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Abstract 

 

The rise of the Internet has led to a huge amount of information being 
available at the touch of a button. This article presents a model of searching 
for a valuable good, e.g. a new flat, using the Internet to gain initial 
information about the offers available. This information is used to create  
a short list of offers to be observed more closely before making a final 
decision. Although there has been a lot of recent work on the use of short lists 
in decision making procedures, there has been very little work on how the 
length of a short list should depend on the parameters of the search problem. 
This article addresses this problem and gives results on the optimal length of 
a short list when a searcher is to choose one of n offers and the search costs 
are convex in the length of the short list. Several examples are considered. 

 

Keywords: secretary problem, incomplete information, payment for additional information, 
agglomeration of multiple traits. 
 
1 Introduction 
 
This paper considers procedures of searching for a valuable good using short 
lists of promising offers to be inspected more closely. For example, suppose an 
individual living in a relatively large city is looking for a new flat. Nowadays, it 
is easy to obtain basic information on a large number of flats, e.g. price, floor 
space and location. Purchasing a flat simply on the basis of information from the 
Internet would be highly risky (without closer, physical inspection it would be 
difficult to assess how appropriate an offer is). However, viewing all the flats 
that might be suitable based on size, price and location might well be prohibitive 
in terms of the search costs involved. Hence, a strategy based on the concept of  
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a short list, i.e a relatively small set of seemingly attractive offers that are 
inspected more closely before a purchasing decision is made, is a natural 
heuristic to use in such scenarios.  

Heuristics are useful tools due to the cognitive limitations of decision makers 
(DMs). Successful heuristics should be adapted to the abilities of DMs and the 
structure of the information gained during search (see Simon, 1955, 1956; Todd 
and Gigerenzer, 2000, as well Bobadilla-Suarez and Love, 2018). There has 
been a lot of recent research on the concept of short lists and the situations in 
which they are useful in decision making. Short lists are useful when the amount 
of information available exceeds the cognitive abilities of DMs or the costs of 
exhaustive search are too high (see Masatlioglu et al., 2012; Lleras et al., 2017). 
For example, short lists of possible holiday destinations can be constructed using 
information from friends and colleagues (see Bora and Kops, 2019). The use of 
short lists may also be useful when offers can be categorized (Armouti-Hansen 
and Kops, 2018). When using the Internet to search for offers, filters may be 
used to search a list of offers with multiple attributes by arranging offers 
according to traits that are seen to be the most important in the decision process 
(see Rubinstein and Salant, 2006; Mandler et al., 2012; Kimya, 2018). Mandler 
et al. (2012) argue that by considering the traits of an offer in order of decreasing 
importance, a DM acts in a similar manner to a utility maximizer. Kimya (2018) 
considers a similar problem where offers that are assessed the least positively 
according to a given trait are eliminated, starting with the most important trait. 
Such a procedure can be thought of as a strategy based on constructing short lists 
of decreasing size until a final decision is made.  

This paper considers a model in which information from the Internet (or other 
information-rich source) plays an instrumental role in searching for a valuable 
resource, such as a second-hand car or a flat, but is supplemented by closer 
inspection of offers, which is assumed to occur offline. The cost of physically 
visiting and inspecting an offer is assumed to be much more costly than finding 
an offer via the Internet and inspecting the information contained there. For 
example, Internet search for a flat could begin by eliminating offers that do not 
satisfy the hard constraints defined by the DM based on price, floor space, number 
of rooms and location. If a large number of offers still remain (which is likely in 
large towns or cities), then the DM can make a short list of flats to view based on 
his/her preferences. The model assumes that the market is large enough to ensure 
that the best of the offers observed from this short list is acceptable to the DM. 

Although much research has been carried out recently on theoretical aspects 
of using short lists, little work has been carried out on the question of how long 
short lists should be depending on the parameters of the search problem and the 
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structure of the information. For example, when searching for a specialist 
employee, an employer often interviews a short list of four or five promising 
candidates based on a set of written applications. One obvious question regards 
the scenarios in which using short lists of such moderate length are optimal or 
near-optimal. The model presented in this paper is a step towards answering 
such questions. 

 The approach used in this paper is broadly based on theory regarding choice 
from a set of offers observed in parallel. Even when offers can be, in theory, 
considered in parallel, Saad and Russo (1996) and Bobadilla-Suarez and Love 
(2018) note that the order in which offers are observed may be important. For 
example, since the physical appearance of two flats cannot be compared in 
parallel, it is difficult to assess the first flat to be visited, since it cannot even be 
compared to a mental picture of other offers. Similarly, an average offer might 
be regarded as attractive if it appears after one or two unattractive offers. Hence, 
the theory of sequential search is also applicable to such decision problems. 

