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Abstract. The paper is focused on the mathematical and numerical approaches for the
thermoelasticity problem in the three-dimensional domain. The mathematical description
of considered problem is based on the second order differential equations of elasticity with
the term describing thermal deformations. The numerical model uses the discontinuous
Galerkin method which is widely used to solve the problems of hydrodynamics. The pre-
sented paper shows the possibility of using the mentioned method to solve the problem of
thermomechanics.
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1. Introduction

One of the reasons for the change of volume and shape of the bodies is tempera-
ture. Most often, the volume of the body increases as the temperature increases,
e.g. a heated steel bar increases its dimensions. If the body, which is thermally
loaded, is a free body then the change in volume does not generate stress. In the
case of a non-free body, the imposed constraints make it impossible to change
the volume freely, which results in stresses. If the stress level does not exceed
the yield strength of the material the body is made of, then this is the problem of
thermoelasticity.

Thermoelasticity relates to the analysis of elastic bodies exposed to the tempera-
ture. Additional loads may be forces or pressure. In the general case, the mechanical
and thermal loads are mutually coupled.

One of the numerical methods used to solve differential equations describing
many physical phenomena is the discontinuous Galerkin method (DGM). DGM is
a method that has been widely described in literature since the 1970s, its history
and basics are most widely described in [1]. However, there are not many papers
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on its application in the issues of linear elasticity. DGM in the theory of linear
elasticity develops in two directions. The first direction of development includes
the use of LDG (Local Discontinuous Galerkin) and IPDG (Interior Penalty Dis-
continuous Galerkin) [2-6]. The second direction of development, MDG (Mixed
Discontinuous Galerkin) is based on the use of so-called mixed elements contain-
ing two base spaces of functions with different orders - lower for approximation of
displacements and higher for approximation of stresses [7, 8].

2. Mathematical model

Let’s consider a three-dimensional region Q presented in Figure 1. Displace-
ments u(x, y,z) of the selected part of external surface are considered as given.
The temperature distribution 7 (x, V, z) in the whole region is also known.

Q: T=T(x.y,z)

-~
~
-
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y P 0Q: u=uy,, v=v,, w=wy,
E 9% -

Fig. 1. Considered volume Q with the temperature field 7 (x, Y, z) and displacements

u(x, y,z) on the bottom surface 0Q

The main goal is to obtain the solution in the form of components of the dis-
placement vector. The starting point of consideration is the system of equilibrium
equations:

ol N or,, N 0T, _ 0 or,, N oo, N or,, _o
ox oy oz ox oy oz (1)
or,. 07, 0o
=+ +—==0
ox oy Oz

where o, 0, o, are normal stresses, 7,,=7,, 7, =7, 7,, =, are shear stresses.
The use of stresses in the equations (1) is not convenient to consider boundary
conditions. Therefore, equations (1) will be transformed in the next chapter into

so-called displacement form.
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3. Numerical model

The discontinuous Galerkin method is derived from the criterion of the weighted
residuals method, where the differential equation is multiplied by the weight func-
tion and integrated over the considered domain. The integration is performed in
a single finite element. This involves the necessity of taking into account the
boundary integrals of the so-called numerical fluxes in each finite element.

The first stage of the DG method is spatial discretization of the considered
domain. In this case tetrahedral elements are used (Fig. 2).

Fig. 2. Spatially discretized domain

Assume that the domain Q consists of N tetrahedrons:
N
=], )
Jj=1

Using the criterion of the weighted residuals method for j-th element equations (1)
are multiplied by the weighting function ¢ and integrated over the volume Q :

or or,, 0o, Ot
[o] 2o O gy —o [ g a2 D gy =0
o L 0Ox S\ Ox
J J

oy oz oy oz
3)

or
j¢(afﬂ+ yz+602]dV=0
ol o e

The following relationships between stresses and strains are used:
O-x=|:2f£‘78x+f‘2(gx+gy+8z)_f;18T:| Txyzz-yxzfl";yxy

O'y=|:2f;,€y+f‘2(€x+€y+gz)_f;1€Ti| Tyzzl-zyzfl"ayyz (4)

O-z:|:2f‘382+f2(8x+gy+gz)_f;th:| sz:z-zx:f:”vyxz
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where ¢

X2 y’

a thermal strain, f, f,, f;, f, are the coefficients of elasticity listed in Table 1.

Table 1. Coefficients of elasticity

" i

¢, are linear strains, y,,, 7,., 7,, represent angular strains, & is

The above coefficients depend on the Young’s modulus £ [N/m?] and Poisson’s

ratio v [-]. Additionally the following geometrical relationships are used:

&r=alAT

_Ou _. _ou 6v

x_a’ yxy yx ay ax

o v _, v ow

T T TR Ty
ow ou Oow

gz:_’ xz:yzx=_+_
0z 0z Ox

)

where u, v, w [m] are the components of the displacement vector, AT [K] repre-
sents the temperature difference between the reference and current temperatures

in the considered body, o

[K™'] is a linear coefficient of thermal expansion.

