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Abstract 
 
Aim/purpose ‒ The traditional data envelopment analysis (DEA) is popularly used to 
evaluate the relative efficiency among public or private firms by maximising each firm’s 
efficiency: the decision maker only considers one decision-making unit (DMU) at one 
time; thus, if there are n firms for computing efficiency scores, the resolution of n similar 
problems is necessary. Therefore, the multi-objective linear programming (MOLP) prob-
lem is used to simplify the complexity. 
Design/methodology/approach ‒ According to the similarity between the DEA and the 
multiple attribute decision making (MADM), a game of MADM is proposed to solve the 
DEA problem. Related definitions and proofs are provided to clarify this particular ap-
proach.  
Findings ‒ The multi-objective DEA is validated to be a unique MADM problem in this 
study: the MADM game for DEA is eventually identical to the weighting multi-objective 
DEA. This MADM game for DEA is used to rank ten LCD companies in Taiwan for 
their research and development (R&D) efficiencies to show its practical application. 
Research implications/limitations ‒ The main advantage of using an MADM game on 
the weighting multi-objective DEA is that the decision maker does not need to worry 
how to set these weights among DMUs/objectives, this MADM game will decide the 
weights among DMUs by the game theory. However, various DEA models are eventual-
ly evaluation tools. No one can guarantee us with 100% confidence that their evaluated 
results of DEA could be the absolute standard. Readers should analyse the results with 
care. 
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Originality/value/contribution ‒ A unique link between the multi-objective CCR DEA 
and the MADM game for DEA is established and validated in this study. Previous scholars 
seldom explored and developed this breathtaking view before. 
 
Keywords: Multi-Objective Linear Programming (MOLP), Data Envelopment Analysis 
(DEA), Multiple Attribute Decision Making (MADM), Research and Development (R&D) 
efficiency. 
JEL Classification: C44, C57. 
 
 
1. Introduction  
 

Past research has shown that data envelopment analysis (DEA) defines the 
mathematical programming of output/input ratio as the index of production effi-
ciency, as developed by Charnes, Cooper, & Rhodes (1978), and followed by 
many authors, for example, Banker, Charnes, & Cooper (1984), Golany (1988), 
Kao (1994) etc.  

Some scholars supported the appropriateness of using multi-objective linear 
programming (MOLP) in a DEA model by the concept of Pareto efficien-
cy/frontier (Chen, Larbani, & Chang, 2009; Stewart, 1996). DEA and MOLP 
both search for a set of non-inferior solutions (Steuer, 1986; Zeleny, 1973); thus, 
solving the DEA problem by a multi-objective programming aspect is natural, 
reasonable and appropriate (Li & Reeves, 1999). The first work integrating DEA 
and MOLP is due to Golany (1988), who proposed an interactive multi-objective 
procedure (IMOLP – interactive MOLP) to determine efficient output levels. 
The algorithm consists of sequential solutions to a set of related linear program-
ming problems, in which the objective function is to maximise a weighted sum of 
the former objectives. Li & Reeves (1999) presented a multi-objective model 
that considers two additional efficiency measures: the minimisation of the sum 
of the DMU distances to the frontier (minisum) and the minimisation of the most 
significant distance (minimax), in addition to the maximisation of the classical 
efficiency in DEA. Kornbluth (1991) noticed that the DEA model could be iden-
tical to a multi-objective linear fractional programming problem. The objective 
function of the model has the same expression as in the original model by 
Charnes et al. (1978), which is abbreviated as the CCR model, but applied to 
maximise the efficiency of every DMU, instead of one at a time, the restrictions 
remaining unchanged. Also, Joro (1998) made an extension of the Value Effi-
ciency Analysis method to determine targets for inefficient DMUs. Joro et al. 
(1998) observing the problem of characterizing efficient facets, made a structural 
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comparison of the CCR (Charnes et al., 1978) and BCC (Banker et al., 1984) 
models with the reference point approach to solving multi-objective problems.  