In problems involving the choice of one offer from a set presented in parallel, 
one might suppose that a search procedure should satisfy the Weak Axiom of 
Revealed Preferences (WARP, see Lleras et al., 2017). In words, this criterion 
states that when offers x and y belong to both of the sets S and T and x is chosen 
from the set S, then y is never chosen from the set T. In mathematical 
terminology, [ܿ(ܵ) = ,ݔ ݕ ∈ ܵ, ݔ ∈ ܶ] ⇒ [ܿ(ܶ) ≠  .[ݕ

The following example shows that a search procedure based on forming  
a short list of fixed length does not satisfy the WARP criterion. Suppose x and y 
are two offers such that initial inspection indicates that offer y is more attractive 
than offer x, but closer inspection reveals that offer x is better than offer y. One 
may define sets of offers S and T, such that both x and y would be on the short 
list of offers from set S and x is chosen, but x is not on the short list of offers 
from set T and the offer y is chosen.  

Stigler (1961) presents a model of costly search for a good. The strategy of 
the DM is the number of offers to investigate, k. After observing these offers, the 
DM accepts the best offer (i.e. offers are essentially observed in parallel). The 
optimal number of offers to observe, ݇∗ is the smallest value ݇ such that the 
expected gain from observing an additional offer is less than the cost of 
observing an offer. In order to derive this optimal strategy, the DM needs to 
know the distribution of the values of offers and the cost of observing an offer. 

MacQueen (1964) derives the form of the optimal strategy for a sequential 
search problem of a similar form to the one presented here. The search costs are 
assumed to be linear in both the number of offers seen and the number of offers 

(1) 
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inspected closely. A DM first decides whether to inspect an offer more closely 
based on an initial signal. After closer investigation, the DM either accepts the 
offer or continues searching. No recall of previous offers is possible. Under the 
optimal strategy, the DM closely investigates an offer only when the initial 
indicator of the value of an offer exceeds a given threshold. An offer is only 
accepted when its value according to the two signals exceeds a given threshold. 
Ramsey (2015) gives theoretical and numerical results for such problems when 
the two signals come from a joint normal distribution. To realise a strategy of 
this form, the precise values of the signals must be observed and to derive the 
optimal strategy, the DM should know the joint distribution of the signals. 

Simon (1955) introduces the concept of satisficing, which can be adapted to 
both parallel and sequential search. Suppose two signals indicate the value of an 
offer. In sequential search, the DM observes the second signal only if the initial 
signal exceeds a given threshold. Given the second signal is observed, an offer is 
accepted if the second signal (considered on its own) exceeds an appropriate 
threshold). Assuming that the traits are observed in decreasing order of 
importance, such a strategy is normally near optimal (see Bearden and Connolly, 
2007, 2008; Chun 2015).  

Hogarth and Karelaia (2005) consider a similar model of parallel search 
based on deterministic elimination by aspects. Traits are assessed in decreasing 
order of importance. Offers that do not satisfy constraints based on successive 
traits are eliminated until either only one offer is left (which is then chosen), 
none of the offers satisfy the current constraint or all traits have been considered. 
In the final two cases, choice is made at random from the final non-empty set of 
offers.  

Analytis et al. (2014) presents a similar model to the one presented here. 
There are two rounds of inspection. In the first round (parallel search), offers are 
ranked on the basis of an initial signal. In the second round (sequential search), 
the DM closely observes offers starting with the highest ranked and stops when 
the value of an offer exceeds the expected reward from future search. To realise 
such a strategy, the values of the offers must be observed and deriving the 
optimal strategy requires knowledge of the distribution of the value of an offer 
given the signal observed in the first round. 

The model considered here assumes that search is parallel in both rounds. In 
the first round, a fixed number, n, of offers are ranked according to an initial 
signal. The k most highly ranked offers are then investigated more closely, after 
which the currently highest ranked offer is accepted. The payoff obtained is 
assumed to be a function of the values of the signals (or the rank according to 
this function) minus the search costs incurred. To realise a strategy of this form, 
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the DM must be able to rank the observations according to the signals observed. 
Derivation of the optimal strategy requires knowledge of the joint distribution of 
the signals. Future research will investigate how robust a given strategy is to 
changes in the parameters (distribution of the signals, search costs). The search 
costs are assumed to be convex in the length of the short list. This reflects the 
fact that both the time spent searching and the cognitive effort involved are 
increasing in the length of the short list. 

Section 2 considers the model. Section 3 presents a general result regarding 
the optimal length of a short list. Numerical results for three examples are 
presented in section 4. Section 5 gives a discussion of these results and section 6 
presents some conclusions and directions for future research. 
 

