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DIFFERENTIAL INCLUSIONS – THE THEORY INITIATED
BY CRACOW MATHEMATICAL SCHOOL

Lech Górniewicz

Annual Lecture dedicated to the memory of Professor Andrzej Lasota

1. Historical remarks

The theory of differential inclusions was initiated in 1934–1936 with 4 pa-
pers. Two of them by the French mathematician A. Marchaud:
1. Sur les champs de demi-droites et les équations différentielles du premier

ordre, Bull. Soc. Math. France 62 (1934), 1–38,
2. Sur les champs continus de demi-cônes convexes et leurs intégrales, Com-

positio Math. 3 (1936), 89–127,
and the remaining two by S. K. Zaremba a mathematician from Cracow:
3. O równaniach paratyngensowych [On paratingent equations], Dodatek do

rocznika PTM, 9 (1935), rozprawa doktorska (PhD thesis),
4. Sur les équations au paratingent, Bull. Sci. Math. 60 (2) (1936), 139–160.

It is noteworthy that A. Marchaud called the equations in question con-
tingent equations. The rapid development of the theory took place at the
beginning of the sixties of the previous century, when Cracow Mathemat-
ical School headed by Tadeusz Ważewski started working on these issues.
The following mathematicians belonging to the group are worth mentioning:
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Andrzej Lasota, Zdzisław Opial, Czesław Olech, Józef Myjak, Andrzej Pelczar
and Andrzej Pliś.

It is worth adding that Ważewski himself used another term, that is ori-
entor equation [“równanie orientorowe”]. The fundamental role for the theory
was played by Ważewski’s work titled:
1. On an optimal control problem, Prague, 1964, 692–704.

In that paper, Ważewski demonstrated that each problem of controlling
ordinary differential equations of the first order can be articulated with ori-
entor equation terms. That observation served as an essential stimulus to
study orientor differential equations and consequently, it contributed to the
introduction of the new term, still valid, and that is “differential inclusions”.
We shall return to the subject of the relations to the control theory in the
forthcoming passages of the present lecture.

The theory of differential inclusions is located within the mainstream of
non-linear analysis – or to put it more precisely – multi-valued analysis. This
theory is intensively developed especially in the countries such as France,
Germany, Russia, Italy, Canada and USA. In Poland, there is a large group
of mathematicians working on these issues. That group is mainly located in
the following centres: Gdańsk, Toruń, Warszawa and Zielona Góra.

Moreover, the references listed below – because of the nature of the lecture
– are limited to the works by Professor Andrzej Lasota exclusively relating
directly or indirectly to the theory of differential inclusions. Rich literature on
the subject can be found in the references in the particular monographs.

2. Multivalued mappings

In this section, we shall survey the most important properties of multi-
valued mappings which we use in the sequel. There are several monographs
devoted to multivalued mappings; see e.g. [1]–[3], [7], [8].

In what follows, we assume that all topological spaces are the Tikhonov
T3 1

2
-spaces.
Let X and Y be two spaces and assume that, for every point x ∈ X, a

nonempty closed (sometimes we will assume only that ϕ(x) 6= ∅) subset ϕ(x)
of Y is given; in this case, we say that ϕ is a multivalued mapping from X
to Y and we write ϕ : X ( Y . In what follows, the symbol ϕ : X → Y is
reserved for single-valued mappings, i.e., ϕ(x) is a point of Y .

Let ϕ : X ( Y be a multivalued map. We associate with ϕ the graph Γϕ
of ϕ by putting:

Γϕ = {(x, y) ∈ X × Y | y ∈ ϕ(x)}
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and two natural projections pϕ : Γϕ → X, qϕ : Γϕ → Y defined as follows:
pϕ(x, y) = x and qϕ(x, y) = y, for every (x, y) ∈ Γϕ.

Let us also present some more general examples stimulating our consider-
ation of multivalued maps.

Example 2.1 (Inverse functions). Let f : X → Y be a (single-valued)
continuous map from X onto Y . Then its inverse can be considered as a
multivalued map ϕf : Y ( X defined by:

ϕf (y) = f−1(y), for y ∈ Y.

Example 2.2 (Implicit functions). Let f : X × Y → Z and g : X → Z be
two continuous maps such that, for every x ∈ X, there exists y ∈ Y such that
f(x, y) = g(x).

The implicit function (defined by f and g) is a multivalued map ϕ : X ( Y
defined as follows:

ϕ(x) = {y ∈ Y | f(x, y) = g(x)}.

