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DELTA-CONVEXITY WITH GIVEN WEIGHTS

Roman Ger

Dedicated to Professor Zygfryd Kominek on the occasion of his 75th birthday

Abstract. Some differentiability results from the paper of D.Ş. Marinescu
& M. Monea [7] on delta-convex mappings, obtained for real functions, are
extended for mappings with values in a normed linear space. In this way, we
are nearing the completion of studies established in papers [2], [5] and [7].

1. Motivation and main results

While solving Problem 11641 posed by a Romanian mathematician Nicolae
Bourbăcuţ in [2] I was announcing in [5] (without proof) the following

Theorem 1.1. Assume that we are given a differentiable function ϕ map-
ping an open real interval (a, b) into the real line R. Then each convex solution
f : (a, b) −→ R of the functional inequality
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is differentiable and the inequality

|f ′(x)− f ′(y)| ≤ |ϕ′(x)− ϕ′(y)|

holds true for all x, y ∈ (a, b).

The proof reads as follows.
Put g := f − ϕ. Then (∗) states nothing else but the Jensen concavity of

g, i.e.

1

2
g(x) +

1
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g(y) ≤ g
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2

)
, x, y ∈ (a, b).

It is widely known that a continuous Jensen concave function is concave in
the usual sense. Since f itself is continuous (as a convex function on an open
interval) and ϕ is differentiable then, obviously, our function g is continuous
and hence concave. In particular, the one-sided dervatives of g do exist on
(a, b) and we have

g′+(x) ≤ g′−(x) for all x ∈ (a, b).

Therefore

f ′+(x) = g′+(x) + ϕ′(x) ≤ g′−(x) + ϕ′(x) = f ′−(x) ≤ f ′+(x)

for all x ∈ (a, b) because of the convexity of f , which proves the differentiability
of f on (a, b).

To show that f satisfies the assertion inequality, observe that whenever
x, y ∈ (a, b) are such that x ≤ y, then

|f ′(x)− f ′(y)| = f ′(y)− f ′(x) = g′(y) + ϕ′(y)− g′(x)− ϕ′(x)

≤ ϕ′(y)− ϕ′(x) = |ϕ′(x)− ϕ′(y)|,

because the derivative of a differentiable convex (resp. concave) function is
increasing (resp. decreasing). In the case where y ≤ x it suffices to interchange
the roles of the variables x and y in the latter inequality, which completes the
proof.

Note that the convexity assumption imposed upon f in the above result
renders (∗) to be equivalent to∣∣∣∣f(x) + f(y)
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defining (in the class of continuous functions) the notion of delta convexity in
the sense of L. Veselý and L. Zajíček (see [10]).

In that connection, D.Ş. Marinescu and M. Monea have proved, among
others, the following result (see [7, Theorem 2.7]).

Theorem M-M. Let ϕ : (a, b) −→ R be a differentiable function and let
f : (a, b) −→ R be a convex function admitting some scalars s, t ∈ (0, 1) such
that the inequality

tf(x) + (1− t)f(y)− f(sx+ (1− s)y)

≤ tϕ(x) + (1− t)ϕ(y)− ϕ(sx+ (1− s)y)

is satisfied for all x, y ∈ (a, b). Then the function f is differentiable and the
inequality

|f ′(x)− f ′(y)| ≤ |ϕ′(x)− ϕ′(y)|

holds true for all x, y ∈ (a, b).

Without any convexity assumption we offer the following counterpart of
Theorem M-M for vector valued mappings.

Theorem 1.2. Given an open interval (a, b) ⊂ R, a normed linear space
(E, ‖ · ‖), and two real numbers s, t ∈ (0, 1) (weights) assume that a map
F : (a, b) −→ E is delta (s, t)-convex with a differentiable control function
f : (a, b) −→ R, i.e. that a functional inequality

‖tF (x) + (1− t)F (y)− F (sx+ (1− s)y)‖

≤ tf(x) + (1− t)f(y)− f(sx+ (1− s)y)

is satisfied for all x, y ∈ (a, b). If the function

(a, b) 3 x 7−→ ‖F (x)‖ ∈ R

is upper bounded on a set of positive Lebesgue measure, then F is differentiable
and the inequality

‖F ′(x)− F ′(y)‖ ≤ |f ′(x)− f ′(y)|

holds true for all x, y ∈ (a, b).
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Corollary. Under the assumptions of Theorem 1.2, the vector valued
map F is continuously differentiable.