2  A model of search using short lists 
 

A decision maker (DM) must choose one of n offers. The DM first observes in 
parallel a signal of the value of each offer. Assume that a linear ranking (from  
1 to n) can be assigned to these initial signals (the rank i corresponds to the i-th 
best offer). This ranking will be called the initial ranking. The strategy of the 
DM is defined by the length of the short list, k, where 1 ≤ ݇ ≤ ݊. When 1 < ݇ < ݊, then in the second round the DM observes another signal of the 
value of the k best offers from the initial ranking. If k = 1, then the DM 
automatically chooses the best offer according to the initial ranking without 
observing the additional signal. If k = n, then the DM observes all of the offers 
closely. It is assumed that given the DM closely observes all the offers, then 
he/she can assign a linear ranking to these offers based on these signals 
combined. This ranking will be called the overall ranking. Naturally, after closer 
inspection, the DM can only rank the k offers on the short list with respect to 
each other (the DM’s partial ranking). Assume that this partial ranking is in 
accordance with the overall ranking, i.e. offer i is ranked more highly than offer j 
in a partial ranking if and only if i is ranked more highly than offer j in the 
overall ranking. For convenience, it is assumed that if a DM is using a short list 
of length ݇, then the partial ranking of any offer that is not included in the 
second round of inspection is ݇ + 1. 

Note that any method for ranking based on multiple criteria (e.g. TOPSIS, see 
Yoon and Hwang, 1995) may be used to rank offers according to the initial 
signal and then rank the offers on the short list according to both signals. Such 
an approach will be adopted in the future. 

Denote the set of permutations of (1, 2,…, n) by S. Let ߨ = (ܽଵ, ܽଶ, … , ܽ)	߳	ܵ. Such a permutation can be used to denote the initial 
ranking of the offers according to their overall rankings such that the offer 
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ranked i overall has ranking ai in the initial ranking. Let (ߨ) be the probability 
that the initial ranking is given by ߨ and define (݆) to be the probability that 
the overall rank of an offer is i given that its initial rank is j. It follows that 
(݆)  = 	∑ ୀ	గ:.(ߨ)  
  

Let ܴ 	denote the random variable describing the overall rank of the offer 

with initial rank j. Assume that when ݅ < ݆, then ܴ is stochastically dominated 
by ܴ, i.e. if object i has a better rank than object j based on the initial signal, 

then offer i is expected to have a better rank than offer j overall.  
For the purposes of this article, it will be assumed that each offer can be 

described by a pair of random variables, ଵܺ and ܺଶ, which come from  
a continuous joint distribution. The random variable ଵܺ describes the signal 
observed on initial inspection (the initial ranking is based on this signal) and the 
random variable ܺଶ describes the signal received after closer inspection. Note 
that ଵܺ and ܺଶ may be correlated with each other, but the pairs of numbers 
describing each offer are independent realizations from this joint distribution. 
The overall ranking of the object is based on ܷ, where ܷ = 	 ଵܺ + ܺଶ. It is 
assumed that ܷ is stochastically increasing in the value of ଵܺ (this is 
automatically satisfied when ଵܺ and ܺଶ are independent). 

We consider two models. According to Model A, the value of an offer to the 
DM is a non-increasing function of its overall rank. Under Model B, the value of 
an offer to the DM is given by ܷ. It should be noted that the DM does not 
observe the numerical values of these signals, and hence does not observe the 
value of an offer, but can rank all the offers according to the initial signal and 
rank the offers that are closely inspected according to their value (the partial 
ranking). In other words, it is assumed that the DM can make perfect pairwise 
comparisons between objects, e.g. if ݅ < ݆, then an offer of partial rank i has  
a greater value to the DM than an offer of partial rank j. Define ܹ to be the 
value of the offer with initial rank i. Note that when ݅ < ݆, then under both 
models ܴ and ܹ are stochastically dominated by ܴ and ܹ ,	respectively.  

The DM’s goal is to maximize the expected reward from search, which is 
defined to be the value of the offer accepted minus the search costs. Under 
Model A, the expected value of the offer accepted should be calculated with 
respect to the distribution of the overall rank of an offer given that its partial 
rank is equal to one. Under Model B, the expected value of the offer accepted 
should be calculated with respect to the distribution of ܷ given that the partial 
rank of the offer is equal to one. The following two problems appear with regard 
to these assumptions. Firstly, calculation of the expected value of an offer given 
that its partial ranking is equal to one can be highly complex. Although in the 

(2) 
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particular cases of ݇ = 1 and ݇ = ݊, such calculations may be tractable, the 
results presented here are derived from simulations. Secondly, although the DM 
aims to maximize the expected reward from search, the DM cannot actually measure 
this reward. In order to solve this problem, it is assumed that the reward from search 
is a measure of the utility of an individual from the search procedure. Additionally, 
such rules are used by a population in which individuals copy/learn search 
procedures that are seen to be successful and/or the reproductive success of individuals 
depends on their success in such search procedures. Under such assumptions, the 
search rules that evolve should be near optimal in terms of the expected reward from 
search given the limits on the perceiptive abilities of the searchers. 

