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DELTA-CONVEXITY WITH GIVEN WEIGHTS

RoMAN GER

Dedicated to Professor Zygfryd Kominek on the occasion of his 75th birthday

Abstract. Some differentiability results from the paper of D.§. Marinescu
& M. Monea [7] on delta-convex mappings, obtained for real functions, are
extended for mappings with values in a normed linear space. In this way, we
are nearing the completion of studies established in papers [2], [5] and [7].

1. Motivation and main results

While solving Problem 11641 posed by a Romanian mathematician Nicolae
Bourbéacut in [2] I was announcing in [5] (without proof) the following

THEOREM 1.1. Assume that we are given a differentiable function ¢ map-
ping an open real interval (a,b) into the real line R. Then each convex solution
f:(a,b) — R of the functional inequality

(%) M—f(x+y) < p(r) + o(y) _@(m+y

2 2 2 2 ) z,y € (a,b),
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is differentiable and the inequality

[f'(@) = f ()] < 1¢'(2) = &' (y)]
holds true for all x,y € (a,b).

The proof reads as follows.
Put g := f — ¢. Then (x) states nothing else but the Jensen concavity of

g, l.e.

%g(w) + %g(y) < g(%ﬂ/), z,y € (a,b).
It is widely known that a continuous Jensen concave function is concave in
the usual sense. Since f itself is continuous (as a convex function on an open
interval) and ¢ is differentiable then, obviously, our function ¢ is continuous
and hence concave. In particular, the one-sided dervatives of g do exist on
(a,b) and we have

g (z) < g (x) forall ze(a,b).
Therefore

fila) = g4 (2) + ¢'(z) < ¢ (2) + ¢'(z) = fL(z) < fi(2)

for all z € (a,b) because of the convexity of f, which proves the differentiability
of f on (a,b).

To show that f satisfies the assertion inequality, observe that whenever
x,y € (a,b) are such that = < y, then

|f'(x) = f'w) = f'y) = F2) =9' () + &' (y) — g'(z) — ' (x)
<¢'(y) —¢'(x) = |¢'(x) — ¢'(¥)],

because the derivative of a differentiable convex (resp. concave) function is
increasing (resp. decreasing). In the case where y < x it suffices to interchange
the roles of the variables x and y in the latter inequality, which completes the
proof.

Note that the convexity assumption imposed upon f in the above result
renders (*) to be equivalent to

f(x);rf(y) _f(:c;ty)‘ < so(rc)—;so(y) _(p(x;ry)’ 2,y € (a,b),
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defining (in the class of continuous functions) the notion of delta convexity in
the sense of L. Vesely and L. Zajicek (see [10]).

In that connection, D.S. Marinescu and M. Monea have proved, among
others, the following result (see [7, Theorem 2.7]).

THEOREM M-M. Let ¢: (a,b) — R be a differentiable function and let
f:(a,b) — R be a convex function admitting some scalars s,t € (0,1) such
that the inequality

tf(z)+ (1 —t)f(y) — f(sz + (1 - s)y)
<to(x) + (1 —=t)e(y) — sz + (1 - 5)y)

is satisfied for all x,y € (a,b). Then the function f is differentiable and the
inequality

[f'(@) = Wl < ¢ (2) — ¢ ()]
holds true for all x,y € (a,b).

Without any convexity assumption we offer the following counterpart of
Theorem M-M for vector valued mappings.

THEOREM 1.2. Given an open interval (a,b) C R, a normed linear space
(E,|l - 1I), and two real numbers s,t € (0,1) (weights) assume that a map
F: (a,b) — FE is delta (s,t)-conver with a differentiable control function
f:(a,b) — R, i.e. that a functional inequality

[tF(x) + (1 =) F(y) — F(sz 4 (1 = s)y)||
<tf(x)+ (1 -0)f(y) — flsz+ (1 —s)y)
is satisfied for all x,y € (a,b). If the function
(a,b) 5z — ||F(z)|]| € R

s upper bounded on a set of positive Lebesgue measure, then F is differentiable
and the inequality

1F'(x) = F' ()|l < [f'(x) = f' ()

holds true for all x,y € (a,b).
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COROLLARY. Under the assumptions of Theorem [1.2] the vector valued
map F is continuously differentiable.