Various DEA models are eventually evaluation tools. No one can guarantee 
us with 100% confidence that their evaluated results of DEA could be the abso-
lute standard. The Multiple Objective Linear Programming (MOLP) problem is 
commonly used to find the trade-off boundary among many conflicting objec-
tives in the real world (Cohon, 1978), and of course, the trade-off boundary sure-
ly defines the core of MOLP. This paper focuses on an interesting issue: the 
weighting method for the multi-objective DEA model and the game of multiple 
attribute decision making: MADM game (Chen, 2004, 2006). In the weighting 
approach for MOLP, the weighting method guarantees the weighting Pareto 
optimum among all DMUs. Coincidentally, if we view the DEA problem from 
the MADM game perspective, this game leads to the same weighting concept for 
MOLP. This particular game also reduces numerous computations of traditional 
DEA models: the weight for each DMU/objective could be achieved at the same 
time by the two-person zero-sum game theory. Chen & Larbani (2006) once 
mentioned the use of two-person zero-sum game on the multiple attribute deci-
sion making (MADM) problems: they call it an MADM game, some scholars 
also extended this idea in various forms (Kacher & Larbani, 2008; Larbani, 2009). 
In this study, according to the characteristics of multiple attributes in DEA, it is 
interesting that we can compute the DEA weights from the MADM game per-
spective, and this new view will be available in this paper. The weighting multi-
objective DEA and the MADM game of DEA will lead to the same results: the 
weighting Pareto equilibrium. 

This paper is organised as follows: the MADM game, traditional CCR DEA 
and weighting MOLP are reviewed in Section 2. A modified DEA model: the 
multi-objective DEA model with its slack analysis is proposed in Section 3. In 
Section 4 an actual example is used to validate this interesting idea. This example 
is a case study of the R&D efficiency of Taiwan high-tech industry. Finally, 
conclusions and recommendations are given in Section 5.  
 
 
2. Literature review 
 

In this section, we will review the basic concepts of MADM game, CCR 
DEA with applications and MOLP. 
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2.1. MADM game 
 

Multiple Attribute Decision Making (MADM) is a management science 
technique, which is popularly used to rank the priority of alternatives for their 
competing attributes (Goodwin & Wright, 2004; Hwang & Yoon, 1981). 
Weights are the core of MADM and DEA: it is evident that different weights 
lead to different evaluation results and decisions. Several approaches are valua-
ble for assessing the weights of MADM problems, e.g. the eigenvector method, 
ELECTRE, and TOPSIS. However, very few scholars had ever explored the 
two-person zero-sum game on MADM issues until Chen & Larbani (2006). The 
brief introduction of MADM game begins from a simple two-person zero-sum 
game as follows. 
 
 
2.1.1. Fundamentals of two-person zero-sum game 
 

A two-person zero-sum game is the simplest case of game theory with two 
players only. A decision maker resolves such a game by assuming that both 
players propose pure (discrete), mixed (probability), or continuous strategies. 
Cooperation may exist in games, but in most cases, non-cooperation is more 
attractive because it is more realistic, especially in the presence of competition 
between players. Only the non-cooperative case is discussed in this study. A two- 
-person zero-sum game is eventually a matrix: 
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⎥
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                                         (1)  

where D represents the pay-off matrix of player A (the first player). Each ele-
ment in D is initially assumed to be a positive real number in (1); if each element 
is negative, we need to change the following inequalities accordingly. The pay- 
-off matrix of the second player B is –D; thus, the sum of A’s pay-off matrix and 
B’s pay-off matrix is exactly zero (zero-sum). 
 

Definition 2.1. A vector x in IRm is said to be a mixed strategy of player A if it 
satisfies the following probability condition: 

1=m
t ex                                                     (2) 
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where the components of t
mxxxx ],...,,[ 21=  are greater than or equal to zero;  

em is a m×1 vector, where each element is equal to 1 in em . The pay-off of the first 
player A is defined by D. The pay-off matrix of the second player B is –D; thus, 
the sum of A’s pay-off matrix and B's pay-off matrix is precisely zero (zero- 
-sum); en is a n×1 vector, where each component is equal to 1 in en. Similarly,  
a mixed strategy of player B is defined by t

nyyyy ],...,,[ 21= and 1=n
t ey . 

 

Remark 2.1. Please note an interesting observation: if x and y are the normalised 
weight vectors. However, this view, i.e. the weight point, is seldom considered 
in any game book.  

 

Definition 2.2. If players A and B propose the mixed strategies, respectively, 
then the expected pay-off of player A is defined by: 

∑∑
= =

=
n

j

m

i
jiij

t yxaDyx
1 1

.                                          (3) 

Since we deal with a zero-sum game, the expected pay-off of player B is 
Dyxt− . Based on (3), the optimal strategies (Nash equilibrium) of players are 

defined as follows. 
 