It is intuitively clear that a short list of length k should consist of the k highest 
ranked offers from the initial observations. This results from the fact that the 
distribution of the reward obtained by selecting from these offers stochastically 
dominates the reward obtained by selecting from any other set of k offers given 
the initial ranking. The search costs are split into the costs of initial inspection 
and costs of closer inspection. The costs of initial inspection, given by ଵ݂(݇, ݊), 
are strictly increasing in both the number of offers and the length of the short 
list, n and k respectively. These costs cover the effort needed for initial 
inspection of the offers and maintainence of the short list. Also, assume that ଵ݂ is 
convex in k, i.e. ଵ݂(݇, ݊) − ଵ݂(݇ − 1, ݊) is non-decreasing in k. This reflects the 
cognitive effort required to control short lists of long length. This is  
a simplification, since when ݇ = ݊ the DM automatically inspects all the offers 
closely and hence, in this case, the search costs should not include the costs of 
controlling a short list. 

The costs of closer inspection of the offers on the short list, given by ଶ݂(݇) 
are assumed to be increasing and convex in length of the short list. Note that it 
may be natural to assume that the costs of closer inspection are linear in k (when ݇ ≥ 2, then each successive offer on the short list is inspected and compared to 
the best ranked of previously inspected offers). Let ݂(݇, ݊) = ଵ݂(݇, ݊) + ଶ݂(݇) 
denote the total search costs and ܥ = ݂(݇, ݊) − ݂(݇ − 1, ݊) denote the 
marginal costs of increasing the length of the short list from ݇ − 1 to ݇. 
 

3  Form of the optimal strategy 
 
Let ܸ be the value of the offer accepted when the length of the short list is ݇,	i.e. ܸ = maxଵஸஸ ܹ. It follows that when ݅ < ݆, then ܸ is stochastically 
dominated by ܸ. Denote by ܯ the marginal increase in the expected value of 

the offer accepted when the length of the short list is increased from ݇ − 1 to ݇, 
i.e. ܯ = ]ܧ ܸ − ܸିଵ].  



         D.M. Ramsey 

 
82

The criterion determining the optimal length of the short list is based on the 
following theorem: 
 

Theorem 1 
The marginal increase in the expected value of the offer accepted, ܯ, is non- 
-increasing in ݇. 
 

Proof  
By definition ܯ = max]ܧ {0, ܹ − ܸିଵ}]; ܯାଵ = max]ܧ {0, ܹାଵ − ܸ}]. 
 

The fact that ܯ ≥  ାଵ follows directly from the facts that ܹ stochasticallyܯ
dominates ܹାଵ and ܸ	stochastically dominates ܸିଵ. ∎ 
 

Corollary 
The optimal length of the short list, ݇∗, satisfies the following condition: 
i) when ܯଶ ≤  ଶ , then the optimal strategy is to automatically accept theܥ

object with initial ranking 1, i.e. ݇∗ = 1 and none of the objects are inspected 
closely.  

ii) when the above condition does not hold, then ݇∗ is the largest integer k, such 
that ݇ ≤ ݊	and ܯ >  	.ܥ

 

This corollary follows from the fact that ܯ is non-increasing in k and ܥ is 
non-decreasing in k. Hence, when the first condition holds, then the marginal 
costs of increasing the length of the short list always exceed the marginal gain. 
When the first condition does not hold, then for all ݇ ≤ ݇∗, it follows that ܯ > ݇  and forܥ > ݇∗, then ܯ ≤  . Hence, the DM always gains byܥ
increasing the length of the short list when ݇ < ݇∗, but when ݇ ≥ ݇∗the costs of 
increasing the length of the short list always outweigh the gains.	Thus the optimal 
length of the short list is given by ݇∗. Note that when ܯ =  , then the DM isܥ
indifferent between using a short list of length ݇ − 1 and using a short list of length ݇. The condition given above assumes that when the optimal length of the short list 
is not unique, then the smallest length from the set of optimal lengths is used.  
  
4  Examples 
 
In this section, we consider three examples.  
 

4.1  Example A: Independent signals 
 
Suppose ଵܺ and ܺଶ are independent random variables from the N(0, 1) and the 
N(0, ߪଶ) normal distributions, respectively, where the first parameter denotes the 
mean and the second parameter the variance. The value of an offer is given by 
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offers according to this initial ranking are then observed more closely and the 
DM then accepts the offer with the highest value of ܷ from these offers. The 
search costs associated with initial inspection and maintanence of the short list 
are ଵ݂(݇, ݊) = 0.0001(݊ + ݇ଶ) and the costs of closer inspection are ଶ݂(݇) =  ,ߪܿ
where ܿ is a constant. The choice of the cost parameters should reflect the logic 
that strategies based on short lists should be successful when the costs of initial 
observation are low relative to the costs of closer inspection. The costs of close 
inspection are assumed to be proportional to the standard deviation of the second 
signal, since under sequential search based purely on the second signal the 
expected number of offers that are seen when c is fixed is independent of ߪ	(see 
Ramsey, 2015). Hence, any changes in the optimal length of the short list when ߪ increases and c is fixed result from the amount of information contained in the 
second signal relative to the information contained in the first signal (as ߪ 
increases, the importance of the second signal compared to the first signal 
increases). 
 
