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Guelma 24000, Algeria

moumen-med@univ-eloued.dz, moumen-bekkouche.mohamed@univ-guelma.dz
guebaihamza@yahoo.fr, hamza.guebbai@univ-guelma.dz

Received: 29 February 2020; Accepted: 30 May 2020

Abstract. We study the existence and uniqueness of the solution of a fractional boundary
value problem with conformable fractional derivation of the Caputo type, which increases
the interest of this study. In order to study this problem we have introduced a new definition
of fractional integral as an inverse of the conformable fractional derivative of Caputo,
therefore, the proofs are based upon the reduction of the problem to a equivalent linear
Volterra-Fredholm integral equations of the second kind, and we have built the minimum
conditions to obtain the existence and uniqueness of this solution. The analytical study is
followed by a complete numerical study.
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1. Introduction

The usual integral and derivative are (to say the least) a staple for the new technol-
ogy, essential as a means of understanding and working with natural and artificial sys-
tems. Recently, many authors have participated in the development of the fractional
calculus (differentiation and integration of arbitrary order) [1,2]. The applications of
fractional calculus often appear in the fields such as generalized voltage dividers [3],
electric conductance of biological systems [4], capacitor theory [5, 6], engineer-
ing [7, 8], electrode-electrolyte interface models [9], feedback amplifiers [10], med-
ical [11], fractional order models of neurons [12], analysis of special functions [13],
and fitting experimental data [14].

Recently, papers have been published that deal with the existence and multiplic-
ity of the solution of nonlinear initial fractional differential equation by the use of
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techniques of nonlinear analysis, see [15–17]. However, most of the papers offer the
problem using the standard Riemann-Liouville differentiation, see [18, 19]. How-
ever, Our aim is to study the existence and the uniqueness of the solution for a class
of fractional boundary value problems. To the best of our knowledge, this is the first
work that solves problem with the conformable fractional derivative by Caputo and
Fabrizio in paper [20], which has many properties mentioned in the article [9]. The
interest for in this new approach is due to the necessity of using a model to describe
the behavior of classical viscoelastic materials, electromagnetic systems, thermal me-
dia, etc. In fact, the original definition of Caputo’s fractional derivative appears to be
particularly convenient for those mechanical phenomena, related to damage and with
electromagnetic hysteresis, fatigue and plasticity. When these effects are not present
it seems more appropriate to use the new fractional derivative [20].

In this paper, We study the existence and uniqueness of the solution of the frac-
tional differential equation boundary value problem, as follows:{

D (γ) u(x)+q(x)u(x) = f (x), 06 x6 1
u(0) = u(1) = 0

(1)

where 1 < γ < 2 is a real number, q is the potential function, and f : [0,1]→ R is
continuous. and D (γ) is the new fractional derivative, and we introduce a new def-
inition of its fractional integral with some properties, using this fractional integral
upon problem (1) to obtain an equivalent linear Volterra-Fredholm integral equa-
tions of second kind [21, 22]. Finally, by the means of some theorems, the existence
and uniqueness of solutions are obtained, and we introduce an algorithm for finding
a numerical solution of this problem class.

2. Preliminaries

For the convenience of the reader, we present here the necessary definitions and
lemmas from fractional calculus theory. These definitions can be found in the recent
literature.

Definition 1 [20] For α ∈ [0,1], the fractional time derivative D (α)u(x) of order (α)
is defined as follows:

D (α) u(x) =
M(α)

1−α

∫ x

a
u′(s)exp

[
−α(x− s)

1−α

]
ds (2)

where α ∈ [0,1] and a ∈ ]−∞,x), u ∈ H1(a,b), b > a, and M(α) is a normalization
function such that M(0) = M(1) = 1. 2
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Definition 2 [20] Let n≥ 1, and α ∈ [0,1] the fractional derivative D (α+n) f of order
(n+α) is defined by

D (α+n) f (x) := D
(α)
t

(
D (n) f (x)

)
=

M(α)

1−α

∫ x

a
f (n+1)(s)exp

[
−α(x− s)

1−α

]
ds

Such that

D (α+n) f (x) =
M(α)

1−α

∫ x

a
f (n+1)(s)exp

[
−α(x− s)

