinV.If f: § — X is such that . o -

fe+y)-f@) - fW)€U+Y,  zyes,
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then there exist functions a, 3 : § — X satisfying the relations
’ a(z+y)—a(x)_a(y)e U+FXU(0’C), x,yesa

B(z +y) - B(z) - B(y) € V + Bx, (0,¢), z,y€S,
and such that _
17 (z) — (a + B)(=)|| < 2¢
forall z € S.

4. An application. The goal of Theorem 2 was to cover the situation
where both of the sets U and V under consideration are simultaneously
unbounded (otherwise, the requirement for the set (U*)~ N (V*)~ to be
bounded is automatically satisfied). If that is the case, Theorem 2 reduces
the problem to a similar one with one of the new summands simply being a
ball (in a suitable subspace) and hence bounded. To visualize the utility of
such a method we are going to present the following

EXAMPLE. Let us consider any cancellative Abelian semigroup ($,+) and
assume a Banach space (X, || - ||) to be the real plane R? endowed. with the
usual Euclidean norm. Fix arbitrarily an ¢ from the interval (0, &) and take

U:=(Z+(-¢c,e))x{0}, V:={(z,y)eR*: z€R, w—e<y<z-+i},

where Z stands for the set of all integers. Obviously, both U and V are
unbounded and the intersection
B:=(UY)y"n(vt)~ _
=((Z+ (-45,4e)) x 0PN {(z,y) ER*: 2 €R, z—4e<y<z+4e}
=(—4e¢,4¢) x {0}
is greater than {0}. This prevents us from applying the "old” result recalled
in the Introduction. However, B is bounded (we have here ¢ := sup{||]| :
b € B} = 4¢) and we can make use of Theorem 3 getting that any function

f: 85 — R? whose Cauchy difference f(z +y) - f(z) — f(y) staysin U4+ V
for all z,y € § admits an approximation of the form

1 /() = (e + B)(2)I| < 8,

where a, 3 : § — R? satisfy the relations -

(12 a(e+9)-a(@)-a(y) € U +((-4e,4]x {0}), zyeS,
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and
(13). Bz +y)—B(z) - B(y) € V + B((0,0),4¢), z,y€S.

Relation (12) says that the first real component a; of the function « has to
satisfy the congruence

a(z+y)—ai(z)—ar(y) € Z+ (—5¢,5), . z,y€S,
whereas the other real component a; is simply additive. Since 5¢ € (0,1) an

appeal to Corollary 2.4 from [4] gives the existence of a function p: 5§ — R
such that '

(14) pe+y)-p@)-pi) €T, zyES,
and
15 . lm@-p@) <, zES.

An easy calculation shows that relation (13) forces the real components 3,
and B, of the function g to satisfy the functional inequality

|(B2 — Bi)(z + y) — (B2 — Br)(z) — (B2 — B1)(y)l < 5, z,y €9,

whence, by J. Ratz’s [7] generalization of the classical Hyers-Ulam stability
- result, there exists (a unique) additive mapping 6, : § — R such that

(B2 = B1)(z) = bo(2)| < 3¢, z €S
Thus 82 = 1 + 6, + o with |o(z)| < 5¢, which implies that
B(z) = d(z) + (0,6,(z) + o(2)), z €S,

where d is a function from S into the main diagonal of R? (we have put
d(z) := (B1(z), B1(z)), = € §). Setting 6 := a3 + §, we arrive at

(a+h5)(2) = d(z) + (a(2),6(z) +o(z)), =z €5

Summarizing, Theorem 3 implies that function f in question differs by 8¢
in absolute value from a function of the form

53z d(z) + (u(z),6(z) +o(z)), €5,
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e

where d maps S into the main diagonal of R2, function a; : § — R satisfies
estimation (15) with p : § — R fulfilling the congruence (14), whereas
6 : 5 — R is additive and |o(z)| < 5¢, for all z € §.

5. Supplementary results. Even in the (relatively) simplest case where
the separation condition »

(%%) N (UT) n(Vt)” = {0}

holds true, the algebraic sum U + V may happen to be surprisingly large. ‘
Obviously, the larger is that sum the more interesting is a result upon a
functional congruence of the form

(*) - flEty) - f@)-Sf(y) e U+V.

In the present sectlon we shall discuss some special congruences to that :
effect.

Fix arbitrarily a nonmeasurable Hamel basis H of the vector space R over
the field Q of all rationals and assume that 1 € H (see e.g. M. Kuczma [6]).
The set H + Q is "large” indeed; for, the one-dimensional inner Lebesgue
measure ({q). of its complement vamshes

(¢)« (R\ (H +Q)) =

This results immediately from Smital’s lemma (cf. M. Kuczma, [6, Chapter
IT1]) because the one-dimensional outer Lebesgue measure of nonmeXsurable
Hamel basis H is necessarily positive and the field Q is dense in R. '

Nevertheless, we are able to obtain a remarkably precise description of
the solutions of the functional congruence

(16) fz+y) - f(=)- f(y) e H +Q,

for functlons f mapping a cancellative Abelian semigroup (S,+) into R. To
this aim, we shall first prove the following

PRrROPOSITION. Under the hypotheses assumed above a function f:85—
R yields a solution to the functional congruence (16) if and only if

f(z) = a(z) + g(z) + hia), < €S,

where a : § — R is additive, q is a function on S with rational values only
and h : S — R fulfils the condition

(17)  h(z+y) - h(e) - h(y) € A,
for all z,y € S.
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PRrROOF. The "if” part is trivial. Assume that f: § — R yields a solution
to (16). Clearly,

(H*)"n(Q@*) =(H+H-H-H)nQ={0},

because H is a basis and 1 € H. By means of Theorem 2.1 from [4] (see
the Introduction), f admits a factorization of the form f = r 4+ h, where
r,h:$§ — R are such that

(18) r(:z:+y)—r(:z:)—r(y) EQ’ z,y € Sa

and the congruence (17) is fulfilled.