Definition 2.3. Player A’s mixed strategy *x  and player B’s mixed strategy *y
are said to be optimal strategies under the Nash equilibrium in the game (1) 
(Larbani, 2009) if   *** DyxDyx tt ≤ and ***  DyxDyx tt ≤ , for any mixed strategies 
x and y. Player A’s objective is maximising his pay-off over all possible x when 
player B chooses his best strategy *y ; on the contrary, Player B’s objective is 
minimising his pay-off over all possible y when player A chooses his best strate-
gy *x . 

 

Remark 2.3. Various definitions of equilibrium inevitably lead to multiple 
mathematical conditions of x and y; however, only the Nash equilibrium is used 
in this study. The Nash equilibrium is: whether it is from the view of Player A or 
Player B, no one can propose better ( **x , **y ), which are not ( *x , *y ), but satis-
fies   ******* DyxDyx tt ≤ and *******  DyxDyx tt ≤ . In other words, no player is will-
ing to drop the current *x and *y  to find another better **x and **y  because their 
pay-offs by **x and **y are worse than those of equilibrium by *x and *y . 

 

Lemma 2.1. Consider the two-person zero-sum game (1). Any solution *x to the 
following optimisation problem: 
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                          (4) 

st 1=m
t ex  

0≥x  

is an optimal strategy of player A. Here 0≥x  means that all components of x  
are greater than or equal to zero. While any solution *y of the following optimi-
zation problem:  
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j
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n

j
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yayayaMaxMin ∑∑∑
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                           (5) 

st 1=n
t ey  

0≥y  

is an optimal strategy of player B. 
 

Remark 2.4. Player A’s decision is using the Max-Min principle for his strategy 
x, i.e. player A first minimises his expected pay-off according to a different 
strategy y of B, and then maximises his minimal expected pay-off by x. On the 
contrary, player B’s decision is using the Min-Max principle for his strategy y, 
i.e. player B first maximises his expected pay-off according to a different strate-
gy x of A, and then maximises his maximal expected pay-off by y.  

Finding optimal strategies of players by solving problems (4) and (5) is  
a common task in the game theory: Theorem 2.1 helps us to find the optimal 
strategies of players (Osborne & Rubinstein, 1994). 

 

Theorem 2.1. Given a pay-off matrix D, the optimal strategies defined via (4) 
and (5) are solved by the following problems: 

m
t

x
exMin ′

′
                                                 (6) 

st t
n

t eDx ≥′  

0≥′x  

and 
n

t

y
eyMax ′

′
                                                 (7) 

st meyD ≤′  

.0≥′y  
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2.1.2. MADM game 
 

The idea of the MADM game was initially proposed by Chen (2004, 2006) 
and completed in the work of Chen & Larbani (2006). This concept is straight- 
-forward: let’s view the game (1) as an MADM problem and the pay-off matrix 
as the decision matrix. Since no relevant literature of MADM game was pro-
posed before, the following idea strictly follows previous papers and assumes 
that the MADM process is a two-person zero-sum game, which is played by the 
decision maker and Nature. Nature is not rational, not malicious, and does not 
have any idea for the decision maker’s preference on each alternative. The new 
approach presented in the paper is supported by the decision maker’s conserva-
tive strategy. Why and how such an interesting thought comes? It is easy to ob-
serve that every manager makes several decisions every day against, e.g. limited 
time, limited information, limited resources, etc. But each manager still wants  
a better decision, although everything is limited, i.e. against him. Therefore, this 
two-person zero-sum game is undoubtedly appropriate for resolving the conflicts 
of a decision maker, and it can be solved by Theorem 2.1 (Osborne & Rubin-
stein, 1994).  

 

Definition 2.4. Suppose a decision maker has m alternatives ( miAlti ,...,2,1, = ) 
concerning n attributes ( njC j ,...,2,1, = ) in an MADM process, then his crisp 

decision matrix D is defined as follows: 

D = 

mAlt

Alt
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                                  (8)  

where 0≥ija  represents the evaluation of alternative i with respect to attribute 
j; i =1,2,…, m; j =1,2,…,n. Similarly, if 0≤ija , we just need to simply change 

the inequalities of problems (6)-(7) accordingly. 
 

Definition 2.5. For a crisp D, the expected score of alternative i: )( iAltES  is 

defined as follows: 

∑
=

=
n

j
jijii yaxAltES

1

**)(                                          (9) 
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where **, ji yx  are the components of optimally mixed strategies ** , yx in Defini-
tion 2.1, ** , ji yx  can be easily found by Theorem 2.1. 