4.2  Example B: A best choice problem 
 
The goal of the DM is to choose one of the best two offers overall. The initial 
rankings are based on ଵܺ (as defined in Example A) and the overall rankings of 
the offers are based on ܷ =	 ଵܺ + ܺଶ. The best offer overall is accepted if and 
only if it appears on the short list. The second best offer overall is accepted if 
and only if this offer appears on the short list and the best offer overall does not 
appear. The value of the second best object overall relative to the best object is r, 
where 0	 ≤ 	ݎ ≤ 1. No reward is obtained by accepting any other object. Note 
that when ݎ = 0,	this problem is similar to the classical secretary problem (see 
Gilbert and Mosteller, 1966).  

The value of the best object overall is defined such that the variance of the 
values of the offers in the second example is equal to the variance of ܷ in the 
corresponding version of the first example. Hence, if the reward obtained by 
accepting the best offer overall is s, then 	ݏଶ(1 + (ଶݎ ቀଵ − ଵమቁ = 1 +  .ଶߪ

This scaling is done in order to make the values of the offers and the search 
costs comparable for corresponding realizations of Example A and Example B. 
This enables comparison of the length of the optimal short list when the 
distribution of the values of the offers are non-skewed (Example A) and very 
highly skewed (Example B).  

(3) 
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Obtaining analytical results for either of these problems is very difficult. In 
the first example, calculation of the marginal gains from increasing the length  
of the short list requires knowledge of the distribution of ܹ − ܸିଵ. In the 
second example, this calculation requires knowledge of the distributions of  
the overall rank given the initial rank. Hence, the optimal length of the short list 
was obtained empirically on the basis of 100 000 simulations written in  
the R language of the search procedure when the number of offers  ݊ ∈ {20, 50, 100, 200}. These empirically obtained optimal lengths are 
described in Tables 1 and 2 (for relatively low and relatively high costs of close 
inspection, ܿ = 0.02 and ܿ = 0.1,	respectively). 

Several phenomena are visible from these results. Firstly, as the proportion of 
the information about the value of an offer contained in the second signal 
increases, the optimal length of the short list increases. Secondly, given the 
variance of the value of offers, the more skewed this distribution, then the 
greater the optimal length of the short list (it is shortest when the value comes 
from a normal distribution and greatest when a reward is obtained only when the 
best offer overall is accepted). Thirdly, as the costs of closer inspection relative 
to the amount of information contained by the second signal increase, then the 
optimal length of the short list decreases (as would be expected). Fourthly, when 
the values of offers come from a normal distribution, then the optimal length of 
the short list is almost independent of the total number of offers, particularly 
when the costs of closer inspection are relatively large. 

In the best choice problems (Example B), the optimal length of the short list 
increases as the total number of offers increases. Due to the scaling of the value 
of the best offer according to the number of offers available, as n increases then 
the value of the best offer increases and it is often worthwile to carry out 
exhaustive search of all the offers in order to ensure obtaining the best of all the 
offers, especially when the costs of closer inspection are relatively low and the 
second signal contains a large proportion of the information regarding the 
ranking of an object. One interesting aspect is that when the costs of closer 
inspection are high and the total number of offers is large, then the optimal 
length of the short list can actually fall as the amount of information contained in 
the second signal increases. In such cases, it seems likely that the search costs 
required in order to ensure obtaining the best offer with a large probability 
become prohibitive and thus the intensity of search falls (the optimal length of 
the search list falls). This conclusion seems to be confirmed by the behaviour of 
the optimal length of the short list when the value of the best offer is not scaled 
according to the number of offers, i.e. is always equal to 1. In this case, as the 
amount of information in the second signal increases, the optimal length of the 
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short list initially increases before falling to 1 and the optimal expected reward 
from search becomes negative. This indicates that when the number of offers 
becomes large and the amount of information contained in the first signal is 
small, then it does not pay to search for the best offer, since the search costs 
become too large. 
 