Example 2.3. Let f : X×Y → R be a continuous map. Assume that there
is r > 0 such that for every x ∈ X there exists y ∈ Y such that f(x, y) ≤ r.
Then we let ϕr : X ( Y , ϕr(x) = {y ∈ Y | f(x, y) ≤ r}.

Example 2.4 (Multivalued dynamical systems). Dynamical systems de-
termined by autonomous ordinary differential equations without the unique-
ness property are multivalued maps.

Example 2.5 (Metric projection). Let A be a compact subset of a metric
space (X, d). Then, for every x ∈ X, there exists a ∈ A such that

d(a, x) = dist(x,A).

We define the metric projection P : X ( A by putting:

P (x) = {a ∈ A | d(a, x) = dist(x,A)}, x ∈ X.

Note that the metric retraction is a special case of the metric projection.

Let K be a compact subset of the euclidean space Rn. We shall say that
K is a proximative retract if there exists an open subset U of Rn such that
K ⊂ U and a proximative retraction r : U → K defined as follows:

‖r(x)− x‖ = dist(x,K).
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Note that any convex compact set K ⊂ Rn or any compact C2-manifold with
or without boundary is a proximative retract.

We shall need also the notion of the Bouligand cone. Let C be a closed
subset of Rn. We say that the set:

TC(x) =

{
v ∈ Rn

∣∣∣∣ lim inf
h→0+

dist(x+ hv,C)

h
= 0

}

is the Bouligand contingent cone to C at x ∈ C.
Let ϕ : X ( Y be a multivalued map and f : X → Y be a single-valued

map. We say that f is a selection of ϕ (written f ⊂ ϕ) if f(x) ∈ ϕ(x), for
every x ∈ X.

The problem of existence of good selections for multivalued mappings is
very important in the fixed point theory.

The concept of upper semicontinuity is related to the notion of the small
counter image of open sets. On the other hand, the concept of lower semicon-
tinuity is related to the large counter image of open sets.

Definition 2.6. A multivalued map ϕ : X ( Y is called upper semicon-
tinuous (u.s.c.) map if for every open U ⊂ Y the set ϕ−1(U) is open in X,
where ϕ−1(U) = {x ∈ X | ϕ(x) ⊂ U}.

In terms of closed sets, we have:

Proposition 2.7. A multivalued map ϕ : X ( Y is u.s.c. iff for every
closed set A ⊂ Y the set ϕ−1+ (A) is a closed subset of X.

Proposition 2.8. If ϕ : X ( Y is u.s.c., then the graph Γϕ is a closed
subset of X × Y .

Proposition 2.9. Let ϕ : X ( Y be a u.s.c. map with compact values
and let A be a compact subset of X. Then ϕ(A) is compact.

Proposition 2.10. If ϕ : X ( Y and ψ : Y ( Z are two u.s.c. mappings
with compact values, then the composition ψ ◦ ϕ : X ( Z of ϕ and ψ is
a u.s.c. map with compact values.

Using the large counter image, instead of a small one, we get:

Definition 2.11. Let ϕ : X ( Y be a multivalued map. If, for every open
U ⊂ Y , the set ϕ−1+ (U) is open in X, then ϕ is called a lower semicontinuous
(l.s.c.) map, where ϕ−1+ (U) = {x ∈ X | ϕ(x) ∩ U 6= ∅}.
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Note that, for ϕ = f : X → Y , the notion of upper semicontinuity coincides
with the lower semicontinuity which means nothing else than the continuity
of f .

In what follows, we also say that a multivalued map ϕ : X ( Y is contin-
uous map if it is both u.s.c. and l.s.c.

The most famous selection theorem is the following result proved by E. A.
Michael.

Theorem 2.12 (E. A. Michael). Let X be a paracompact space, E a Ba-
nach space and ϕ : X ( E a l.s.c. map with closed convex values. Then there
exists f : X → E, a continuous selection of ϕ (f ⊂ ϕ).

We would like to point out that in the following part, we will present the
Kuratowski–Ryll–Nardzewski selection theorem frequently used in the theory
of differential inclusions.

Apart from semicontinuous multivalued mappings, multivalued measur-
able mappings will be of the great importance in the sequel. Throughout this
section, we assume that Y is a separable metric space, and (Ω,U , µ) is a mea-
surable space, i.e., a set Ω equipped with σ-algebra U of subsets and a count-
ably additive measure µ on U . A typical example is when Ω is a bounded
domain in the Euclidean space Rk, equipped with the Lebesgue measure.