Using geometrical relationships (5) in equations (4), the following displacement
dependent form of stresses are obtained:

Ou ov ow
o= ot S
ow

ou ov
QFﬁ—+ﬂ—.fa

Gz f fzay—i_ﬁ

f1aAT 7, = f{a”
Ay
6\/

oz

ou

- f,0AT 7,.=7, f3(

0z

—f.aAT 7._.=71, f{—Jr—

ov
ax
8w
£
ow
ox

(6)

Substituting stresses in equations (3) by the relations (6), one obtains the dis-
placement dependent integral form of thermoelasticity equations:
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0 6 ou Ov ou ow
JJ? a_( oy, TS ATJ P (6)} axj ﬁaz(az axﬂdV_O
O0(0ou oOv ov ow ov ow
(_!.j¢ 6_£6_ _xJ sz fla+fzg—f4aATj fi— Laz ayﬂa’V_O
0 ov ow ov ow B
QIJ_¢ a_( ax] (62 6yJ z[fz fzaﬁlg_ﬁ‘aﬂﬂdho
(7

Unfortunately, the DG method is not suitable for the second order differential

equations. Therefore, in order to lower the order of equations (7), additional variables
are introduced:

w_Ou  w_Ou  w_Ou

qx = a’ q); = 5’ qz - aZ
M_v v  m_» 2
=5 b o %= = (®)
W_OW () _OW () OW
“e T

After using the relation (8) in equations (7) one can write:

0 (. ) () (w) _ O ), O (W), (v _
_a(fqu +124," + fo4: f4aAT)+fgay(qy +4, )ﬂ%az(qz +q )dV—O

(w)

_/’3%(61( o )+f3

O ) (0 _
| 5 8y( +q, )+az(f2qx + /9, + 1q. f4aAT) dV=0
J
)
The criterion of the weighted residuals method is also applied to equations (8):
gy = [ 424 W g [ 404
j¢qx dv = j¢ yqy "V‘J%y‘”’ [ 44! dV—MaZdV
J J J ;
My — [ 49 ov
I¢qx dv = j¢ J‘4¢5qy dV—I.¢ade, J.¢$qz dv = jw dv (10)

I

dq\"dy = j ¢$—dV j ¢q'"av = j ¢—dV, j pq"dv = j ¢—dV
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Equations (9)-(10) are the set of twelve equations with twelve unknowns which
should be supplemented by the Dirichlet (11) and Neumann’s boundary conditions
(12) respectively:

(x,y,z)e@Q:u=ub,v=vb,w=wb (11)

(x,3,2)€0Q:¢" =%, g =414, ¢! = ¢

(x,3.2)e00:q" =41, ¢! =40, 41" = 4l}) (12)

(53.7) 200214 =l =), =g

The application of the DG method is presented for the first equation from the set
(10). Operations for the other equations are done in the same way. The integration

by parts is used and q(") and u are replaced by the approximation q)(c',j) and u,:

X

[gql)ar=-] 99 v+ [ ¢n.ii,ds (13)
Q; aX oQ
J

Q; j

where 7, is the component of the vector perpendicular to the surface of the finite
element, whereas, qfc';) and u, are expressed as follows:

g% = pq" =@"q" (14)
i=1

”hzz¢i ;=®'u (135)

i=1

where ¢, is the i-th shape function of the finite element, m is the number of nodes
in the finite element depending on the order of approximation p:

. (p+1)(P;2)(P+3) (16)

To simplify further considerations, the weight functions are assumed the same
as the shape functions ¢ =¢. The quantity #, in equation (13) is the so-called
numerical flux, which is defined in literature in various ways [9]. In the presented
description the so-called central flux is used:

N
=
u 2(uh+uh) 17)

where “+” and “—* are boundary values calculated in j-th finite element and adjacent
elements respectively.
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According to the presented assumptions, equation (13) can be written as follows:

j¢q§;;)d1/=—jg—xuhdv+j on, 2(uh 1, )ds (18)

Qj 1 /

The quantities q)((';,), u,, u, are assumed unknown, while u, is given. Therefore,
equation (18) should be rearranged, so that the elements containing the unknown
terms are on the right, while the rest are moved on the left:

j¢ dV+j—uth (X[ on. Eu;ds—f on, 2uhds (19)

The rest of equations from the set (10) are obtained in the same way. The equa-
tions from the set (9) must be also rearranged in order to satisfy DG assumption
The first equation from (9) is taken as an example:

'[ ¢[a_i(ﬁq£z¢)+fzq$)+fzq§w)—f4aAT)+f3%(qﬁu)ﬂg))Jrﬁa_aZ(qga” g\ )}deo
Q;

(20)

After replacing the exact solution q)(c“) by approximation q)(f,’q), the first term in
(20) is written as follows:

J 82 (faly)ar - J KL q)av + [ fonddas @)
Q;

l

According to [9], the central stream é)(f,;) equals:
Alu 1 u)+ u)— + o+ - -
%(ch) = E(q)(ch) + %(ch) ) -Gy (nx Uy +nu, ) (22)

where C;, is a constant providing convergence of the solution whose value is
chosen experimentally.
Using relation (22) in equation (21) one can write:

J 62 { gl )ar - Ifl—qxh dV+If¢"[ (o 05 ) =G i ) o

Q;

(23)
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The equation (23) can be written as the sum of integrals:

I¢a (fl x;tt )dV— If_qxh dV‘*‘J. Sign, qxh ds +
(24)

+ f1¢nx5q;,: “ds - j fign Cmiurds = [ fign Cniuyds
oQ ;

0Q;

: +_ 2 -_ 2 fra.
Assuming that n n_ =n_, n_.n_=—n_ one can write:

a u a u 1 u)+
[ ol jar == ngbalav- | g g
’ ©3)

| N
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50, a0,

Other terms appearing in equation (20) are determined analogically:

Ma (g )av =- jfz—qy,,dm j fon, th) ds+
| (26)

+ f2¢$nx§qy2_ds— [ fapnn,Cvyds+ j fapnn,C, v, ds
0Q;

./
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27

w;, ds

f¢%(f3q§2’) ff3—qy,, dv+ j fidn, —th “ds+
(28)

1 () . _
+ f3¢$ny§th ds— [ fipn}Cu;ds+ j fipn’Cu; ds
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oQ . oQ .
LQJ LQJ
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(29)

Q;
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a0, ’ a0,
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I¢ (f3 9z ) _[fS_qzh av + J. Ssén, —qzh Yds +
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Using relations (25)-(32) in equation (20) it can be written:

_flj-%qxh f3'|-af Dy - f3_[a¢ ad _f3J‘ ¢%th+
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The last two equations from the set (10) are derived analogously. The terms
from the left side of the equations build the stiffness matrix, while the terms from
the right form the vector of boundary values. The following matrices are intro-

duced:
M= j oD’V
Q(")
D =j OP\pTay-B . B.-Ltn j D ds
X (E) ax X X 2 X (E)
Q Q!
D = (@J(I)TdV—By, Byzény DD’ ds
Q(E) ay ag(")
D, = (aip ®'dV-B,, Bzzlnz oD’ ds
o\ OX 23
Q oQ

S.=Cy(fn2+fm+fnl) | @@’ds s!)

xy
oQ;

S(y;) =C, (f3nf +f1n; +f3n22) J. OYOXR SE:ZV)
prey

S(z:v)zcll(/gni"'ﬁn;“‘flnf) J. DD’ ds S(y‘:)
0Q;

H.=—fa | [62 @®'ATdV -h,,
o\ OX
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H =-f«a [ai) ®'ATdV -h ,

oy Y
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ST
h=Lfan | @@’ ATds
2 ;)Q(")

(34)

(35)

(36)

(37

The above matrices and vectors are used to form the stiffness matrix K (38)
and the vector B (42). The dimensions of K depend on the approximation order.
In the case of linear approximation p =2 K contains 48 rows and columns. As p
increases, the matrix dimensions also increase rapidly, assuming 120x120 for p =2

and 240x240 for p = 3.
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Finally the set of equations can be written in the well-known form:
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The calculation process must be done for each finite element. In each iteration
it is necessary to solve N systems of equations whose relative size is not large.
The final solution is obtained after many iterations. K is built only once at the start
of the process while B must be rebuilt in each iteration. Boundary conditions are
introduced by the modification of appropriate values in the vector y. During the
iterative process the values from the boundaries are gradually propagated into
the internal part of the domain. After each iteration, calculated nodal displacements
are compared to the values obtained in the previous iteration. The calculation
process is finished when the difference between nodal displacements from the two
last iterations tends to zero. Obtained displacements can be used to find strains
according to (5) and stresses using (6).

6. Conclusions

The presented mathematical and numerical models of the three dimensional
problem of thermoelasticity show the methodology of the Discontinuous Galerkin
Method in the case of second order partial differential equations. On the basis of
presented considerations a computer program can be easily created. Unfortunately,
the number of iterations necessary to achieve reasonable accuracy of results can be
very large, which drastically lengthens the calculation process compared to con-
tinuous approach. The advantage of DGM is that each finite element is independent
thus the calculation process can be easily parallelized.
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