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Abstract. In this study, the locally one dimensional (LOD) method is used to solve the two 

dimensional time fractional diffusion equation. The fractional derivative is the Caputo  

fractional derivative of order α. The rate of convergence of the finite difference method is 

presented. It is seen that this method is in agreement with the obtained numerical solutions 

with acceptable central processing unit time (CPU time). Error estimates, numerical and  

exact results are tabulated. The graphics of  errors are given. 
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1. Introduction  

The diffusion equation with fractional order are used to model problems in phys-

ics [1], finance [2], hydrology [3] and anomalous equations [4]. Anomalous diffusion 

has an important role in the literature to describe many physical events. The time 

fractional diffusion equation is obtained from the classical diffusion equation by  

replacing the first order time derivative by a fractional derivative of order �, in the 

Caputo, Grünwald or Riemann Liouville sense.  

Some of the common numerical methods [5] for solving fractional diffferential 

equations, such as the variational iteration method [6], Green’s function solution [7] 

and the Mittag Leffler function solution [8].  

There are many numerical methods used to solve the fractional differential equa- 

tion. P. Zhuang and F. Liu used an implicit difference approximation method [9], 

C. Tadjeran and M.M. Meerschaert presented a numerical method to solve a frac-

tional superdiffusive differential equation. In this method, the alternating directions 

implicit (ADI) approach, the Crank-Nicolson discretization and the Richardson  

extrapolation are used [10]. In [11] the Grünwald finite difference approximation  

is used for the fractional derivative with ADI method and locally one dimensional 

(LOD) method is used in [12-16]. 
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In this study, we consider the  two dimensional time fractional diffusion equation 

of the form [9] 

  �����, 	, 
��
� = ��, 	, 
� �����, 	, 
���� + ���, 	, 
� �����, 	, 
��	� + ���, 	, 
� (1) 

with the following initial and boundary conditions: 

 ���, 	, 0� = ���, 	�,   ��, 	� ∈ Ω (2) 

 ���, 	, 
�|�� = 0,   0 ≤ 
 ≤ � (3) 

where Ω = ��x, y�|0 ≤ x ≤ L�, 0 ≤ y ≤ L� , ��, 	, 
� > 0, ���, 	, 
� > 0 and  ���, 	, 
� is a suitable function.  

Equation (1) is solved by the LOD method. The stability of the method is dis-

cussed using mathematical induction, and it is shown to be unconditionally stable. 

To obtain the discrete form of Eq. (1), the central difference with "��#���� and "��#	��� for the second order derivative in � and 	 and the Caputo fractional  

derivative definition for the fractional derivative in 
 are used. 

The rest of this paper is organizated as follows. The numerical method used  

is described in Section 2. Stability analysis is mentioned in Section 3. Numerical  

experiments and numerical results are given in Section 4. Finally, the main results 

are summarized in Section 5.  

2. Numerical method 

To solve two-dimensional differential equation, one of the finite difference meth-

ods which is the locally one-dimensional method is considered. Discrete grids with 

uniform steps are defined as follows: 

 $%& = ��' = (#�, ( = 1,2, … , ,� − 1, ,�#� = .� , (4) 

 $/%& = $%& ∪ 1�2 = 0, �34 = .�5, (5) 

 $%6 = 1	7 = 8#	, 8 = 1,2, … , ,� − 1, ,�#	 = .�5, (6) 

 $/%6 = $%6 ∪ 1	2 = 0, 	39 = .�5, (7) 

 $/ = $/%& × $/%6, (8) 

 $%; = �
< = =#
, = = 1,2, … , �, �#
 = > ,   $/%; = $%; ∪ �
2 = 0 . (9) 

The notation  �',7< = �@�', 	7 , 
<A is for functions defined on  $ × $/ and the notation  �',7<B�/� = �@�', 	7 , 
< + 0.5#
A. 
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The symmetric second  difference quotient in space at level 
< for approximating 

the second order space derivatives with "��#���� and "��#	��� are defined. 

���',7<
��� = �'E�,7< − 2�',7< + �'B�,7<

�#��� ,   ���',7<
�	� = �',7E�< − 2�',7< + �',7B�<

�#	��  (10)

The time fractional derivative term can be approximated by the following scheme  

[9]: ���',7<
�
� = �#
�E�Γ�2 − �� G�',7< − �',7<E�H

+ �#
�E�Γ�2 − �� IG�',7<EJ − �',7<EJE�HK�L + 1��E� − L�E�M<E�
JN�  

(11)

We accomplish the transition from the =th level of time to the �= + 1�th level by 

splitting it into two stages, and one dimensional finite difference subproblems in 

each of them are solved. 

If a LOD procedure is applied, Eq. (1) is split into the following one dimensional 

equations: 12 #��#
� = ��, 	, 
� #��#�� + 12 ���, 	, 
� (12)

12 #��#
� = ���, 	, 
� #��#	� + 12 ���, 	, 
� (13)

To obtain the solution from 
< to 
<B�, we assume that Eq. (12) holds from 
<  

to 
<B� �⁄  and Eq. (13) holds from 
<B� �⁄  to 
<B�. 