 

Remark 2.1. This definition shows that the performance of an alternative in 
MADM is computed just like computing the probable outcome in a two-person 
zero-sum game when player A decides his final strategy. The higher the ES(Alti), 
the more the alternative Alti is preferred. Although the MADM game is quite 
simple, there is an interesting link between the MADM game and the weighting 
multi-objective DEA, this will be explored and validated later. 
 
 
2.2. CCR DEA model with applications 
 

The DEA model, developed by Charnes et al. (1978), is the mathematical 
programming model that modifies defects of the Farrell model, which is unable 
to handle several inputs and outputs. Within this model, it is assumed that there 
are n decision-making units (DMUs), with m inputs and p outputs, while the 
efficiency evaluation model of kth DMU can be defined as in Equation (10). 

Max 

ik

m

i
i

p

r
rkr

k

xv

yu
f

∑

∑

=

==

1

1                                            (10) 

st 1

1

1 ≤

∑

∑

=

=

ik

m

i
i

p

r
rkr

xv

yu
, k=1,2,…,n; 

 

 

where: 
xik – the ith input value for kth DMU, 
yrk  – the rth output value for the kth DMU, 
ur – the weight values of the output, 
vi – the weight values of the input,  
ε  – a small positive value. 

;,...,2,1, prur =≥ ε

.,...,2,1, mivi =≥ ε



Yuh Wen Chen 

 

164 

It is difficult to obtain the solution from Equation (10) because it is a non- 
-linear programming problem. Charnes et al. (1978) transformed the Equation 
(10) into a linear programming problem in Equation (11), by which a decision 
maker can more easily obtain a solution.  

Max ∑
=

=
p

r
rkrk yu

1
θ                                            (11) 

st 1
1

=∑
=

ik

m

i
i xv  

0
11

≤−∑∑
==

ik

m

i
i

p

r
rkr xvyu , k = 1,2,…,n; 

 

 

where is the efficiency value for the  DMU,  is a crisp number under 
 and . The traditional CCR DEA model is useful for computing each 

DMU’s efficiency from one by one, then decide the overall efficiency for each 
DMU. Suppose there are n DMUs for efficiency evaluation, the problem (11) 
must be solved n times. If a decision maker applies the multi-objective approach 
to the CCR DEA model, it is valuable to reduce the n computations to just one 
time. This multi-objective DEA problem is presented in Section 3.1.  

There are still many applications of CCR DEA model after 2010. For ex-
ample, Chen & Jia (2017) introspected China’s rapid economic growth, which 
led to tremendous pressure on natural resources. They used the CCR DEA method 
with slack analysis to evaluate the environmental efficiencies of China’s in-
dustry from 2008 to 2012. Yang, Ouyang, Fang, Ye, & Zhang (2015) measured 
the ecological efficiencies in China during the period of 2000-2010, and con-
cluded that environmental efficiencies across 30 provinces show regional dispar-
ities. Barros & Athanassiou (2015) compared the seaport efficiency between 
Greece and Portugal, they tried to find out those best practices that will lead to 
improved performance in the context of European seaport policy. Yang, Wu, 
Liang, Bi, & Wu (2011) proposed the production possibility set, and a supply 
chain of CCR DEA model to appraise the overall technical efficiency of supply 
chains. Mousavi-Avval, Rafiee, Jafari, & Mohammadi (2011) used the CCR 
DEA to estimate the energy efficiencies of soybean producers based on eight 
energy inputs including human labour, diesel fuel, machinery, fertilisers, chemi-

;,...,2,1, prur =≥ ε

.,...,2,1, mivi =≥ ε

kθ
thk kθ

ikx rky
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cals, water for irrigation, electricity and seed energy, and single output of grain 
yield. They ranked efficient and inefficient farmers, then identified optimal en-
ergy requirement and wasteful uses of energy.  
 
 
2.3. Multi-objective programming problem 
 

We introduce the traditional linear programming with q linear objective 
functions as follows (Steuer, 1986; Stewart, 1996; Zeleny, 1973): 

Max z(x) = 1(z  ( x ),  2z  ( x )  ,…, qz  ( x )) T                      (12) 

s.t. Ax b,  x 0 

where:  
kz  ( x ) – an objective function for the k-th objective, k =1,2,…,q, 

x – the decision variable vector, x ( )Tnxxx ,...,, 21= , 

b – the Right Hand Side (RHS) vector, b ( )Tmbbb ,...,, 21= , 
A – the coefficient matrix, [ ]

nmija
×

=A . 
 