Let Q¢ denote the space complementary to Q in the Q—vector space R.
Then r itself factorizes into the sum ¢ + a where ¢ is a function on § with
rational values only and @ maps S into Q°. Substituting that representation
into (18) immediately shows that a has to be additive which finishes the
proof. 0O

It remains to solve the congruence (17). We are able to do that provided
the domain of the unknown function forms an Abelian group.

THEOREM 4. Let (G, +) be an Abelian group and let H be a Hamel basis
of a (real or complex) Banach space (X,|| - ||), understood as vector space
over the field Q of all rationals (Q—vector space). Assume that a function
h : G — X satisfies the functional congruence

h(z+y)—h(z)-h(y)e H, =,y€C.

Then there exist two different members h, and hy of the Hamel basis H, a
scalar function A : G — [~1,0] and an additive mapping A : G — X such
that

(19) h(z) = A(z) = ho + ,\(a:)(hl = ho), T € G,
and
(20) “AMz+y) - M=) - A €{0,1}, =,y€G.

In particular,
h(z +9) - h(z) - h(y) € {hor b1},  2,¥€G,

and the function h differs from an additive mapping by a function whose
values are totally contained in the segment [—h,,~hy} C X. -
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‘ Conversely, for any two members h, and hy of the Hamel basis H, any

scalar function A : G — [—1,0] fulfilling the congruence (20) and any
additive mapping A : G — X, function h : G — X given by formula (19)
yields a solution of the congruence (17).

PRoOF. Given a solution h : G — X of the functional congruence (17)
put
C(z,9) = h(z +y) - h(z) - h(y), =,y €G.

Plainly, the symmetric function C : G x G — H given by that formula
satisfies the cocycle equation -

(21) C(z+y,2)+C(z,y) = C(z,y+ 2) + C(y, 2), z,y,z € G.
Setting here y = z = 0 we infer that C(z,0) = C(0,0) =: h, € H for all z € |
G. Defining a function ¢ : G — H by the formula c(a:) =C(z,~z),z € G,
and putting y = —z in (21) we obtain that
(22) ho + ¢(z) = C(z,z - z) + C(2, —12), z,z€G.
Take z = z + y in (22) getting
(23) Ce,9) = ho+¢(z) = C(z + 9, ~2), 2,y €G.
By virtue of the symmetry of C we have the equality

ho+e(@) = Cz +y,~2) = ho+e(y) - Cla+y,~y), 2,5€G,

i.e.

(z)-c(y)=C(z+y,-2)-C(z+y,-y), =,y€G.
Setting here z — y in place of z gives
(e~ 3)~e(y) = Cla,y =)~ Cla,~y), . 2,y€G,
whence, by means of (22), | |
(e =1) - €(s) = ho t o(5) = Cloy-2) - Clar-), 2,96,

and, consequently, replacing here y by y, and ma.kmg use of the fact that
c is an even functlon : o -

(z+1)+ C(=2,-0) +C(a,9) = ho +elz) +ely), 2,y € G,
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Bearing in mind that all the summands occurring liere are members of the
Hamel basis we infer that necessarily

(24) c(z+7y) € {ho clx),e(y)}, 2,yeC.
We are going to show that there exists an element k) € IT such that
(25) c(z) € {ho, 1}, x,y €G.

To this aim, let us first observe that relation (24) and the evenness of ¢ imply

c(z) € {ho,c(z - y),c(y)}, 2,y €G,
as well as
c(y) € {ho,c(z - y),c(2)}, 2,y €C.
Thus, for every z,y € G one has ¢(2) = ¢(z — y) = ¢(y), provided that each

two elements of the set {c(z),ec(y),h,} are different. Obviously, this would
lead to a contradiction unless

c(z)=c(y) or c(x)=h, or c(y) -—- h, for all z,y€G,

but this means nothing else but (25). :
Without loss of generality, in the sequel we may assume that h, # hy.
From (23) and (25) we deduce that

C(z,y) € {ho, 1} forall z,y€dG.
This means that for a function £ : G — X given by the formula -
k(z) := h(z) + ho, z € G,
the functional congruence
k(z +y) - k(z) - k(y) € {0,hs — o},  z,y€G,

is valid. Now, an appeal to G. L. Forti’s paper [2] guarantees the existence
of a scalar function A : G —> [—1,0] and an additive mapping A G — X
such that

h(z) + ho = k(z) = A(z) + A(z)(h1 — ho), reG, = -
which jointly with the former congruence forces the Cauchy difference of

the function ) to satisfy relationship (20). Since the converse part of the
theorem is trivial, the proof has been completed. : O

REMARK 5. Without any changes in the proof, instead of a Hamel basis
one might consider an arbitrary subset B of the Banach space in question
enjoying the following two properties: :

o for each elements a, b,c,d € B such that a+b = c+d one has a € {c,d};

o for each elements a,b,c,p,q,7 € B such that a+b+c=p+ g+ one

has a € {pa q,r}.



(1]

(2]
(3]
(4]
(5]
(6]
(7]
(8]
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