PRrROOF. Fix arbitrarily an z € (a,b) and h € R small enough to have
x4+ h € (a,b) as well. Then

IF (x4 h) = F'(2)]| < |f'(z + h) = f(2)]

and the right-hand side difference tends to zero as h — 0 because a differen-
tiable convex function is of class C*. (]

The assumption that the function
(a,b) 2z +— ||[F(z)]| € R

is upper bounded on a set of positive Lebesgue measure, may be replaced by
numerous alternative conditions forcing a scalar Jensen convex function on
(a,b) to be continuous.

THEOREM 1.3. Given an open interval (a,b) C R, a normed linear space
(E,||-]]) that is reflexive or constitutes a separable dual space, and two weights
s, t € (0,1), assume that a map F': (a,b) — E is delta (s,t)-conver with a
C?-control function f: (a,b) — R. If the function

(a,b) >z — ||F(z)|]| e R

is upper bounded on a set of positive Lebesque measure, then F' is twice dif-
ferentiable almost everywhere in (a,b) and the domination

[1F" ()| < f"(2)
holds true for almost all x € (a,b).

The assumption that a normed linear space (F, || - ||) spoken of in Theo-
rem [1.3|is reflexive or constitutes a separable dual space may be replaced by
a more general requirement that (E, || - ||) has the Radon-Nikodym property
(RNP), i.e. that every Lipschitz function from R into E is differentiable almost
everywhere. This definition (of Rademacher type character) is not commonly
used but is more relevant to the subject of the present paper. R.S. Phillips [9]
showed that reflexive Banach spaces enjoy the RNP whereas N. Dunford and
B.J. Pettis [3] proved that separable dual spaces have the RNP.
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2. Proofs

To prove Theorem [I.2] we need the following

LEMMA. Given weights s,t € (0,1) assume that a map F': (a,b) — E is
delta (s,t)-convex with a control function f: (a,b) — R. Then the inequality

IAF(z) + (1 = A)F(y) — FQAz + (1 = Ay
SAf(2) + A =Nf(y) = fQz+ (1= A)y)

is valid for all z,y € (a,b) and every rational A\ € (0,1). In particular, F is
delta Jensen convexr with a control function f, i.e. the inequality

HF@@;F@) _F<x;y)H - f(w)-;f(w _f(%)

holds true for all x,y € (a,b).

PRrROOF. Fix arbitrarily a continuous linear functional z* from the unit
ball in the dual space E*. Then the delta (s,t)-convexity of F' implies that
for all z,y € (a,b) one has

t(z* o F)(z) + (1 —t)(a* o F)(y) — (2% o F)(sz + (1 — s)y)
<tf(z)+ (A=) f(y) — f(sz+ (1 - s)y)
or, equivalently,
(f =" o F)(sz+ (1 —s)y) <t(f—z" o F)(x) + (1 = t)(f — 2" o F)(y).

By means of Theorem 3 from N. Kuhn’s paper [6] we deduce that the function
g := f — x* o F" enjoys the convexity type property

gz + (1= Ny) < Ag(z) + (1= Ng(y), =,y € (a,b), A€ (0,1)NQ,

where Q stands for the field of all rationals. Consequently, for all z,y € (a,b)
and A € (0,1) N Q, we get the inequality

Mz o F)(x)+ (1 =N (z" o F)(y) — (" o F)(Ax 4+ (1 — N)y)

SAM() + (L =Nfy) = fAz + (1= Ny).
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Replacing here the functional * by —z* we infer that a fortiori

[Z"(AF(z) + (1 = A)F(y) — F(Az + (1 = A)y))|
SAf(@)+ (A =Nf(y) — fhz+ (1= Ny),
which due to the unrestricted choice of x* gives the assertion desired. (I

REMARK 2.1. Using another method, A. Olbrys (|8, Lemma 1]|) with the
aid of the celebrated Daréczy and Pales identity

r+y r+y
2 = S|S

+ 1=y + (=) se+ (1- 971,

has proved that any delta (s,t)-convex map on a convex subset of a real
Banach space is necessarily delta Jensen convex.