There are also many resolution approaches for the problem (12), e.g. the 
weighting method or the distance method (Steuer, 1986). The simple weighting 
approach is used in this study. That is, once the weight for the k-th objective is 

determined as kw  and 1
1

=∑
=

n

k
kw , then the problem (12) can be resolved by the 

following weighting method: 

Max  z(x) = k

q

k
k zw∑

=1

 ( x )                                      (13) 

s.t. Ax b,  x 0 
 
 
3. Research methodology 
 

Here, the exciting link between the MADM game and the weighting multi- 
-objective DEA will be explored and validated. 
 
 
 

≤ ≥

≤ ≥
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3.1. Multi-objective DEA 
 

Let us consider the Eq. (10) again for a given DMU k: 

Max 
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, k = 1,2,…,n; 

 

 

Now, we drop the assumption 1
1

=∑
=

ik

m

i
i xv , normalising the weighted input 

of the k-th DMU in (14).  

We introduce our multi-objective approach for DEA as follows:  

a) since 
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1  and 1
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 are assumed in the CCR DEA model, 

then 1

1

1 ≤=

∑

∑

=
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m

i
i

p

r
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k

xv

yu
f  for a given k-th DMU; 

b) we use the multi-objective approach here to maximise the efficiency of all 
DMUs at the same time; and the referred standard of efficiency will be  
a trade-off boundary among the performances ( kf , k = 1,2,…,n) of n DMUs; 

c)  since 1

1

1 ≤=

∑

∑

=

=

ik

m

i
i

p

r
rkr

k

xv

yu
f  in (a), it is easy to show that 0

11
≥−= ∑∑

==

p

r
rkrik

m

i
ik yuxvg  

for each DMU, and the ideal optimum of kg  should be zero. 

;,...,2,1, prur =≥ ε

.,...,2,1, mivi =≥ ε
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Here ∑∑
==

−=
p

r
rkrik

m

i
ik yuxvg

11

 is now used to replace those above kf ; thus, 

we can deduce the multi-objective CCR DEA model by (b) as follows: 
Min ∑∑
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When kg  is zero, this also implies that the k-th DMU satisfies 
1

p

r rk
r

u y
=
∑ =

1

m

i ik
i

v x
=
∑ . 

Now, we introduce the weighting method of MOLP from Eq. (13) to minim-
ise the gap between the ideal vector of ( ∗

1g , ∗
2g …, ∗

ng ) = (0,0,…,0), then the 

problem (15) can be rewritten as: 
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k
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, k = 1,2,…,n. 

 

;,...,2,1, prur =≥ ε

.,...,2,1, mivi =≥ ε

;,...,2,1, prur =≥ ε

.,...,2,1, mivi =≥ ε
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Here kw  represents the weight of the k-th DMU. If we introduce a dual vari-
able for each constraint, kλ , ss1 and rs2 , we get the following slack analysis prob-
lem once the kw  is determined: 

Max ε ( ∑∑
==

+
m

i
i

p

r
r ss

1
1

1
2 )                                          (17) 

st rs2 rk

n

k
k y∑
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−
1
λ ≤ ∑
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−
n

l
rkk yw

1

,  r=1,2,…,p; 

is1 ik

n

k
k x∑

=

+
1
λ ≤ ∑

=

n

k
ikk xw

1

,  i=1,2,…,m; 

kλ , rs2  , is1 ≥ 0. 

According to the MOLP theory, in general, there could be many points in 
the trade-off boundary (efficient frontier), when we set the unique kw . The prob-
lem (17) is used for slack analysis by referring the given kw to show the ineffi-

cient DMUs how to adjust their input/output to increase their efficiencies. Since 
the model (16) is valuable in measuring global efficiency, it is used for the later 
analysis of R&D efficiency example. The remained difficulty for the problem 
(16) is how can we decide the weight kw ? The MADM game for DEA in the 

next section seems to be a right answer. 
 

 
3.2. MADM game for DEA 
 

Now, let’s revisit the MADM game, which has the following special deci-
sion matrix: 
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Here kw  also represents the normalised weight of the k-th DMU, where 

∑∑
==

+=
p

r
r

m

i
i uvd

11

, then
d
v

v i
i =′  represents the normalised DEA weight of the i-th 
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input, and 
d
u

u r
r =′  represents the normalised DEA weight of the r-th output. 

The following propositions show an interesting link between the two-person 
zero-sum game (18) and the problem (16). 