Table 1: Optimal lengths of short lists for relatively low costs of close inspection (ܿ = 0.02).  
The numbers in each cell give the optimal lengths of the short list for Example A,  

Example B with ݎ = 1 and Example B with ݎ = 0, respectively 
 200=݊ 100=݊ 50=݊ 20=݊ ߪ 

1/5 (2, 3, 5) (3, 4, 7) (3, 5, 9) (3, 6, 10) 

1/4 (3, 4, 6) (3, 5, 8) (3, 6, 10) (3, 7, 12) 

1/3 (3, 4, 7) (4, 6, 10) (4, 7, 14) (5, 9, 16) 

1/2 (5, 6, 9) (5, 8, 15) (6, 10, 20) (5, 14, 25) 

1 (6, 9, 15) (7, 15, 27) (9, 22, 39) (9, 30, 56) 

2 (10, 13, 20) (11, 25, 42) (14, 41, 67) (14, 60, 106) 

3 (12, 15, 20) (15, 30, 49) (14, 52, 89) (15, 85, 148) 

4 (14, 16, 20) (15, 36, 50) (16, 58, 96) (18, 92, 168) 

5 (14, 17, 20) (16, 38, 50) (17, 64, 99) (19, 103, 187) 	
Source: Based on simulations written by the author in R. 
 

Table 2: Optimal lengths of short lists for relatively high costs of close inspection (ܿ = 0.1).  
The numbers in each cell give the optimal lengths of the short list for Example A,  

Example B with ݎ = 1 and Example B with ݎ = 0, respectively 
 ࣌  =   =   =   =  

1/5 (2, 3, 4) (2, 3, 5) (2, 4, 7) (2, 5, 8) 

1/4 (2, 3, 5) (2, 4, 6) (2, 4, 7) (2, 5, 9) 

1/3 (2, 3, 5) (2, 4, 7) (2, 5, 9) (2, 6, 11) 

1/2 (2, 5, 7) (3, 6, 10) (3, 7, 12) (3, 9, 17) 

1 (3, 6, 10) (3, 9, 16) (4, 12, 23) (4, 18, 32) 

2 (4, 8, 14) (4, 14, 22) (4, 19, 29) (5, 27, 45) 

3 (4, 9, 17) (5, 17, 29) (5, 23, 38) (5, 32, 43) 

4 (5, 10, 19) (5, 17, 31) (5, 26, 38) (5, 30, 41) 

5 (5, 11, 20) (5, 18, 36) (5, 23, 42) (5, 35, 35) 	
Source: Based on simulations written by the author in R. 
 

Note that due to the nature of the simulations, the empirically derived optimal 
lengths of short lists show some fluctuation around what would be the 
theoretically optimal length. This is particularly true when the optimal length of 
the short list is large (in such cases, slightly changing the length of the short list 
from the optimal length has very little impact on the expected reward). The 
expected reward from search in Example A as a function of the length of the 
short list is presented in Figure 1 for the case ݊ = 200, ܿ = 0.02, ߪ = 1. 
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Figure 1:  Expected reward as a function of the length of the short list for Example A when the 

number of offers is large, the costs of closer inspection relatively small and the initial 
and second signal contain the same amount of information (݊ = 200, ܿ = 0.02, ߪ = 1) 

 
4.3  Example C: Correlated signals 
 
Since the signals indicating the value of an offer may be correlated, it is assumed 
that the value of an offer is based on two signals ( ଵܺ, ܺଶ) from a bivariate 
normal distribution. ଵܺ comes from a standard normal distribution, the 
coefficient of correlation between ଵܺ and ܺଶ is ߩ and the residual variance of ܺଶ, 
i.e. the variance in ܺଶ that is not explained by ଵܺ, is ߪଶ. Hence, given ଵܺ, ܺଶ has 
a normal distribution with mean ߩ ଵܺ and variance ߪଶ. The overall variance of 

the signal ܺଶ is 
ఙమଵିఘమ. As in Example A, the value of an offer is ܷ = ଵܺ + ܺଶ. 

From these assumptions, ܧ(ܷ) = 0 and 
(ܷ)ݎܸܽ  	= )ݎܸܽ ଵܺ) + (ଶܺ)ݎܸܽ + )ݎඥܸܽߩ2 ଵܺ)ܸܽݎ(ܺଶ) = 1 + ଶ1ߪ − ଶߩ + ඥ1ߪߩ2 −  	.ଶߩ
 

It can be shown by differentiation that this variance is increasing in ߩ for ߩ > 0. 
The search costs are defined as in Example A, i.e. the costs of closer 

inspection are proportional to the residual variance of ܺଶ. On one hand, the 
increase in the overall variance of the offer favours more intense search (a longer 
short list). On the other hand, observing ଵܺ gives us information about the value 
of the second signal (hence, all other things being equal, as ߩ increases ଵܺ	contains relatively more information about the value of an offer). This effect 
favours short lists with fewer items. The optimal lengths of short lists were 

(4) 
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derived empirically for ߩ ∈ {0.2, 0.4, 0.6, 0.8} on the basis of 100 000 
simulations, written in R, of the search process. Table 3 presents the empirically 
obtained optimal lengths of short lists when the relative costs of closer 
inspection are ܿ = 0.1.  
 