Definition 2.13. A multivalued map ϕ : Ω ( Y with closed values is
called measurable map if ϕ−1(V ) ∈ U , for each open V ⊂ Y .

In what follows, we shall use the following Kuratowski–Ryll–Nardzewski
selection theorem.

Theorem 2.14 (Kuratowki–Ryll–Nardzewski). Let Y be a separable com-
plete space. Then every measurable ϕ : Ω ( Y has a (single-valued) measur-
able selection.

Let Ω = [0, a] be equipped with the Lebesgue measure and Y = Rn.

Definition 2.15. A map ϕ : [0, a] × Rn ( Rn with nonempty com-
pact values is called u-Carathéodory map (resp., l-Carathéodory map; resp.,
Carathéodory map) if it satisfies:
(1) t( ϕ(t, x) is measurable, for every x ∈ Rn,
(2) x ( ϕ(t, x) is u.s.c. (resp., l.s.c.; resp., continuous), for almost all t ∈

[0, a],
(3) |y| ≤ µ(t)(1 + |x|), for every (t, x) ∈ [0, a] × Rn, y ∈ ϕ(t, x), where

µ : [0, a]→ [0,+∞) is an integrable function.
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Let ϕ : [0, a] × Rn ( Rn be a fixed multivalued map. We are inter-
ested in the existence of Carathéodory selections, i.e., Carathéodory functions
f : [0, a]×Rn → Rn such that f(t, u) ∈ ϕ(t, u), for almost all t ∈ [0, a] and all
u ∈ Rn. It is evident that, in the case when ϕ is u-Carathéodory, this selection
problem does not have a solution in general (the reason is exactly the same
as in Michael’s selection principle). For l-Carathéodory multivalued maps ϕ,
however, this is an interesting problem.

We are now going to study this problem. We use the following notation:

C(Rn,Rn) = {f : Rn → Rn | f is continuous}.

We shall understand that C(Rn,Rn) is equipped with the topology of uniform
convergence on compact subsets of Rn. This topology is metrizable. Moreover,
as usually, by L1([0, a],Rn) we shall denote the Banach space of Lebesgue
integrable functions.

There are, essentially, two ways to deal with the above selection problem.
Let ϕ : [0, a] × Rn ( Rn be an l-Carathéodory mapping. We can show that
the multivalued map:

Φ: [0, a] ( C(Rn,Rn),

Φ(t) = {u ∈ C(Rn,Rn) | u(x) ∈ ϕ(t, u(x)) and u is continuous}

is measurable. Then, if we assume that ϕ has convex values, in view of the
Michael selection theorem, we obtain that Φ(t) 6= ∅, for every t. Moreover,
let us observe that every measurable selection of Φ will then give rise to a
Carathéodory selection of ϕ.

On the other hand, we can show that the multivalued map:

Ψ: Rn ( L1([0, a],Rn),

Ψ(x) = {u ∈ L1([0, a],Rn) | u(t) ∈ ϕ(t, u(t)), for almost all t ∈ [0, a]}

is a l.s.c. mapping.
Consequently, continuous selections of Ψ will then give rise to Carathéodo-

ry selections of ϕ.
Hence, our problem can be solved by using the Michael and the Kurato-

wski–Ryll–Nardzewski selection theorems.
Let us formulate, only for informative purposes, the following result due

to A. Cellina.

Theorem 2.16. Let ϕ : [0, a]×Rn ( Rn be a multivalued map with com-
pact convex values. If ϕ( · , x) is u.s.c., for all x ∈ Rn, and ϕ(t, · ) is l.s.c., for
all t ∈ [0, a], then ϕ has a Carathéodory selection.
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A subset B ⊂ L1([0, a],Rn) is called decomposable provided for every two
mappings u, v ∈ B and for every Lebesque measurable subset J ⊂ [0, a] we
have:

(χJ · u+ χ[0,a]\J · v) ∈ B,

where χJ and χ[0,a]\J are characteristic functions of J and [0, a] \ J , respec-
tively.

Observe that for any measurable and bounded ϕ : [0, a] ( Rn the set of
all measurable selections of ϕ is decomposable, i.e., {u : [0, a] → Rn | u is
measurable and u(t) ∈ ϕ(t) for every t ∈ [0, a]} is a decomposable subset of
L1([0, a],Rn).