Proof. Fix arbitrarily an x ∈ (a, b) and h ∈ R small enough to have
x+ h ∈ (a, b) as well. Then

‖F ′(x+ h)− F ′(x)‖ ≤ |f ′(x+ h)− f ′(x)|

and the right-hand side difference tends to zero as h → 0 because a differen-
tiable convex function is of class C1. �

The assumption that the function

(a, b) 3 x 7−→ ‖F (x)‖ ∈ R

is upper bounded on a set of positive Lebesgue measure, may be replaced by
numerous alternative conditions forcing a scalar Jensen convex function on
(a, b) to be continuous.

Theorem 1.3. Given an open interval (a, b) ⊂ R, a normed linear space
(E, ‖·‖) that is reflexive or constitutes a separable dual space, and two weights
s, t ∈ (0, 1), assume that a map F : (a, b) −→ E is delta (s, t)-convex with a
C2-control function f : (a, b) −→ R. If the function

(a, b) 3 x 7−→ ‖F (x)‖ ∈ R

is upper bounded on a set of positive Lebesgue measure, then F is twice dif-
ferentiable almost everywhere in (a, b) and the domination

‖F ′′(x)‖ ≤ f ′′(x)

holds true for almost all x ∈ (a, b).

The assumption that a normed linear space (E, ‖ · ‖) spoken of in Theo-
rem 1.3 is reflexive or constitutes a separable dual space may be replaced by
a more general requirement that (E, ‖ · ‖) has the Radon-Nikodym property
(RNP), i.e. that every Lipschitz function from R into E is differentiable almost
everywhere. This definition (of Rademacher type character) is not commonly
used but is more relevant to the subject of the present paper. R.S. Phillips [9]
showed that reflexive Banach spaces enjoy the RNP whereas N. Dunford and
B.J. Pettis [3] proved that separable dual spaces have the RNP.
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2. Proofs

To prove Theorem 1.2 we need the following

Lemma. Given weights s, t ∈ (0, 1) assume that a map F : (a, b) −→ E is
delta (s, t)-convex with a control function f : (a, b) −→ R. Then the inequality

‖λF (x) + (1− λ)F (y)− F (λx+ (1− λ)y)‖

≤ λf(x) + (1− λ)f(y)− f(λx+ (1− λ)y)

is valid for all x, y ∈ (a, b) and every rational λ ∈ (0, 1). In particular, F is
delta Jensen convex with a control function f , i.e. the inequality∥∥∥∥F (x) + F (y)

2
− F

(x+ y

2

)∥∥∥∥ ≤ f(x) + f(y)

2
− f

(x+ y

2

)
holds true for all x, y ∈ (a, b).

Proof. Fix arbitrarily a continuous linear functional x∗ from the unit
ball in the dual space E∗. Then the delta (s, t)-convexity of F implies that
for all x, y ∈ (a, b) one has

t(x∗ ◦ F )(x) + (1− t)(x∗ ◦ F )(y)− (x∗ ◦ F )(sx+ (1− s)y)

≤ tf(x) + (1− t)f(y)− f(sx+ (1− s)y)

or, equivalently,

(f − x∗ ◦ F )(sx+ (1− s)y) ≤ t(f − x∗ ◦ F )(x) + (1− t)(f − x∗ ◦ F )(y).

By means of Theorem 3 from N. Kuhn’s paper [6] we deduce that the function
g := f − x∗ ◦ F enjoys the convexity type property

g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y), x, y ∈ (a, b), λ ∈ (0, 1) ∩Q,

where Q stands for the field of all rationals. Consequently, for all x, y ∈ (a, b)
and λ ∈ (0, 1) ∩Q, we get the inequality

λ(x∗ ◦ F )(x) + (1− λ)(x∗ ◦ F )(y)− (x∗ ◦ F )(λx+ (1− λ)y)

≤ λf(x) + (1− λ)f(y)− f(λx+ (1− λ)y).
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Replacing here the functional x∗ by −x∗ we infer that a fortiori

|x∗(λF (x) + (1− λ)F (y)− F (λx+ (1− λ)y))|

≤ λf(x) + (1− λ)f(y)− f(λx+ (1− λ)y),

which due to the unrestricted choice of x∗ gives the assertion desired. �

Remark 2.1. Using another method, A. Olbryś ([8, Lemma 1]) with the
aid of the celebrated Daróczy and Páles identity

x+ y

2
= s
[
s
x+ y

2
+ (1− s)y

]
+ (1− s)

[
sx+ (1− s)x+ y

2

]
,

has proved that any delta (s, t)-convex map on a convex subset of a real
Banach space is necessarily delta Jensen convex.