 

Proposition 3.1. Consider the MADM game (18), if the *
kw  satisfies the equilib-

rium of game (18), then this *
kw  automatically satisfies the weighting objective op-

timum (weighting Pareto optimum) of the problem (16): i.e. *

1

*

1

*
k

n

k
kk

n

k
k gwgw ∑∑

==

≥ . 

Here ∑∑
==

−=
p

r
rkrik

m

i
ik yuxvg

1

*

1

** . 

 

Proof. This proof is simple: let’s first assume the *
kw  satisfies the equilibrium of 

MADM game (20). And please recall the equilibrium of game (1) is 
***  DyxDyx tt ≤ and ***  DyxDyx tt ≤ . Consider the two-person zero-sum game (18) 

for MADM, now the decision matrix D is exactly in (18), if we replace the x 
vector by ],...,,[ 21 nwwww =  and replace the y vector by 

1,2121 ],...,,,,...,,[ pmpm uuuvvv +′′′′′′ ; thus, the following conditions are held for each 

DMU: 

kgwgwkxvyuwxvyuw kkkkik
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k
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1
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and  

kgwgwixvyuwxvyuw kkkkik

n
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ikrk

n
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n

k
ikrk

n

k
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,),( )( ****
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*

1
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11

*   (20) 

Then summing up the Eq.(20) for k = 1,2,…,n, it is clear we get: 
*

1

*

1

*
k

n

k
kk

n

k
k gwgw ∑∑

==

≥ . This means the *
kw  generated in the game (18) is identical to 

aggregate the multiple objectives of the problem (16) by weighting concept.  
 

Proposition 3.2. Consider the game (18), which additionally includes three con-

straints: (a) 0
11

≤−∑∑
==

ik

m

i
i

p

r
rkr xvyu , k = 1,2,…,n, (b) and (c) 

 Then such a modified game is a weighting multi-objective 

;,...,2,1, prur =≥ ε

.,...,2,1, mivi =≥ ε
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DEA model, which is identical to solving the problem (16) with an additional 

constraint: duv
p

r
r

m

i
i =+∑∑

== 11

 by the *
kw  weighting.  

 

Proof. If we want to conclude that two optimising problems are synonymous, 
we can compare their objectives and constraints between them simultaneously. 
The Proposition 3.1 already validates the *

kw  in (18) is identical to the weighting 

concept to aggregate the multiple objectives in (16). Now, the remained part is to 
check the constraints. We introduce the synonymous problems of Theorem 2.1: 

Ax
vMax                                                    (21) 

st t
nA

t evDx  ≥  

1=m
tex , .0≥x  

By
vMin                                                    (22) 

st mBevDy ≤  

,1=n
t ey  .0≥y  
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11
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mjj

n

j
j yaya ∑∑

==

. In addition, 
Av
xx =′  and 

Bv
yy =′ , if we replace the  

Av ( Bv ) by d, replace x vector by w  and replace the y vector by 1,],[ pmuv +′′ =  
= 1,2121 ],...,,,,...,,[ pmpm uuuvvv +′′′′′′ , then the problems (21)-(22) are deduced to the 

game (18), which can be solved by the problems (23)-(24): 

dMax
x

                                                    (23) 

st t
n

t edDw  ≥  

1=m
t ew , .0≥w  

dMin
y

                                                    (24) 

st mpm deuvD ≤′′ + 1,],[  

,1],[ 1, =′′ + n
t

pm euv  .0],[ 1, ≥′′ + pmuv  
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The problem (23) decides the *
kw , and the problem (24) determines the 

( ), **
ir vu ′′ . But when readers compare the problem (24) with the multi-objective 

DEA problem (16), it is obvious that the problem (24) lacks the constraints:  

(a) 0
11

≤−∑∑
==

ik

m

i
i

p

r
rkr xvyu , k = 1,2,…,n, (b)  r = 1,2.…,p, and (c)   

i = 1,2,…,m. On the contrary, if we compare the problem (16) with the problem 
(24), it is clear that the problem (16) lacks the normalisation condition: 

duv
p

r
r

m

i
i =+∑∑

== 11

. Thus, this study proposes the new multi-objective DEA to 

completely bridge the gap between the problem (24) and the problem (16). That 
is, we present a new problem: Eq. (24) combining with (a), (b) and (c) is suffi-
cient to represent the new multi-objective DEA problem: Eq. (16) combing with 

an additional constraint: duv
p

r
r

m

i
i =+∑∑

== 11

.  