We have the following Fryszkowski selection theorem.

Theorem 2.17. Let (X, d) be a separable metric space and ϕ : X (
L1([0, a],Rn) be an l.s.c. map with closed values. Then there exists a con-
tinuous map f : X → L1([0, a],Rn) such that f(x) ∈ ϕ(x) for every x ∈ X,
i.e., f ⊂ ϕ.

We shall end this section by introducing the class of admissible multivalued
mappings. This class is very important in topological fixed point theory for
multivalued mappings.

ByH = {Hu}u≥0 we shall denote the Čech homology functor with compact
carriers and coefficients in the field Q of rational numbers.

A space X is called acyclic provided X 6= ∅ and

Hq(X) =

{
0, q > 0,

Q, q = 0.

A space X is called contractible provided there exists a homotopy h : X ×
[0, 1]→ X such that

h(x, 0) = x and h(x, 1) = x0, for every x ∈ X.

A compact space X is called an Rδ-set provided there exists a decreasing
sequence of compact contractible metric spaces {Xn} such that:

X =
⋂

n

Xn.

We have: if X is contractible or X is an Rδ-set, then X is acyclic.
We need the notion of Vietoris mappings.
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Definition 2.18. A continuous map f : X → Y is called a Vietoris map
provided f is proper, i.e., for every compactK ⊂ Y the set f−1(K) is compact,
and for every y ∈ Y the fibre f−1(y) is acyclic.

In what follows we shall use the notation p : X =⇒ Y for Vietoris map-
pings.

Theorem 2.19 (Vietoris Mapping Theorem). If p : X =⇒ Y is a Vietoris
map, then the induced linear map p∗ : H(X)

−→∼ H(Y ) is an isomorphism.

Definition 2.20. A multivalued map ϕ : X ( Y is called an admissible
map provided there exists a space Γ and two continuous maps: p : Γ =⇒ X
and q : Γ→ Y such that

ϕ(x) = q(p−1(x)), for every x ∈ X.

Below, we shall list important properties of admissible mappings.
(1) Any acyclic map ϕ : X ( Y is admissible, where ϕ is called acyclic pro-

vided ϕ is u.s.c. and for every x ∈ X the set ϕ(x) is acyclic.
(2) Any admissible map ϕ : X ( Y is u.s.c. with compact values.
(3) If ϕ : X ( Y and ψ : Y ( Z are two admissible mappings then the

composition ψ ◦ ϕ : X ( Z of two acyclic mappings is also an acyclic
map.
Observe that the composition of two acyclic mappings is not necessary an

acyclic map.

3. Main problems considered in the topological fixed point theory
of multivalued mappings

Recall that a metric space X is an ANR-space (AR-space) provided it is
homeomorphic to a retract of an open set in a normed space (a retract of a
convex set in a normed space). Evidently every AR-space is an ANR-space.
Consider the diagram:

(3.1) X
p⇐=Γ

q−→Y,

with such a diagram we associate the multivalued map ϕ = ϕ(p, q) : X ( Y
by putting:

(3.2) ϕ(x) = q(p−1(x)), for every x ∈ X.
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Note that ϕ(p, q) is always a u.s.c. map. Moreover, ϕ(p, q) is compact provided
q is a compact map, i.e., ϕ(X) = q(Γ) is a compact subset of Y . Finally, let
us add that ϕ = ϕ(p, q) is an admissible map.

If X is a subset of Y we let:

Fix(ϕ(p, q)) = {x ∈ X | x ∈ ϕ(p, q)(x)},
C(p, q) = {y ∈ Γ | p(y) = q(y)}.

The we have:

Fix(ϕ(p, q)) 6= ∅ ⇐⇒ C(p, q) 6= ∅.

In this section, for simplicity, we shall consider only multivalued mappings
defined by the formula (3.2). For each mapping ϕ : X ( Y we define the
induced linear map ϕ∗ : H(X)→ H(Y ) by letting:

ϕ∗ = q∗ ◦ p−1∗ .

In particular for X = Y we define the Lefschetz number Λ(ϕ) of ϕ by the
formula:

Λ(ϕ) = Λ(ϕ∗).

Note that if X is a contractible space, in particular X ∈ AR, then Λ(ϕ) = 1.
Now, we will formulate the fundamental result of the topological fixed

point theory.