The first subproblem is implicit with respect to �,  

−P��'E�,7<B� �⁄ + �1 + 2P���',7<B� �⁄ − P��'B�,7<B� �⁄
= �',7< − I Q�',7<EJB� �⁄ − �',7<EJR ��L + 1��E� − L�E��<

JN�+ Γ�2 − ���#
���',7<  

(14)

The second subproblem is also implicit with respect to 	,  

−P��',7E�<B� + �1 + 2P���',7<B� − P��',7B�<B�
= �',7<B� �⁄ − I Q�',7<EJB� − �',7<EJB� �⁄ R ��L + 1��E� − L�E��<

JN�+ Γ�2 − ���#
���',7<  

(15)
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By using the matrix representations of systems Eq. (14) and Eq. (15), on each 

fixed point 	 = 	7, 8 = 1, . . , ,� − 1 a set of ,� − 1 equations at the points �' is 

solved and the solutions �',7SB� �⁄
 are obtained. Then, in the second step, a set of ,� − 1 equations at the points 	7 is solved to obtain �',7SB�. The LOD method proce-

dure is stated as the following. 

 
Algorithm 

Step 1. 

Input the time step (#
), and space steps (#�) and (#	). 

Step 2. 

Compute  grid points "�'"  for   ( = 0, … , ,� − 1,  "	7" for 8 = 0, … , ,� − 1 and "
<" for = = 0, … , � − 1. 

Step 3. 

Calculate the given initial conditions �',72 , @�', 	7A ∈ $/  for  ( = 0, … , ,� − 1,  8 = 0, … , ,� − 1. 

Step 4. 

Construct  the matrices U and V for system (14). 

Step 5. 

Compute U, V  and for each  �' ∈ $%&, solve system (14) and calculate �',7<B� �⁄
, 	7 ∈ $%6. 

Step 6. 

Construct the matrices U and V for system  (15). 

Step 7. 

Compute U, V and for each 	7 ∈ $%6 , solve system (15) and calculate �',7<B�,  �' ∈ $%&. 

Step 8. 

Evaluate absolute errors. 

Let �',7<  be the approximations of W',7< , and define the error function as follows: 

XYYZY�ℎ� = max',7 ^�',7_ − W',7_^,  for = = 1,2, … , �. 

The rate of convergence of the method used are estimated through the asymptotic 

formula [14], 

Y`
X = aZb@XYYZY�ℎ��/XYYZY�ℎ��AaZb�ℎ�/ℎ��  

in which XYYZY�ℎ�� and XYYZY�ℎ�� are absolute errors based on different mesh sizes ℎ = ℎ� and ℎ = ℎ�.  
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3. Stability analysis  

The stability of the method will be looked at separately for each step. Eq. (11) is 

written in Eq. (12) and Eq. (13) instead of the fractional derivative and for the second 

order derivative, Eq. (10) is used. Then we have [9],  

−c� Q�'B�,7<B�/� − �'E�,7<B�/�R + �1 + 2c���',7<B�/�
= �',7< − I �',7<EJB�/�dJ + I �',7<EJdJ

<
JN�

<
JN�+ Γ�2 − ���#
���',7<B�/�

 

(16)

where Γ�2 − ���#
��P��Δ��� = c�,   �L + 1��E� − L�E� = dJ 

According to the states of k, the following two equations are obtained: 

= = 0  −c� Q�'B�,7�/� − �'E�,7�/� R + �1 + 2c���',7�/� = �',72 + Γ�2 − ���#
���',7�/�
 

(17)

= > 0 −c� Q�'B�,7<B�/� − �'E�,7<B�/�R + �1 + 2c���',7<B�/�
= �2 − 2�E���',7< + I �',7<EJB�/��dJE� − dJ� + d<�',72<E�

JN�+ Γ�2 − ���#
���',7<B�/�
 

(18)

where ( = 0,1, … , a,   8 = 0,1, … , f, = = 0,1, … , g  and let �h ',7<  be the approximate 

solution, and the term of error is i',7< = �h ',7< − �',7< . If this error term is written in 

Eq. (17) and Eq. (18), the following equations are obtained: 

 = = 0    −c� Qi'B�,7�/� − i'E�,7�/� R + �1 + 2c��i',7�/� = i',72  (19) 

= > 0    −c� Qi'B�,7<B�/� − i'E�,7<B�/�R + �1 + 2c��i',7<B�/�   
= �2 − 2�E��i',7< + I i',7<EJB�/��dJE� − dJ� + d<i',72<E�

JN�  
(20)

which can be written as  

Uj� = j2 j<B� = �d2 − d��j< + �d� − d��j<E� + ⋯ + �d<E� − d<�j� + d<j2 j2 
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where  j'< = Gi',�< i',�< ⋯ i',lE�< Hm    ( = 0,1, … , a  
and j< = Gj�< j�< ⋯ jnE�< Hm

 

Hence, the following result can be proved using mathematical induction [9]. 
 