Table 3: Optimal lengths of short lists for relatively high costs of close inspection (ܿ = 0.1)  
and correlated signals (Example C). The numbers in each cell give  
the optimal thresholds for ߩ = 0, 0.2, 0.4, 0.6 and 0.8, sequentially 

 ࣌  =   =   =   =  
1/5 (2, 2, 2, 2, 2) (2, 2, 2, 2, 2) (2, 2, 2, 2, 2) (2, 2, 2, 2, 2) 

1/4 (2, 2, 2, 2, 2) (2, 2, 2, 2, 2) (2, 2, 2, 2, 2) (2, 2, 2, 2, 2) 

1/3 (2, 2, 2, 2, 2) (2, 2, 2, 2, 2) (2, 2, 2, 2, 2) (2, 2, 2, 2, 2) 

1/2 (2, 2, 2, 2, 2) (3, 3, 2, 2, 2) (3, 3, 2, 2, 2) (3, 3, 2, 2, 2) 

1 (3, 3, 3, 2, 2) (3, 3, 3, 3, 2) (4, 3, 3, 3, 3) (4, 3, 3, 3, 3) 

2 (4, 4, 3, 3, 2) (4, 4, 4, 3, 3) (4, 4, 4, 3, 3) (5, 4, 4, 3, 3) 

3 (4, 4, 3, 3, 3) (5, 4, 4, 3, 3) (5, 4, 4, 3, 3) (5, 5, 4, 4, 3) 

4 (5, 4, 4, 3, 3) (5, 4, 4, 3, 3) (5, 5, 4, 4, 3) (5, 4, 4, 4, 3) 

5 (5, 4, 4, 3, 3) (5, 5, 4, 3, 3) (5, 4, 4, 4, 3) (5, 5, 4, 4, 3) 	
Source: Based on simulations written by the author in R. 

 
Table 3 indicates that when the residual variance of the second signal is fixed, 

there is a tendency for the optimal length of the short list to fall, especially when 
the residual variance of the second signal is relatively large. Hence, the increase 
in the overall variance in the value of an offer is outweighed by the fact that ଵܺ 
explains an increasing proportion of the variance in the value of an offer. Note 
that if the (overall) variances of the two signals were fixed, then this negative 
relationship of the coefficient of correlation with the optimal length of the short 
list would be stronger. 
 
5  Discussion of the results from the simulations 
 
Although a large number of articles have been recently published on the concept 
of short lists in decision making, there has been little work on models which 
indicate what the optimal length of a short list should be depending on the 
parameters of a search problem. Such an approach to decision making seems 
very fruitful in the Internet age, since when searching for a valuable resource in 
a large market, basic information about offers can be found at very little cost via 
the Internet. However, DMs should investigate promising offers more closely, 
before making a final decision. The model presented here illustrates the 
qualitative properties of optimal strategies based on short lists.  
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In practical terms, if there are a large number of candidates for a given 
position, it seems more reasonable to assume that the reward obtained by a real 
life DM will depend on the intrinsic value of an offer, rather than whether the 
offer accepted is the best offer or not. Also, the signals associated with an offer 
may be correlated. Hence, for practical purposes the results from Example C, 
where the two signals observed are correlated, are the most instructive. Of 
course, independent signals can be treated as a particular case within this 
framework.  

The results indicate that the optimal length of the short list is only very 
weakly dependent on the total number of offers available. On the other hand, in 
such problems the optimal length of the short list is increasing in the importance 
of the second signal relative to the first signal. Although it may be difficult for  
a DM to estimate the total number of offers before the search procedure is 
realized, in general the DM will know the type of information gained in the two 
stages of the search procedure and be able to estimate the weight of the 
information gained at both stages. For example, procedures applied by 
employers to search for a specialist employee might be one interesting practical 
example of the use of short lists. The short list is made on the basis of written 
applications. The cost of collecting these applications and creating a short list are 
assumed to be small compared to the value of the employee. The members of 
this short list are invited for interview. Since the employer often covers the travel 
costs of the interviewees and interviews occupy a significant amount of time, the 
relative costs of closer inspection are high. In such problems, the rule of thumb 
“invite four or five candidates for interview and then offer the position to the 
best of these candidates” is often used. The results from this paper indicate that 
such rules are optimal or close to optimal when a) the values of employees come 
from a non-skewed distribution, b) the DM obtains a similar amount of novel 
information from the initial signal (written application) and closer inspection 
(interview), c) the costs of closer inspection are high compared to the costs of initial 
inspection. For example, when the two signals contain the same amount of 
information and the number of offers is large (݊ = 200) and ܿ = 0.1 (high costs of 
closer inspection), the optimal length of the short list is 4. When ܿ = 0.02 (low 
costs of closer inspection), the optimal length of the short list is 9. However, using  
a short list of length 4 ensures an expected payoff that is not much lower than the 
optimal payoff (see Figure 1). Hence, using short lists of moderate length ensures at 
least near-optimal rewards over a wide range of parameter sets.  