Theorem 3.1 (Lefschetz Fixed Point Theorem). Let X ∈ AR and ϕ : X (
X be a compact admissible map. Then:
(1) the Lefschetz number Λ(ϕ) of ϕ is well defined and
(2) if Λ(ϕ) 6= 0, then Fix(ϕ) 6= ∅.

As a simple consequence of Theorem 3.1 we get:

Corollary 3.2. If X ∈ AR and ϕ : X ( X is a compact admissible map,
then Fix(ϕ) 6= ∅.

Let X be an ANR-space and let U be an open subset of X. We let:

K(U,X) = {ϕ : U ( X | ϕ is compact admissible map

such that Fix(ϕ) is compact}.
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Theorem 3.3 (Existence of the fixed point index). There exists a function:

ind : K(U,X)→ Z,

where Z is the set of integers, which satisfies the following properties:
(1) (Existence) If ind(ϕ) 6= 0, then Fix(ϕ) 6= ∅;
(2) (Additivity) Let U1, U2 be open in X such that U = U1∪U2 and U1∩U2 =
∅. Assume further that ϕ1 : U1 ( X and ϕ2 ( X are restrictions of
ϕ : U ( X to U1 and U2, respectively. Then

ind(ϕ) = ind(ϕ1) + ind(ϕ2);

(3) (Homotopy) If ϕ,ψ ∈ K(U,X) are homotopic (we have assumed that the
admissible homotopy χ : U × [0, 1] ( X joining ϕ and ψ has a compact
set of fixed points, i.e.,

{x ∈ U | x ∈ χ(x, t) for some t ∈ [0, 1]}

is compact). Then

ind(ϕ) = ind(ψ);

(4) (Normalization) If ϕ ∈ K(X,X), then ind(ϕ) = Λ(ϕ).

Let ϕ ∈ K(U,X) and let x0 ∈ Fix(ϕ). We shall say that x0 is an essential
fixed point iff there exists an open set U0 ⊂ U such that ϕ|U0

∈ K(U0, X) and
ind(ϕ|U0

) 6= 0. We put:

Ess Fix(ϕ) = {x ∈ Fix(ϕ) | x is essential}.

In what follows we shall use the following proposition.

Proposition 3.4. Let ϕ ∈ K(U,X) be a map such that the topological
dimension dimFix(ϕ) of Fix(ϕ) is equal zero. Then EssFix(ϕ) 6= ∅.

We shall point out that all results presented in this section are useful in
the theory of differential inclusions.
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4. Differential inclusions

In what follows we shall deal with the existence and topological properties
of solutions to the Cauchy problem for differential inclusions of the form:

(4.1)

{
x′(t) ∈ ϕ(t, x(t)),

x(0) = x0,

where ϕ : [0, a]×C ( Rn is multivalued map and C is a closed subset of Rn.

Example (Control problems). Consider the following control problem:

(4.2)

{
x′(t) = f(t, x(t), u(t)),

x(0) = x0,

controlled by parameters u(t) (the controls), where f : [0, a]×Rn×Rm → Rn
and u ∈ U .

In order to solve (4.2), we define a multivalued map F : [0, a]× Rn ( Rn
as follows:

F (t, x) = {f(t, x, u)}u∈U .

Then solutions of (4.2) are those of the following differential inclusions:

(4.3)

{
x′(t) ∈ F (t, x(t)),

x(0) = x0.

Thus any control problem (4.2) can be transformed, in view of multivalued
maps, into problem (4.3).

Note that many other examples come from the game theory, mathematical
economics, convex analysis and nonlinear analysis.

Fundamental results concerning the problem (4.1) are summarized below.
We let:

S(ϕ, x0) = {x : [0, a]→ C | x is a solution of (4.1)},

where x is an absolutely continuous function as solutions are understood in
the sense of almost everywhere.
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Theorem 4.1. Let ϕ : [0, a] × Rn ( Rn be a u-Carathéodory map with
convex compact values, then S(ϕ, x0) is an Rδ-set.

Theorem 4.2. Let ϕ : [0, a] × Rn ( Rn be an l-Carathéodory map with
closed values, then S(ϕ, x0) 6= ∅.

Theorem 4.3. Let C be a closed subset of Rn and ϕ : [0, a]× C ( Rn be
a Carathéodory map with closed values such that:

∀t∈[0,a]∀x∈C ϕ(t, x) ∩ TC(x) 6= ∅,

then S(ϕ, x0) 6= ∅.

