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Abstract. In this research work, we consider a thin, simply supported rectangular plate  

defined as 0 x a  , 0 y b  , 0 z c   and determine the thermal stresses by using  

a thermal bending moment with the help of a time dependent fractional derivative. The con-

stant temperature is prescribed on the surface 0y   and other surfaces are maintained at 

zero temperature. A powerful technique of integral transform is used to find the analytical 

solution of initial-boundary value problem of a thin rectangular plate. The numerical result 

of temperature distribution, thermal deflection and thermal stress component are computed 

and represented graphically for a copper plate.  
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1. Introduction  

Thermal stress analysis of a rectangular plate and its thermal stress intensity factor 

for a compressive stress field have been discussed by Tanigawa and Komatsubara [1]. 

Gogulwar and Deshmukh [2] studied thermal stresses in a rectangular plate due to 

partially distributed heat supply. Kulkarni and Deshmukh [3] deals with the realis-

tic problem of the quasi-static thermal stresses in a rectangular plate subjected to 

constant heat supply on the extreme edges  ,x a y b  , whereas the initial edges 

 0, 0x y   are thermally insulated. Deshmukh et al. [4] discussed thermal stresses 

in a simply supported plate with thermal bending moments with a heat source.  

Fractional-order differential equations have been the forefront of research due to 

their applications in many real-life problems of fluid mechanics, viscoelasticity,  

biology, physics, and engineering. It is a well-known fact that the integer-order  

differential operator is a local operator but the fractional-order differential operator 

is non-local. Therefore, the next state of a system depends not only upon its current 
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state, but also upon all of its historical states. This is much more realistic and due to 

this reason, the fractional derivative is also known as a memory dependent deriva-

tive. In recent times, the approaches of fractional order derivatives have become 

more popular amongst many researchers. The reason behind the introduction of the 

fractional theory is that it predicts a delayed response to physical stimuli, as found 

in nature, as opposed to the instantaneous response predicted by the generalized 

theory of thermoelasticity.  

The fractional-order theory of thermoelasticity was developed by Sherief et al. 

[5]. The work on quasi-static fractional-order thermoelasticity can be found in the 

literature [6-11]. Raslan [12] studied the application of the fractional-order theory 

of thermoelasticity in a thick plate under axisymmetric temperature distribution. 

Warbhe et al. [13, 14] discussed the fractional heat conduction problem in a thin 

circular plate with constant temperature distribution and associated thermal stresses 

within the context of the quasi-static theory and studied the fractional order thermo- 

elastic deflection in a thin hollow circular disk. Tripathi et al. [15] solved a fractional 

order thermoelastic deflection in a thin circular plate with constant temperature  

distribution within the context of the quasi-static theory. Tripathi et al. [16] solved 

a problem on fractional order generalized thermoelastic response in a half space 

due to a periodically varying heat source.  

In this article, we investigate the thermal stress components due to the thermal 

bending moment in a thin rectangular plate subjected to constant temperature in  

the context of the fractional order theory by the quasi-static approach. Copper  

material is chosen for numerical purposes, and the numerical calculations has been 

carried out with the help of computational mathematical software Mathcad 2000. 

The results of temperature, thermal stresses and thermal deflection are illustrated 

graphically.  

2. Mathematical formulation of the problem 

Consider a thin rectangular plate with its dimension 0 x a  , 0 y b  , 

0 z c  . The constant temperature 0Q  is applied to the boundary surface 0y   and 

the some other boundaries are maintained at zero temperature. A hypothetical 

mathematical model is prepared considering a nonlocal Caputo type time fractional 

heat conduction equation of order   for a thin rectangular plate.  

The definition of the Caputo type fractional derivative is given by [6] 
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For finding the Laplace transform, the Caputo derivative requires knowledge  

of the initial values of the function ( )f t  and its integer derivatives of the order 
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where the asterisk denotes the Laplace transform with respect to time, s  is the 

Laplace transform parameter. 

The boundary value problem of heat conduction of a homogeneous isotropic 

solid is given as, 
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where ( , , , )T T x y z t ; h  is thermal diffusivity of the material of the plate.  

Here we consider a simply supported rectangular plate with its dimension a b  

subjected to thermal load. The fundamental equation and the associated boundary 

conditions in the Cartesian coordinate system are given as [4] 
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where w  is the thermal deflection, TM  is the thermally induced resultant moment 

and D  is the bending rigidity of the plate.  

Considering the equilibrium state in the in-plate directions of x  and y , the inplate 

resultant forces are  

 0x y xyN N N   . (15) 

The resultant moments xM , yM , xyM  per unit length of the plate are defined as: 
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The equilibrium equations of moments about the x  and y  axes are: 
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where xQ , yQ  are the shearing forces. 

The bending rigidity D  and thermally induced resultant moment TM  of the plate 

are defined as  
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ta , E  and v  are the coefficients of the linear thermal expansion, the Young’s 

modulus, and Poisson’s ratio of the plate material, respectively. 
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The thermal stress components in terms of the resultant forces and resultant 

moments are given as [17] 
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where the resultant force is  
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The deflection with  

 0w   at x a , y b , (27) 

the moments  

 0x yM M   at x a , y b , (28) 

the shearing forces  

 0x yQ Q  , (29) 

and the thermal stresses  

 0xx yy    at ,x a y b   (30) 

Equations (1) to (30) constitute the mathematical formulation of the problem.  