1−α

]
ds (3)

3. A new definition of fractional integral

In this section, We introduce a new definition of a fractional integral as a theorem:

Theorem 1 Let n≥ 1, α ∈ [0,1], and f ∈ C 1[a,b]. The formula:

In+α
a f (x) =

1
M(α) ·n!

∫ x

a
(x− s)n−1[α(x− s)+n(1−α)] f (s)ds

where f ∈ C 1[a,b], and M(α), is a normalization function such that M(0) = M(1) =
= 1 is a new fractional integral of order (n+α), and it’s as an inverse of the con-
formable fractional derivative of Caputo of order (n+α). 2

PROOF From Definitions 1 and 2, we obtain

D (α+n) f (x) =
M(α)

1−α

∫ x

a
f (n+1)(s)exp

[
−α(x− s)

1−α

]
ds

and the Leibniz integral rule gives the formula

d
dt

(
D (α+n) f (x)

)
=

M(α)

1−α
f (n+1)(x)− α

1−α

M(α)

1−α

∫ x

a
f (n+1)(s)exp

[
−α(x− s)

1−α

]
ds

⇒ d
dt

(
D (α+n) f (x)

)
=

M(α)

1−α
f (n+1)(x)− α

1−α
D (α+n) f (x).

⇒ f (n+1)(x) =
1

M(α)

[
(1−α)

d
dt

(
D (α+n) f (x)

)
+αD (α+n) f (x)

]
.

we now use the Cauchy formula for evaluating the (n+1)th integration of the function
f (n+1)(x)

f (x) =
1

n!M(α)

∫ x

a
(x− s)n

[
(1−α)

d
ds

(
D (α+n) f (s)

)
+αD (α+n) f (s)

]
ds.
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⇒ In+α
a f (x) =

1
M(α) ·n!

∫ x

a
(x− s)n[α f (s)+(1−α) f ′(s)]ds

=
1

M(α) ·n!

∫ x

a
(x− s)n−1[α(x− s)+n(1−α)] f (s)ds.

Lemma 1 Let γ ∈ (n,n+1),n = [γ]> 0. Assume that u ∈ C n[a,b], then those state-
ments hold:

1. if u(a) = 0, then D (γ) (Iγ
a u(x)) = u(x).

2. Iγ
a

(
D (γ) u(x)

)
= u(x)+

n

∑
i=0

aixi, ai ∈ R i = 0,1, . . . ,n. 2

PROOF Let γ ∈]n,n+ 1[, it can be written in the form: γ = n+α where α ∈]0,1[,
and n = [γ], we have

1.D (γ) (Iγ
a u(x)) =

α

(1−α)

∫ x

a

d(n+1)

ds(n+1)

[
1
n!

∫ s

a
(s− x)nu(x)dx

]
exp
[
−α(x− s)

1−α

]
ds

+
∫ x

a

d(n+1)

ds(n+1)

[
1
n!

∫ s

a
(s− x)nu′(x)dx

]
exp
[
−α(x− s)

1−α

]
ds

=
α

(1−α)

∫ x

a
u(s)exp

[
−α(x− s)

1−α

]
ds+

∫ x

a
u′(s)exp

[
−α(x− s)

1−α

]
ds

=
α

(1−α)

∫ x

a
u(s)exp

[
−α(x− s)

1−α

]
ds

+u(s)exp
[
−α(x− s)

1−α

]∣∣∣∣x
a
− α

(1−α)

∫ x

a
u(s)exp

[
−α(x− s)

1−α

]
ds

= u(x)−u(a)exp
[
−α(x−a)

1−α

]
= u(x).

2. Iγ
a

(
D (γ) u(x)

)
=

1
M(α) ·n!

∫ x

a
(x− s)n−1[α(x− s)+n(1−α)]D (γ) u(s)ds

=
α

M(α) ·n!

∫ x

a
(x− s)nD (γ) u(s)ds+

(1−α)

M(α) ·n!

∫ x

a
(x− s)n d

ds

(
D (γ) u(s)

)
ds

=
α

M(α) ·n!

∫ x

a
(x− s)nD (γ) u(s)ds

+
(1−α)

M(α) ·n!