Theorem 4.4. If all assumptions of Theorem 4.3 are satisfied for C being
a proximate retract and for ϕ having convex compact values, then S(ϕ, x0) is
an Rδ-set.

Instead of the Cauchy problem it is possible to study the rolling boundary
value problem:

{
x′(t) ∈ ϕ(t, x(t)),

L(x) = x0,

where L : C([0, a],Rn)→ Rn is a linear continuous map.

Remark. Note that the above boundary value problem was started by A.
Lasota.

There are many results concerning boundary value problems for differential
inclusions (see [1]). Below we recall one of them due to A. Lasota and Z. Opial
([18]).

Let ϕ,ψ : [0, 1]× Rn ( Rn be two u-Carathéodory mappings with closed
convex values. Let χ : [0, 1] ( Rn be the map given as follows:

χ(t) = {x ∈ Rn | ‖x‖ ≤ t}.

Assume further that for every t ∈ [0, 1] and for every x ∈ Rn we have:

ψ(t, x) ⊂ ϕ(t, x) + χ(t).

Let L : C([0, a],Rn)→ Rn be a linear continuous map.
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Consider the following two boundary value problems:

(4.4)

{
x′(t) ∈ ϕ(t, x(t)),

L(x) = 0

and

(4.5)

{
x′(t) ∈ ψ(t, x(t)),

L(x) = x0.

Then we have the following result.

Theorem 4.5. Assume that the above condition are satisfied and moreover
ϕ is homogeneous, i.e.,

ϕ(t, λx) = λ · ϕ(t, x),

for every t ∈ [0, 1], λ ∈ R and x ∈ Rn.
If the problem (4.4) has the unique solution x = 0, then the problem (4.5)

has at least one solution.

5. Two applications to the ordinary differential equations

In this section we would like to present two direct applications of the topo-
logical fixed point theory for multivalued mappings to the theory of ordinary
differential equations. Of course the same is possible for differential inclusions.

5.1. The Poincaré translation operator

Let f : [0, a] × Rn → Rn be a continuous map with linear growth. Then,
in view of Theorem 4.1, we get that the set of solutions S(f, x0) of (4.1) is an
Rδ-set.

Consider the following periodic problem:

(5.1)

{
x′(t) = f(t, x(t)),

x(0) = x(a).
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Define the following map:

P : Rn ( C([0, a],Rn)

defined by the formula:

P (x) = S(f, x).

It is well known that P is an acyclic map.
We let ea : C([0, a],Rn)→ Rn by putting:

ea(x) = x(a).

Then we have the following diagram:

Rn
P
(C([0, a],Rn)

ea→Rn.

We let: Pa = ea ◦ P . Observe that Pa is an admissible map.

Remark. Pa : Rn ( Rn is called the multivalued Poincaré translation
operator.

We have: Problem (5.1) has a solution iff Fix(Pa) 6= ∅.
So we have the following proposition.

Proposition 5.1. Assume that Fix(Pa) ⊂ B(0, r), where B(0, r) = {x ∈
Rn | ‖x‖ < r}.

If the fixed point index i(Pa) 6= 0, for the map Pa : B(0, r) → Rn, then
problem (5.1) has a solution.

Now, we are going to calculate i(Pa) in terms of the right hand side f .
In order to do this, firstly we recall the notion of the direct potential.

A C1-function V : Rn → Rn is said to be a direct potential if the following
condition is satisfied:

(5.2) ∃r0>0 gradV (x) 6= 0, for every x ∈ Rn such that ‖x‖ ≥ r0,

where gradV =
(
∂V
∂x1

, . . . , ∂V∂xn

)
denotes the gradient of the function V .

For any r ≥ r0 we can consider the gradient vector field (j − gradV ) :
B(0, r) → Rn, defined by (j − gradV )(x) = x − gradV (x). It follows from
(5.2) that the fixed point index i(j − gradV ) is well defined and does not
depend on the choice of r ≥ r0.
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We let:

(5.3) IndV = i(j − gradV ).

A direct potential V : Rn → R is called a guiding function for f : [0, a] ×
Rn → Rn provided the following condition is satisfied:

(5.4) ∃r0>0∀‖x‖≥r0∀t∈[0,a] 〈f(t, x), gradV (x)〉 ≥ 0,

where 〈 · , · 〉 denotes the inner product in Rn.
Finally, in view of Proposition 5.1, we are able to prove the following

theorem:

Theorem 5.2. Let f : [0, a] × Rn → Rn be a continuous map with linear
growth. If there exists a guiding function V : Rn → R for f such that IndV 6=
0, then problem (5.1) has a solution.