3. Solution  

By applying Fourier, and Laplace transforms and successfully inverted by the 

inversions defined as [18, 19] to the boundary value problem of heat conduction, 

one obtains the temperature distribution function as  

   0

1 1 1

2 2
, , , ( , ) ( , ) ( , )i j k

i j k

Q
T x y z t K x K v y K z

abc
 

  

  

   

      2 2 21 cos 1 cos 1 ( )
j

j k i j k

i k

v
a c E h v t   


                (31) 



S. Warbhe 120
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Here,  .E  represents the Mittag-Leffler function. 

Now substitute (31) in (26), and one obtains the resultant force 

 10

2
1 1 1

2 2
( , ) ( , ) ( 1) 1

j kt
T i j

i j k i k

vQ a E
N K x K v y

abc




  


  

      

      2 2 21 cos 1 cos 1 ( )i k i j ka c E h v t                    (32) 

and substitute (31) in (22), then one gets the thermal moment as 
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Using equation (33) in (12), (13), (14), thermal deflection is obtained as 

 10

2 2 2
1 1 1

2 2 1
( , ) ( , )( 1)

(1 )

jkt
i j

i j k i k i j

cva E Q
w K x K v y

D v vabc


 

  


  

 
 

  

      2 2 21 cos 1 cos 1 ( )i k i j ka c E h v t                   . (34) 

Using (33) and (34) in (16), (17), (18), one obtains the resultant moment as: 
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Using equations (15), (31), (32), (33), (35), (36), (37) in (23) (24) and (25),  

one obtains expressions for the thermal stresses as: 
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4. Numerical calculation 

To prepare the hypothetical mathematical model for different values of parame-

ters and functions for a copper material, the chosen dimensions are  

4.1. Dimension 

Length of the rectangular plate  4 ma  , 

Breadth of the rectangular plate 2.1 mb  , 

Height of the rectangular plate  0.4 mc  . 

4.2. The material Properties as 

To analyze this problem numerically, we use the following data for the copper 

(pure) thin rectangular plate with the material properties: 

Thermal diffusivity 6 2 1112.34 10 (m s )h
   , Density 38954 (kg/m )  , 

Specific heat 383 (J/kgK)pc  , Poisson ratio 0.35  , 

Coefficient of linear thermal expansion 616.5 10 1/Kta   , 

Lamé constant 26.67 GPa  , 0 500Q  . 

The graphs are plotted for fractional order parameter 0, 0.5, 1, 1.5, 2   depict- 

ing weak, normal and strong conductivity at time 5t  s. 

 

 

Fig. 1. Temperature distribution for different values of   in X-direction 

From Figure 1 and 2, it can be observed that for different values of the frac-

tional order parameter, the temperature distribution function and thermal deflection 

start to increase from the initial edge, after that it is fluctuating in the regions 

0.5x   to 3.5x   and then decrease towards the extreme edge in the X direction.  

From Figure 3 it is observed that the stress function xx  is tensile and it forms 

non-uniform pattern along the X-axis. Additionally, the stress function is directly 

proportional to the different values of fractional order parameter   in the X direction. 
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Fig. 2. Thermal deflection for different values of   in X-direction 

 

Fig. 3. Distribution of stress xx  for different values of   in X-direction 

 

Fig. 4. Distribution of stress 
yy  for different values of   in X-direction 



S. Warbhe 124

From Figure 4 it is observed that the stress function 
yy  is tensile and it forms 

non-uniform pattern along the X-axis. Additionally, the stress is inversely propor-

tional to the different values of fractional order parameter   in the X direction. 

 

 

Fig. 5. Distribution of stress xy  for different values of   in X-direction 

From Figure 5 it can be observed that for different values of fractional order  

parameter  , the stress function xy  is tensile in the range 0 2x   and it is  

compressive in the range 2 4x   in the X direction. 

5. Conclusion 

In this article, we study the time fractional heat conduction equation under zero 

initial conditions. The integral transform is used to solve the problem. Figures 1-5 

depict the behavior of temperature, thermal stresses and bending moments along X 

direction for different values of the fractional order parameter 0, 0.5, 1, 1.5, 2   

and show the variation between classical thermoelasticity and fractional order 

thermoelasticity. It is also observed form the figures that when 0  , all the 

graphical representation satisfied the Helmholtz equation, whereas when 1  ,  

it predicts the diffusion equation and 2   gives the representation of wave  

equations. It is a general observation that while using time dependent fractional  

order which predicts the memory effects and interpolates the classical uncoupled 

theory of thermoelastic problems. 

Furthermore, it is observed that for different values of the parameter  in the X 

directions the effects of temperature, thermal stresses and thermal deflection  

predicted weak conductivity, moderate conductivity and super conductivity for  

a fixed time. The reason behind the consideration of the fractional theory is that it 

predicts delayed response to physical stimuli, as is found in nature, as opposed to 
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instantaneous response predicted by the generalized theory of thermoelasticity. 

This type of problem are particularly applicable to the researchers working in mate-

rial science, the design of new materials and those working to further develop  

the theory of thermoelasticity by the classical approach using the Caputo fractional 

order derivative.  
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