∫ x

a
(x− s)n

(
M(α)

1−α
u(n+1)(s)− α

1−α
D (γ) u(s)

)
ds

=
1
n!

∫ x

a
(x− s)nu(n+1)(s)ds = u(x)+

n

∑
i=0

aixi, ai ∈ R i = 0,1, . . . ,n.
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4. Analytic study

In the following, we suppose the function M(α) = 1.

Lemma 2 Given q ∈ C [0,1], and 1 < γ < 2, the solution of

D (γ) u(x)+q(x)u(x) = f (x), 06 x6 1
u(0) = u(1) = 0

(4)

satisfies the following linear Volterra-Fredholm integral equations of the second kind

u(x)+
∫ x

0
G(x,s)u(s)ds+

∫ 1

0
K(x,s)u(s)ds = g(x) (5)

where g(x) =
∫ x

0
(x−1)(αs−1+α) f (s)ds+

∫ 1

0
x(αs−1) f (s)ds,

G(x,s) = (x−1)(αs−1+α)q(s) and K(x,s) = x(αs−1)q(s).

PROOF We may apply Lemma 1 to reduce Eq. (4) to an equivalent integral equation

Iγ

0

(
D (γ) u(x)

)
= Iγ

0 ( f (x)−q(x)u(x))

⇒ u(x)+ cx+d =
∫ x

0
[α(x− s)+(1−α)] ( f (s)−q(s)u(s)) ds

Using boundary conditions u(0) = u(1) = 0, we have d = 0, and

c =
∫ 1

0
(1−αs)( f (s)−q(s)u(s)) ds.

Therefore, the unique solution of problem (4) is

u(x) =
∫ x

0
[α(x− s)+(1−α)] ( f (s)−q(s)u(s)) ds

+
∫ 1

0
x(αs−1)( f (s)−q(s)u(s)) ds

=
∫ x

0
[α(x− s)+(1−α)] f (s)ds+

∫ 1

0
x(αs−1) f (s)ds

−
∫ x

0
[α(x− s)+(1−α)]q(s)u(s)ds−

∫ 1

0
x(αs−1)q(s)u(s)ds

= g(x)−
∫ x

0
G(x,s)u(s)ds−

∫ 1

0
K(x,s)u(s)ds.

The proof is complete. �
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The classical approach to proving the existence and uniqueness of the solution of
equation (5) is the Picard method. This consists of the simple iteration for n= 1,2, . . .

un(x) = g(x)+
∫ x

0
G(x,s)un−1(s)ds+

∫ 1

0
K(x,s)un−1(s)ds (6)

with u0(x) = g(x). For ease of manipulation, it is convenient to introduce

vn(x) = vn(x)− vn−1(x), n = 1,2, . . . (7)

with v0(x) = g(x). On subtracting from (6), the same equation with n replaced by
n−1, an we see that

vn(x) =
∫ x

0
k(x,s)vn−1(s)ds, n = 1,2, . . .

Also, from (7)

un(x) =
n

∑
i=0

vi(x) (8)

The following theorem uses this iteration to prove the existence and uniqueness of
the solution under quite restrictive conditions, namely that G(x,s), K(x,s) and g(x)
are continuous.

Theorem 2 If g(x) is continuous in 0 6 x 6 1, and the function K(x,s), G(x,s) are
continuous in 06 s6 x6 1, and max

06s6x61
|K(x,s)|< 1, then the integral equation (5)

possesses a unique continuous solution for 06 x6 1. 2

PROOF Choose M1, M2 and M3 such that

|g(x)|6M1, 06 x6 1
|G(x,s)|6M2, 06 s6 x6 1
|K(x,s)|6M3, 06 s6 x6 1 where M3 < 1.

We first prove by induction that

|vn(x)|6
M1(M2x)n

n!
+M1Mn

3 , 06 x6 1, n = 0,1, . . . (9)

this bound makes it obvious that the sequence un(x) in (8) converges, and we can
write

u(x) =
∞

∑
i=0

vi(x) (10)

We now show that this u(x) satisfies equation (5). The series (10) is uniformly con-
vergent since the terms vi(x) are dominated by M1(M2x)i/i!+M1Mi

3. Consequently,
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we can interchange the order of integration and summation in the following expres-
sion to obtain∫ x

0
G(x,s)

∞

∑
i=0

vi(s)ds+
∫ 1

0
K(x,s)

∞

∑
i=0

vi(s)ds =
∞

∑
i=0

∫ x

0
G(x,s)vi(s)ds

+
∞

∑
i=0

∫ 1

0
K(x,s)vi(s)ds

=
∞

∑
i=0

vi+1(s)

=
∞

∑
i=0

vi(s)−g(x).