 
 
4. Research findings and discussions 
 

We compute the scores of R&D efficiencies from ten liquid-crystal display 
(LCD) companies in Taiwan as an actual application. First of all, the earlier lit-
erature of this industry (Chan, 2003; Khalil, 2000; Murphy, Trailer, & Hill, 1996; 
Naik & Chakravarty, 1992, Tseng, Chiu, & Chen, 2009) is reviewed to define 
appropriate input and output variables. Three input variables are defined as the 
operational cost, the number of R&D faculty, and the R&D expense. The output 
variables are defined as the net profit and the number of patents. The normalisa-
tion process of the actual data of these companies is dividing each column ele-
ment by the maximal value in its corresponding column. The normalised value 
will be ranging from 0 to 1 in Table 1.  
 
Table 1. Normalised R&D data of ten LCD companies 

Company 
Inputs Outputs 

Operational 
cost 

Number of 
R&D faculty R&D expense Net profit Number of 

patents 
1 2 3 4 5 6 

A 1.000 1.000 1.000 1.000 1.000 
B 0.701 0.193 0.835 0.703 0.403 
C 0.420 0.415 0.714 0.361 0.210 
D 0.343 0.081 0.307 0.284 0.081 
E 0.350 0.060 0.329 0.287 0.133 
F 0.058 0.202 0.088 0.053 0.036 

,ur ≥ε ,vi ≥ε
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Table 1 cont. 

1 2 3 4 5 6 
G 0.241 0.023 0.164 0.239 0.250 
H 0.258 0.088 0.167 0.237 0.274 
I 0.122 0.085 0.282 0.101 0.238 
J 0.018 0.007 0.030 0.015 0.044 

 
When ε  is set to 0.001, we resolve the modified MADM game for d and 

( ** , ir vu ′′ ) by Eq. (23)-(24), then from the MADM game perspective for DEA, we 

found 1* =d , only the DMU1  has the *
1w =1 (DMU1  is the referred efficient 

point for the other DMUs) and the *
kw =0 for the other DMUs, k = 2,3,..,10; fur-

thermore, *
1v = 0.489, *

2v = 0.001 *
3v = 0.009 *

1u ∗ଶݑ  ,0.499 = =0.001. Thus, these 
results of Table 2 are obtained by applying the equation ( ** , ir vu ′′ ) above. The 
problem above ( ** , ir vu ′′ ) form the MADM game for DEA, is identical to resolv-
ing the multi-objective DEA problem (16) by using only *

1w =1 and adding the 

constraint: 1
11

=+∑∑
==

p

r
r

m

i
i uv  into Eq. (16). Given Table 2, Company G’s and B’s 

global efficiencies are the best, but Company I’s and J’s global efficiencies are 
the worst. Suggested improvements for each DMU achieving higher scores are 
summarized in Table 3 by the slack analysis problem (17). 
 
Table 2. R&D efficiency of ten LCD companies 

Company Global Efficiency Score 
A 0.984 
B 0.985 
C 0.835 
D 0.818 
E 0.808 
F 0.887 
G 0.985 
H 0.910 
I 0.798 
J 0.784 

 
Table 3. Suggested improvements of ten LCD companies 

Company 
Inputs Outputs 

Operational 
cost 

Number of 
R&D faculty R&D expense Net profit Number of 

patents 
1 2 3 4 5 6 
A 0 0 0 0 0 
B 0 0 0 0 0 
C 0 –1,627 –2,081,094 +12,059,880 +56 
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Table 3 cont. 

1 2 3 4 5 6 
D 0 –208 –354,870 +12,168,527 +68 
E 0 –112 –441,400 +13,037,708 +57 
F 0 –852 –233,339 +977,828 +6 
G 0 0 0 0 0 
H –12,144 –1 0 +6,953 0 
I 0 –217 –587,236 +1,607,984 0 
J 0 0 –340 +2,390 0 

Note:  
1. The profit/cost are displayed by the unit of a thousand Taiwanese Dollar. 
2. Here “+” represents the increment; on the contrary, “−” denotes the decrement. 
 

This paper proposes a new model which differs from traditional and exist-
ing multi-objective DEA models in that its objective function is the difference 
between inputs and outputs instead of the ratio of outputs/inputs. Nevertheless, 
the linear programming problem simplifies the ration difficulty in traditional 
DEA problems. Then an MOLP problem is formulated for the computation of 
common weights for all DMUs by game theory. To be precise, the modified 
MADM game is used to generate standard weights. The dual problem of this 
model is also investigated. Finally, the MADM game for DEA is eventually 
synonymous to the weighting multi-objective DEA according to our new formu-
lations in this study. 
 