Proof of Theorem 1.2. In view of the Lemma, F is delta Jensen con-
vex with a control function f . Due to the differentiability of f and the regu-
larity assumption upon F the map

(a, b) 3 x 7−→ f(x) + ‖F (x)‖ ∈ R

is upper bounded on a set of positive Lebesgue measure. Thus, with the aid
of author’s result from [4], we obtain the local Lipschitz property of F and,
in particular, the fact that F is a delta convex map controlled by f in the
sense of L. Veselý & L. Zajíček (see [10]). Therefore, for any member x∗
from the unit ball in the dual space E∗ the function g∗ := f + x∗ ◦ F is
convex. Moreover, on account of Proposition 3.9 (i) in [10, p. 22] (see also
Remark 2.2, below), F yields a differentiable map. Hence, g∗ is differentiable
as well and the derivative g′∗ is increasing. Consequently, for any two fixed
elements x, y ∈ (a, b), x ≤ y, we obtain the inequality

(x∗ ◦ F )′(x)− (x∗ ◦ F )′(y) = g′∗(x)− f ′(x)− g′∗(y) + f ′(y)

≤ −f ′(x) + f ′(y) ≤ |f ′(x)− f ′(y)|.

Replacing here the functional x∗ by −x∗ we arrive at

|x∗(F ′(x)− F ′(y))| = |(x∗ ◦ F )′(x)− (x∗ ◦ F )′(y)| ≤ |f ′(x)− f ′(y)|,

which, due to the unrestricted choice of x∗ from the unit ball in E∗, implies
that

‖F ′(x)− F ′(y)‖ ≤ |f ′(x)− f ′(y)|.
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In the case where y ≤ x it suffices to interchange the roles of x an y in the
latter inequality. Thus the proof has been completed. �

Remark 2.2. Actually, Proposition 3.9 (i) in [10, p. 22] states that F
is even strongly differentiable at each point x ∈ (a, b), i.e. for every ε > 0
there exists a δ > 0 and an element c(x) ∈ E such that for all points u, v ∈
(x− δ, x+ δ) ⊂ (a, b), u 6= v, one has∥∥∥∥F (v)− F (u)

v − u
− c(x)

∥∥∥∥ ≤ ε.
Obviously, every strongly differentiable map is differentiable (in general, in
the sense of Fréchet).

Proof of Theorem 1.3. In view of Theorem 1.2, F is differentiable and
the inequality

‖F ′(x)− F ′(y)‖ ≤ |f ′(x)− f ′(y)|

holds true for all x, y ∈ (a, b). Let a closed interval [α, β] be contained in
(a, b). Since, a continuously differentiable function, f ′|[α,β] yields an absolutely
continuous function, for every ε > 0 there exists a δ > 0 such that, for every
finite collection of pairwise disjoint subintervals (a1, b1), (a2, b2), . . . , (ak, bk)

of [α, β] with
∑k
i=1(bi − ai) < δ, one has

∑k
i=1 |f ′(bi)− f ′(ai)| < ε, whence

k∑
i=1

‖F ′(bi)− F ′(ai)‖ ≤
k∑
i=1

|f ′(bi)− f ′(ai)| < ε.

This proves that the map F ′|[α,β] is absolutely continuous as well. Since the
space (E, ‖ · ‖) enjoys the Radon-Nikodym property, in virtue of Theorem
5.21 from the monograph [1] by Y. Benyamini and J. Lindenstrauss, the map
F ′|[α,β] is differentiable almost everywhere in [α, β], i.e. off some nullset T ⊂
[α, β] the second derivative F ′′(x) of F at x does exist for all x ∈ [α, β] \ T .

Now, fix arbitrarily a strictly decreasing sequence (αn)n∈N and a strictly
increasing sequence (βn)n∈N such that a < αn < βn < b, n ∈ N, convergent
to a and b, respectively. Then, for every n ∈ N one may find a nullset Tn ⊂
[αn, βn] such that the second derivative F ′′(x) of F at x does exist for all
x ∈ [α, β] \ Tn. Putting T :=

⋃
n∈N Tn we obtain a set of Lebesgue measure

zero, contained in (a, b), such that the second derivative F ′′(x) does exist for
all points x ∈ (a, b) \ T . Fix arbitrarily a point x ∈ (a, b) \ T . Then for any
point y ∈ (a, b) \ {x} we have∥∥∥∥F ′(y)− F ′(x)

y − x

∥∥∥∥ ≤ ∣∣∣∣f ′(y)− f ′(x)

y − x

∣∣∣∣
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and passing to the limit as y → x we conclude that

‖F ′′(x)‖ ≤ |f ′′(x)| = f ′′(x),

because of the convexity of f , which completes the proof. �

Remark 2.3. Theorem 5.21 from [1] states, among others, that any abso-
lutely continuous map from the unit interval [0, 1] into a normed linear space
E with the Radon-Nikodym property is differentiable almost everywhere. It
is an easy task to check (an affine change of variables) that any absolutely
continuous map on a compact interval [α, β] ⊂ R with values in E is almost
everywhere differentiable as well.
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