PROOF OF THEOREM [[.2] In view of the Lemma, F is delta Jensen con-
vex with a control function f. Due to the differentiability of f and the regu-
larity assumption upon F' the map

(a,b) 3 x — f(x) +||F(z)|]| € R

is upper bounded on a set of positive Lebesgue measure. Thus, with the aid
of author’s result from [4], we obtain the local Lipschitz property of F' and,
in particular, the fact that F' is a delta convex map controlled by f in the
sense of L. Vesely & L. Zajicek (see [I0]). Therefore, for any member z*
from the unit ball in the dual space E* the function g, := f + z* o F is
convex. Moreover, on account of Proposition 3.9 (i) in [10, p. 22] (see also
Remark below), F' yields a differentiable map. Hence, g, is differentiable
as well and the derivative ¢, is increasing. Consequently, for any two fixed
elements z,y € (a,b),r <y, we obtain the inequality

(z* o F)'(z) — (2" 0 F)(y) = gi(x) — f'(=) — 9. (y) + f' ()
< —f'(@) + ') <|f' (@) = fwl
Replacing here the functional 2* by —z* we arrive at
|2 (F'(x) = F'(y))| = [(z" o F)'(z) = (2" o F)'(y)] < |f' () = f'(y)],

which, due to the unrestricted choice of * from the unit ball in £*, implies
that

1" (2) = F' ()]l < | (x) = £ ().
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In the case where y < x it suffices to interchange the roles of x an y in the
latter inequality. Thus the proof has been completed. ([

REMARK 2.2. Actually, Proposition 3.9 (i) in [10, p. 22] states that F
is even strongly differentiable at each point x € (a,b), i.e. for every ¢ > 0
there exists a ¢ > 0 and an element ¢(x) € E such that for all points u,v €
(x — 6,2+ 0) C (a,b),u # v, one has

H F(v) — F(u)

v—1Uu

< e.

—c(x)

Obviously, every strongly differentiable map is differentiable (in general, in
the sense of Fréchet).

PROOF OF THEOREM [[.3l In view of Theorem[I.2] F is differentiable and
the inequality

1" (2) = F' ()]l < | (z) = f' ()

holds true for all z,y € (a,b). Let a closed interval [a, 5] be contained in
(a,b). Since, a continuously differentiable function, f'|(, 5 yields an absolutely
continuous function, for every € > 0 there exists a 6 > 0 such that, for every
finite collection of pairwise disjoint subintervals (a1,b1), (az,b2),..., (ak, by)
of [«, 8] with Zle(b,- —a;) < 6, one has Zle |f(bi) — f'(ai)| < e, whence

k

> IF (b)) = F'(a)|

=1

fa)] <e.

||Mw

This proves that the map F'[(, g is absolutely continuous as well. Since the
space (E,| - ||) enjoys the Radon-Nikodym property, in virtue of Theorem
5.21 from the monograph [I] by Y. Benyamini and J. Lindenstrauss, the map
F'|(4,p) is differentiable almost everywhere in [a, 3], i.e. off some nullset 7' C
[a, B] the second derivative F”(x) of F at x does exist for all x € [a, 5]\ T

Now, fix arbitrarily a strictly decreasing sequence (o, )nen and a strictly
increasing sequence (5, )nen such that a < «,, < B, < b, n € N, convergent
to a and b, respectively. Then, for every n € N one may find a nullset T,, C
[, Bn] such that the second derivative F”(x) of F' at x does exist for all
v € [a, f] \ T, Putting T := |J,,c T We obtain a set of Lebesgue measure
zero, contained in (a,b), such that the second derivative F"'(z) does exist for
all points x € (a,b) \ T. Fix arbitrarily a point € (a,b) \ 7. Then for any
point y € (a,b) \ {z} we have

HF'(Z/) — F'(x)
y— =

‘ < ‘f’(y) — (=)

y—a
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and passing to the limit as y — = we conclude that

[E" (@) < |f"(@)| = f"(2),
because of the convexity of f, which completes the proof. ([

REMARK 2.3. Theorem 5.21 from [1] states, among others, that any abso-
lutely continuous map from the unit interval [0, 1] into a normed linear space
FE with the Radon-Nikodym property is differentiable almost everywhere. It
is an easy task to check (an affine change of variables) that any absolutely
continuous map on a compact interval [, ] C R with values in E is almost
everywhere differentiable as well.
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