Each of the vi(x) is clearly continuous. Therefore u(x) is continuous, since it is
the limit of a uniformly convergent sequence of continuous functions.

To show that u(x) is the only continuous solution, suppose there exists another
continuous solution ũ(x) of (5). Then

u(x)− ũ(x) =
∫ x

0
G(x,s)(u(s)− ũ(s))ds+

∫ 1

0
K(x,s)(u(s)− ũ(s))ds (11)

since f (x) and f̃ (x) are both continuous, there exists a constant C such that

|u(x)− ũ(x)|6C, 06 x6 1

Substituting this into (11)

|u(x)− ũ(x)|6C(M2x+M3), 06 x6 1

and repeating the step shows that

|u(x)− ũ(x)|6C
(
(M2x)n

n!
+Mn

3

)
, 06 x6 1, for any n.

For a large enough n, the right-hand side is arbitrarily small, therefore, we must have

u(x)− ũ(x), 06 x6 1

Theorem 3 If f (x), q(x) are continuous in [0,1], and max
06x61

|q(x)| < 1, then the

fractional boundary value problem (1) possesses a unique continuous solution for
06 x6 1. 2
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PROOF If f (x), q(x) are continuous in [0,1], then it is clear that the following func-
tions

g(x) =
∫ x

0
(x−1)(αs−1+α) f (s)ds+

∫ 1

0
x(αs−1) f (s)ds,

G(x,s) = (x−1)(αs−1+α)q(s),

K(x,s) = x(αs−1)q(s),

are continuous, and |K(x,s)| = |x(αs− 1)q(s)| 6 |q(s)| < 1, ∀x,s ∈ [0,1], which
means that integral equation (5) possesses a unique continuous solution for 06 x6 1.
Therefore, there is a unique continuous solution of the fractional boundary value
problem (1) for 06 x6 1. �

5. Numerical study

In this section, we introduce an algorithm for finding a numerical solution of linear
Volterra-Fredholm integral equations of the second kind, the methods based upon
trapezoidal rule. For all N ∈ N, Here the interval [0,1] in to N equal sub-intervals,
where h = (b−a)/N, and xi = a+ i ·h for all i ∈ {0 · · ·N} .

The formula of the numerical integration is:∫ b

a
f (s)ds≈ h

2

[
f (a)+2

N

∑
j=1

f (x j)+ f (b)

]
we apply this formula in eq. (5), and we obtain:

g(xi) = u(xi)+
h
2

[
G(xi,x0)u(x0)+2

i−1

∑
j=1

G(xi,x j)u(x j)+G(xi,xi)u(xi)

]

+
h
2

[
K(xi,x0)u(x0)+2

N−1

∑
j=1

K(xi,x j)u(x j)+K(xi,xN)u(xN)

]

⇒∀i = 0, . . . ,N, gi = ui +
h
2

[
Gi0u0 +2

i−1

∑
j=1

Gi ju j +Giiui

]

+
h
2

[
Ki0u0 +2

N−1

∑
j=1

Ki ju j +KiNuN

]
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This leads to

h
2
(Gi0 +Ki0)u0 +h

i−1

∑
j=1

(Gi j +Ki j)u j +
h
2

(
2
h
+Gii +2Kii

)
ui

+h
N−1

∑
j=i+1

Ki ju j +
h
2

KiNuN = gi

Finally, we get a system of N +1 equations, which is:

AU = B (12)

when B = (g0,g1, . . . ,gN), U = (u0,u1, . . . ,uN), and A = (ai j)i, j=0,...,N ;

ai j =



h ·K00/2+1 if i = j = 0,
h ·K0 j if j = 1, . . . ,N−1,
h ·K0 j/2 if j = N,

h · (Gi0 +Ki0)/2 if i = 1, . . . ,N,

h · (Gii +2Kii)/2+1 if i = j = 1, . . . ,N−1,
h · (Gii +Kii)/2+1 if i = j = N,

h ·KiN/2 if i = 1, . . . ,N−1,
h · (Gi j +Ki j) if i = 2, . . . ,N, j = 1, . . . , i−1,
h ·Ki j if i = 1, . . . ,N−1, j = i+1, . . . ,N−1,

We have chosen to write our system in its general matrix form without taking into
account the fact that u0 = uN = 0. However, we can see that

g0 = K0 j = 0, ∀ j ∈ {0 . . .N}⇒ u0 = 0.

In same way, we get uN = 0.

6. Numerical result

In this section, we give three numerical examples (Fig. 1) to illustrate the above
methods for solve the linear Volterra-Fredholm integral equations of the second kind.
The exact solution is known and used to show that the numerical solution obtained
with our methods is correct. We used MATLAB to solve these examples.

Example 1 Consider the following fractional boundary value problem:

D (γ) u(x)+q(x)u(x) = f (x), 06 x6 1
u(0) = u(1) = 0

(13)
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where γ = 1.5, q(x) = 1, f (x) = sinh(x)+(ex−1)(x−1)+ xex, with the exact solu-
tion u(x) = (ex−1)(x−1). 2

Fig. 1. The absolute error of test Example 1 with N = 16

Example 2 Consider the following fractional boundary value problem (Fig. 2):

D (γ) u(x)+q(x)u(x) = f (x), 06 x6 1
u(0) = u(1) = 0

(14)

where γ = 1.9, q(x) = t− 1, and f (x) = 10x. In this case, we don’t know the exact
solution. 2

Fig. 2. The approximate solution of test Example 2 with N = 32

7. Conclusion

In this article, we proved the existence and uniqueness of the fractional boundary
value problem with use of the minimum of hypotheses that ensure this, and using
numerical methods and programming by Matlab to solve the problem.
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As perspectives, we will try to study the following generalized version

D (γ) u(x)+q(x)u(x) = f (x), 06 x6 1
u(0) = a, u(1) = b

(15)

where, a,b ∈ R. This generalized version represents a challenge from the analyti-
cal point of view, i.e. the existence and uniqueness of the solution. However, the
numerical side remains the same.

References

[1] Machado, J.T., Kiryakova, V., & Mainardi, F. (2011). Recent history of fractional calculus.
Communications in Nonlinear Science and Numerical Simulation, 16(3), 1140-1153.

[2] Kiryakova, V.S. (1993). Generalized Fractional Calculus and Applications. CRC Press.
[3] Miller, K.S., & Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional

Differential Equations. Wiley.
[4] Wang, Y., & Wang, H. (2020). Triple positive solutions for fractional differential equation bound-

ary value problems at resonance. Applied Mathematics Letters, 106376.
[5] Esmaili, S., Nasresfahani, F., & Eslahchi, M.R. (2020). Solving a fractional parabolic-hyperbolic

free boundary problem which models the growth of tumor with drug application using finite
difference-spectral method. Chaos, Solitons & Fractals, 132, 109538.

[6] Munkhammar, J. (2005). Fractional calculus and the Taylor-Riemann series. Rose-Hulman
Undergraduate Mathematics Journal, 6(1), 6.

[7] Samko, S.G., Kilbas, A.A., & Marichev, O.I. (1993). Fractional Integrals and Derivatives
(Vol. 1). Yverdon-les-Bains, Switzerland: Gordon and Breach Science Publishers.

[8] Diethelm, K. (2010). The Analysis of Fractional Differential Equations: An Application-oriented
Exposition using Differential Operators of Caputo Type. Springer Science & Business Media.

[9] Losada, J., & Nieto, J.J. (2015). Properties of a new fractional derivative without singular kernel.
Progr. Fract. Differ. Appl., 1(2), 87-92.

[10] Hilfer, R. (Ed.). (2000). Applications of Fractional Calculus in Physics (Vol. 35, No. 12,
pp. 87-130). Singapore: World Scientific.

[11] Linz, P. (1985). Analytical and Numerical Methods for Volterra Equations (Vol. 7). Siam.
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