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Abstract. The initial/boundary value problem for the fourth-order homogeneous ordinary 

differential equation with constant coefficients is considered. In this paper, the particular 

solutions an ordinary differential equation with respect to the set of boundary conditions  

are studied. At least one of the boundary conditions is described by a fractional derivative. 

Finally, a few illustrative examples of particular solutions to the considered problem  

are shown. 
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1. Introduction  

The fourth-order ordinary differential equations are an important mathematical 

tool for modelling various phenomena occurring in dynamical systems. Examples 

of equations occur in almost all of the engineering sciences and appear in many 

fields of physics [1]. 

One of the types of these equations are the homogeneous linear equations that 

are usually used for modelling bending or deflection of elastic beams in, an equilib-

rium state, and two ends of a beam satisfy the specified boundary conditions [2, 3]. 

The set of boundary conditions allows for the establishment of the existence  

and uniqueness of solutions of a large class of boundary value problems. Usually, 

the initial/boundary conditions are described by functions and their derivatives of 

the integer order (the Dirichlet or natural boundary conditions). The problem of 

finding the exact analytical solution of these equations is studied in many works. 

The various approaches are used to find the particular solutions of differential 

equations, i.e. separation of variables, undetermined coefficients, variation of  

parameters or Green’s function method [1-5]. 

In this work, the particular solutions to fourth-order homogeneous linear ordinary 

differential equation with linearly independent generalized boundary conditions  



J. Siedlecki 80 

are studied. Here, all or at least one of the boundary conditions are replaced by  

a fractional boundary condition, meaning that the function and/or integer order  

derivative in boundary conditions are replaced by fractional derivative [6-8].  

In recent years, the various mathematical problems containing fractional deriva-

tives have become an important topic. Such solutions of the considered generalized 

boundary value problems can be an important mathematical tool for modelling  

the phenomena occurring in dynamical systems or materials science. The above 

equation is an important mathematical tool for modelling the phenomena occurring 

in dynamical systems or materials science, i.e. for the deflection of a beam.  

2. Governing equations 

I analysed the initial/boundary value problem for the fourth-order homogeneous 

differential equation with a constant coefficient in the form 

      4 4 0, , , 0D y x k y x x a b k     (1) 

The general solution of fourth-order Eq. (1) is in the form (i.e. [4]) 

          1 2 3 4cos sin cosh sinhy x C k x C k x C k x C k x     (2) 

and containing four arbitrary independent constants of integration. 

In this paper, Eq. (1) with respect to the following set of 4 linearly independent 

fractional boundary conditions is considered 

     , 0, 1,...,4i b ax a x b
D y x D y x i 

 

 
    (3) 

where  , 0,4   and the operators 
b

D 
 , 

a
D 

  denote the left- and right-side  

Riemann-Liouville derivatives [6,7], defined by  
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 (5) 

and    /n n nD y x d y x dx . 
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The values of left- and right-side fractional derivatives of solution y(x) (see 

Eq. (2)) determined on the boundaries of interval [a, b] are equal to 

 

          
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 (6) 

 

          
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 (7) 

Details on the numerical approximation of the left- and right-sided Riemann- 

-Liouville fractional derivatives of the sine, cosine, hyperbolic sine and hyperbolic 

cosine functions can be found in [9]. Now, I present the final form of the fractional 

derivatives of these functions. The left-sided Riemann-Liouville derivatives for 

0  , have the following forms 
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 (11) 

while, the left-sided Riemann-Liouville derivatives for 0   are as follows: 
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3. Examples of calculations 

In this section, I display a method of construction of particular solutions to the 

considered fourth-order linear differential equation. The initial/boundary conditions, 

written in the general form in Eq. (2), can be used on both sides of the domain [a, b] 

in many combinations. Now, I show two selected examples of their use. 

 

Example 1: Eq. (1) with two boundary conditions given at boundary x = a  

and with two boundary conditions at boundary x = b are presented. Here, I assume 

the following set of boundary conditions in the form 

 

 
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I substitute the general solution (2) into (16) and I have  
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     
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The constants Ci 
, i = 1,…4, occurring in the general solution (2), can be deter-

mined from the solution of the following system of equations  

  A C L  (18) 

where  
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  (20) 

In Figures 1 and 2, the plots of example particular solutions of Eq. (1) with 

above boundary conditions have been presented. 
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Fig. 1. The particular solutions of Eq. (1) for a = 0, b = 5, k = 1 and selected set of 

boundary conditions        0.5 1.2 01, 0, 1, 0
b b aax a x a x bx b

D y x D y x D y x D y x  


  
     

 

Fig. 2. The particular solutions of Eq. (1) for a = 1, b = 3, k = 4 and selected set of 

boundary conditions        0 2 01, 0, 2, 0
b b a ax a x a x b x b

D y x D y x D y x D y x   


   
     

Example 2: In this example, the following set of four initial conditions given  

at boundary x = a are considered 

 

 

 

 

 

1

2

3

4

1

2

3

4

b x a

b x a

b x a

b x a

D y x L

D y x L

D y x L

D y x L




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The approach of determining of constants Ci 
, i = 1,…4, in Eq. (2) is very similar 

as in the preview example, and leads to solution of the system of linear equations 

(18), where matrix A is of form  

       
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   

   

   

  

 

A

   4 sinh
bx a x a

x D k x


 

 
 
 
 
 
 
 
 
  

  

  (22) 

In Figure 3, the plots of particular solutions of Eq. (1) with four initial condi-

tions given on the boundary x = a are shown. 

 

Fig. 3. The particular solutions of Eq. (1) for a = 0, b = 1, k = 2 and selected set of 

boundary conditions        0 1 21, 0, 0, 0
b b b bx a x a x a x a

D y x D y x D y x D y x   


   
     

Other combinations of the particular boundary/initial conditions can be easily 

adopted by the Reader (in a similar way). 

4. Conclusions 

In this paper, the initial or/and boundary value problem for the fourth-order  

homogeneous differential equations with constant coefficients has been studied. 

The general solutions of such equations are widely known in the literature.  

The main aim of considerations was to find the particular solutions to this problem, 

meaning to determine the values of arbitrary constants in the general solution 
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which satisfy the generalised boundary conditions given both by the set of  

fractional derivatives and integer ones (including the Dirichlet, Neumann and 

Robin types). 

It should be noted that the application of the fractional boundary conditions  

in the considered initial or/and boundary value problem required the fractional  

differentiation of the general solution. In this way, analytical formulas for the left 

and right fractional Riemann-Liouville derivatives of the sine, cosine, hyperbolic 

sine and hyperbolic cosine functions were obtained, which were used to determine 

the values of integration constants. 

 

Introducing fractional boundary conditions to the classical fourth-order bound-

ary value problem gives new possibilities in physical phenomena modelling, 

among others, the modeling deflections in beams or the oscillator modelling.  
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