Remark. Note that Theorem 5.2 remains true for f = ϕ being a u-
Carathéodory map with compact convex values and for V being a locally
Lipschitz map. Then gradV is a multivalued mapping with compact convex
values.

5.2. Implicit differential equations

The aim of this section is to show that, using topological fixed point theory
as a tool, many types of implicit differential equations can be reduced very
easly to differential inclusions with right hand sides not depending on the
derivative.

Let f : [0, 1] × Rn × Rn → Rn be a compact map. We shall consider the
following equation:

(5.5) x′(t) = f(t, x(t), x′(t)),

where the solution is understood in the sense of almost everywhere in [0, 1].
We define a multivalued map ϕ : [0, 1]× Rn ( Rn by putting:

ϕ(t, x) = Fix f(t, x, · ),

where f(t, x, · ) : Rn → Rn is induced by f .
Consider the following differential inclusion:

(5.6) x′(t) ∈ ϕ(t, x(t)).
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Evidently, problem (5.5) is equivalent to (5.6). Unfortunately ϕ is u.s.c. with
compact but not necessary convex values. Consequently, we are unable to
solve (5.6). Therefore we put the following assumption:

(5.7) ∀t∈[0,1]∀x∈Rn dimFix f(t, x, · ) = 0,

where dimFix f(t, x, · ) denotes the topological dimension of Fix f(t, x, · ).
Now, we have:

Lemma 5.3. Under all of the above assumption we have:

∀t∈[0,1]∀x∈Rn∃y ∈ Fix f(t, x, · ) such that i(f |U ) 6= 0,

for some open U ⊂ Rn such that y ∈ U (compare Proposition 3.4).

Remark. A point y ∈ Fix f(t, x, · ) as described in Lemma 5.3 shall be
called an essential fixed point.

We let:

Ess Fix f(t, x, · ) = {y ∈ Fix f(t, x, · ) | y is essential}.

Using Lemma 5.3 we define a map ψ : [0, 1]× Rn ( Rn by letting:

(5.8) ψ(t, x) = EssFix f(t, x, · ).

Of course for every t ∈ [0, 1] and x ∈ Rn we have:

ψ(t, x) ⊂ ϕ(t, x).

Moreover, we are able to prove the following:

Theorem 5.4. The map ψ defined in (5.8) is l.s.c.

Now, we remark that if a map ψ is l.s.c. then clψ is l.s.c. too, where
clψ(t, x) = ψ(t, x) denotes the closure of ψ(t, x) in Rn. Since Fix f(t, x, · ) is
a compact nonempty set for every t ∈ [0, 1] and x ∈ Rn we get:

(5.9) clψ(t, x) ⊂ ϕ(t, x),

and any solution of the differential inclusion:

(5.10) x′(t) ∈ clψ(t, x)

is a solution of (5.6) and hence (5.5).
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Therefore in view of Theorem 4.2 we have proved the following theorem:

Theorem 5.5. If f : [0, 1] × Rn × Rn → Rn is a compact map and the
condition (5.7) is satisfied, then problem (5.5) has a solution.

Observe that the condition (5.7) is restrictive. Below, we shall describe
how large is the set of all compact mappings satisfying (5.7).

Let C([0, 1] × Rn × Rn,Rn) be the set of all compact maps from [0, 1] ×
Rn × Rn into Rn with the usual maximum norm.

We let

A = {f ∈ C([0, 1]× Rn × Rn,Rn) | such that f satisfies (5.7)}.

Theorem 5.6. The set A is dense in C([0, 1]× Rn × Rn,Rn).

Finally, we would like to add that the method presented in this section
can be applied also to the following problems:
Ordinary differential equations of higher order

(5.11) x(k)(t) = f(t, x(t), x′(t), . . . , x(k)(t)).

Hyperbolic equations

(5.12) u(t,s) = f(t, s, u(t, s), ut(t, s), us(t, s), u(t,s)(t, s)).

Elliptic differential equations

(5.13) ∆(u)(z) = f(z, u(z), D(u)(z)),

where ∆ denotes the Laplace operator and

D(u)(z) = uz1(z) + . . .+ uzn(z),

z = (z1, . . . , zn) ∈ Kn
r ,

Kn
r = {x ∈ Rn | ‖x‖ ≤ r}.
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