 
5. Conclusions and recommendations 
 

This section is arranged into three parts: research contribution, research im-
plication, research limitation and future works.  
 
 
5.1. Research contribution 
 

This study successfully extends the traditional CCR DEA model by the 
concept of multi-objective linear programming (MOLP) problem, which is syn-
onymous to an MADM game in this study. This new approach is quite different 
from the earlier multi-objective DEA approaches. The advantage of using this 
new model reduces the computation times from n to 1 because the referred DMU 
is automatically decided. Moreover, considering the resolution of multi- 
-objective programming problem for DEA here, the decision maker does not need 
to worry how to set these weights among DMUs/objectives, this MADM game 
will decide the weights among DMUs and the weights of ( ** , ir vu ) simultaneously. 
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Furthermore, the *
kw  also clearly shows us what the referred efficient DMU is 

and which DMU is seen by how much.  
This newly multi-objective vision is useful, straightforward, and simplifies 

the problem of selecting the referred DMU and the computational complexity in 
the traditional CCR DEA model. Also, a new link between the multi-objective 
CCR DEA and the MADM game is established and validated in this study.  

According to the computational example, this new model performs well and 
finds two companies: I and J which have poor scores. Moreover, the slack ana-
lysis helps us to find the suggested improvements in Table 3. Generally speaking, 
high R&D expense and low net profit lead to inefficiency of most companies. 
 
 
5.2. Research implication 
 

First, from the theoretical perspective, previous scholars from the field of 
multiple criteria decision making (MCDM) pointed to the fascinating relation-
ship between the MOLP problem and the DEA problem. They explored the 
common weight approach to DEA based on MOLP. The common weight method 
eventually came from the idea of compromised programming in MCDM. This 
study explores further based on the past efforts. Therefore, a new linear pro-
gramming problem for computing the efficiency of a decision-making unit 
(DMU) by the two-person zero-sum game theory is initially introduced here. 
The proposed model is very different from traditional and existing multi- 
-objective DEA models since its objective function is the difference between 
inputs and outputs instead of using the ratio. The dual problem of slack analysis 
for the new model is also investigated.  

Secondly, from the perspective of practitioners, most of the Taiwan busi-
ness operate in a medium or small scale: they possess the characteristics of Ori-
ginal Equipment Manufacturer (OEM). Low pricing, high responsiveness and 
mass production are their key competitiveness factors (Khalil, 2000; Naik  
& Chakravarty, 1992). Since OEM companies manufacture by orders, it is really 
difficult to foresee the actual demand in the market. They must continuously 
seek to enlarge the market share by mass production, high responsiveness, and 
low pricing. In simple terms, these companies produce fashioned electronics 
competing with time. Besides, most of Taiwan’s LCD technologies are initially 
imported from Japan or Korea. These Taiwan companies must pay the high 
R&D expenses to get the privilege of using or extending these technologies in 
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production. Thus, the R&D faculty is under very high pressure to fully and effi-
ciently utilise the intellectual properties (IP) because the technology life cycle is 
concise nowadays (Khalil, 2000). That is why most of the companies are sug-
gested to reduce the related expenses from R&D in Table 3. In summary, these 
companies are not able to produce adequate quantity of LCD (economics of 
scale) under such high R&D expenses and short product life cycle. 
 
 
5.3. Research limitations and future works 
 

This paper proposes and validates an exciting link between (MOLP) DEA 
problem and an MADM game when they are used for computing the common 
weights. Although the model proposed in this study may be unique and strict, 
this could be an innovative and interesting attempt to bridge the gap between the 
weighing MOLP of DEA and the MADM game of DEA. Interested readers 
could explore more issues shortly. For example, since the transformation pro-
posed here is unique, scholars need to explore its general form and implication. 
However, there are still few papers exploring the MADA game and its extension 
and adoption for broader uses. 

Moreover, we still need to analyse the computational results with care be-
cause of the selected inputs and outputs. The more detailed research for relevant 
variables of input and output for precise and correct measure the R&D efficien-
cies of companies is required. Finally, some non-linear production functions can 
also be explored in future studies by non-linear games with multi-objective op-
timisation (Miettinen, 1999) when re-solving the DEA weights. 
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