Fixing the marginal variances of the signal, the optimal length of the short list 
tends to decrease as the coefficient of correlation ߩ, between the signals becomes 
larger, particularly when the overall variance of the second signal is large. The 
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overall variance of the value of an offer is increasing in ߩ,	which might lead to 
an increase in the overall search effort (i.e. a longer short list). However, this 
effect is more than counteracted by the fact that the weight of the initial signal as 
an estimate of the overall value of an offer becomes greater. In terms of 
searching for a skilled employee, e.g. if the verbal skills of a candidate are 
highly correlated with the quality of the candidate as observed in a written 
application, then it is only necessary to interview a small number of candidates.  

It should be noted that these results also indicate that the greater the skew in 
the distribution of the values of offers, then the greater is the optimal length of  
a short list. However, this should be investigated in more detail by considering 
signals with different distributions. 
 

6  Conclusions and directions for future research 
 

There are obvious weaknesses in this approach, as outlined below.  
Firstly, it is assumed that a linear ranking of offers can be defined according 

to a) initial information, and also on b) initial information combined with 
information from closer inspection. This implicitly assumes that any pairwise 
comparison of offers always results in one offer being preferred to another and 
the results of such comparisons are always correct. In practice, comparison of 
offers based on the initial information may be difficult since it embraces multiple 
traits, e.g. when searching for a new flat, Internet sites will give quantitative 
information about price, floor space, number of rooms and location (e.g. distance 
from city centre). Hence, future work will concentrate on how such multivariate 
information can be used to create a short list. Approaches to multicriteria 
decision making, such as TOPSIS or AHP, could be used to create a short list 
(see Yoon and Hwang, 1995). Due to the ever increasing availability of 
information and the speed with which computers can analyze data, it seems that 
methods of automating at least the initial stage of such a search procedure would 
be beneficial. For example, the database of available flats in a city may be too 
large for efficient manual handling. Hence, it seems natural that an algorithm 
could be developed to suggest a short list of flats to view based on the stated 
preferences of the DM regarding price, floor space etc. This would decrease the 
search costs in the first round. However, there may exist a conflict of interest 
between the goals of the writer or implementer of the algorithm (a seller or 
intermediary) and the DM (e.g. Skulimowski, 2017). In this case, it would be 
natural to examine game theoretic models of such search procedures. Future 
research will model such algorithms and investigate their effectiveness in 
various types of problem (e.g. computer aided search procedures for selecting  
a short list of flats or second-hand cars to view).  
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Also, future models should investigate problems related to bounds on the 
ability of a DM to compare offers (the phenomena of inconsistent comparisons 
and the inability to state a preference between two offers). Similar phenomena 
also appear when comparing the offers on the short list after the round of closer 
inspection.  

The assumption that the costs of maintaining the short list are convex in the 
length of the short list seem reasonable, due to the increased cognitive effort 
required to control longer short lists. However, the costs of initial observation 
and maintaining the short list should be modelled more formally. This might be 
done by defining the costs of initial observation according to the number of 
pairwise comparisons required. Such an approach will be used in future research. 
Also, when the length of the short list is large in comparison to the total number 
of offers, it is cognitively simpler to carry out an exhaustive search of all the 
offers as this only requires remembering the best offer seen so far on the basis of 
closer inspection. Future research should compare the expected reward under the 
optimal short list policy with the expected reward obtained using exhaustive 
search based on an appropriate model.  

The optimal short list policy should also be compared with search based 
purely on the initial signal. Finally, comparison with the optimal reward obtained 
in the corresponding sequential decision problem where the search costs are 
linear in both the number of offers observed and the number of offers inspected 
closely (see Ramsey, 2015) will give a measure of the efficiency of short list 
rules.  

The model does not take into account various factors that might be relevant in 
real-life decision problems. For example, a DM might feel, after closely 
inspecting the offers on the short list, that none of the offers are suitable and thus 
the search procedure should be repeated. Also, the price might be negotiable or 
the offer chosen after close inspection might become unavailable before the DM 
can make a decision. How should such factors be modelled? Also, the decision 
to purchase a valuable good is often made by households rather than individuals. 
Hence, models of group decision making or game theoretic models should be 
considered.  

In practice, there is great uncertainty regarding the parameters of a problem. 
In order to determine the optimal length of the short list, the model presented 
here assumes that the DM should know a) the distribution of the value of the 
offers, b) the proportion of the value of an offer described by the first signal,  
c) the total number of offers, d) the search costs. There will be uncertainty 
regarding these parameters, which might be modelled using probability theory or 
fuzzy theory.  
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In conclusion, the frequency with which procedures based on short lists are 
applied when humans make decisions indicate that such heuristic policies are 
successful. Future research should investigate how the perceptive abilities of 
searchers can be supported using automatic systems designed, for example, to 
search a large database of offers in order to suggest a short list of offers 
appropriate for close inspection. 
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