Theorem 1. oj<B�/�op ≤ ‖j2‖p, = = 0,1,2,3, ….. 
Proof. For = = 0  −c� Qi'B�,7�/� − i'E�,7�/� R + �1 + 2c��i',7�/� = i',72  

sit,u�/�s = max�v'vnE� ,   �v7vlE� si',7�/�s 
sit,u�/�s = −c� Qsit,u�/�s + sit,u�/�sR + �1 + 2c�� sit,u�/�s  ≤  −c� QsitB�,u�/� s + sitE�,u�/� sR + �1 + 2c�� sit,u�/�s≤  s−c� QitB�,u�/� + itE�,u�/� R + �1 + 2c��it,u�/�s = ^it,u2 ^ ≤ ‖j2‖p 

then oj�/�op ≤ ‖j2‖p is held. 

Suppose that for L = 0,1,2, … , =,  ojJB� �⁄ op ≤ ‖j2‖p . 

Let sit,u�<B�/��B�s = max�v'vnE� ,   �v7vlE� si',7�<B�/��B�s 
we have, 

sit,u�<B�/��B�s = −c� Qsit,u�<B�/��B�s + sit,u�<B�/��B�sR + �1 + 2c�� sit,u�<B�/��B�s  ≤  −c� QsitB�,u�<B�/��B�s + sitE�,u�<B�/��B�sR + �1 + 2c�� sit,u�<B�/��B�s
=  w�d2 − d��it,u<B�/� + I it,u<EJ�dJ − dJB�� + d<it,u2<E�

JN� w
≤ �d2 − d�� sit,u<B�/�s
+ I^it,u<EJ^�dJ − dJB�� + d<^it,u2 ^<E�

JN�≤ �d2 − d��oj<B�/�op
+ Ioj<EJop�dJ − dJB�� + d<‖j2‖p

<E�
JN�

≤ xd2 − d� + I�dJ − dJB�� + d<
<E�
JN� y ‖j2‖p = ‖j2‖p  
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also oj<B�/�op ≤ ‖j2‖p  . 

If the same operations are applied for Eq. (15), it is seen to be stable for the other 

step, which is from �= + 1/2� step to �= + 1�. 
The LOD method approximation defined by (14) and (15) is unconditionally  

stable. 

4. Numerical experiments 

In this section, in order to demonstrate the efficiency of the method, we solved 

two problems whose exact solutions are given. 

 
Problem 1. 

Consider the two-dimensional time fractional diffusion problem Eq. (1) subject 

to the following conditions [9],  

 ���, 	, 
�|�� = 0,   ���, 	, 0� = L(gz�L(gz	 (21) 

Ω = ���, 	�|0 < � < 1, 0 < 	 < 1  

���, 	, 
� = 25
��E��12Γ�1 − �� �
� + 2�L(gz�L(gz	 (22)

��, 	, 
� = 2
��E��z�Γ�1 − �� ,   ���, 	, 
� = 
��E��12z�Γ�1 − �� (23)

For the problem (1) with conditions (21)-(23), the coefficients P� and  P� written 

as the following: 

P� = 2
S�,|Γ�2 − ���#
���#���z�Γ�0,6� ,   P� = 
S�,|Γ�2 − ���#
���#���12z�Γ�0,6�  

The exact solution is of (1) with (21)-(23) conditions,  ���, 	, 
� = �
� +1�L(gz�L(gz	. 
This section has tables including numerical, exact solution and errors in different 

mesh point for different orders. Take #� = #	 = ℎ.  

In Table 1, the results are shown for �',�~�2  with ( = 0, … , 10, the time step is  
 = 0.025 and  the order of fractional derivative is � = 0.4. In Table 2, the rate  

of convergence and the CPU time for different ℎ are given. In Table 3, the results 

are shown for �',�~�2  with the same values as in Table 1 and the different order. 
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Table 1. Numerical-exact solutions and errors for Eq. (1), (21)-(23) with ℎ = 0.05, #
 = 0.00125, � = 0.4, 
 = 0.025 

x 
Numerical 

solution 

Exact 

solution 
Error 

0.0 0.11056998 0.11068500 0.00011501 

0.05 0.21841737 0.21864457 0.00022720 

0.1 0.32088660 0.32122039 0.00033379 

0.15 0.41545453 0.41588670 0.00043216 

0.20 0.49979260 0.50031250 0.00051989 

0.25 0.57182411 0.57241894 0.00059482 

0.30 0.62977541 0.63043052 0.00065511 

0.35 0.67221956 0.67291882 0.00069926 

Table 2. The rate of convergence  and the CPU time for different ℎ and >�S% = 1 

h Error Rate CPU time 

1/10 0.03384810 – 15 sec 

1/20 0.00868640 1.96 70 sec 

1/30 0.00387932 1.94 220 sec 

1/40 0.00218581 2.06 300 sec 

Table 3. Numerical-exact solutions and errors for Eq. (1), (21)-(23) with ℎ = 0.05, #
 = 0.00125, � = 0.0004, 
 = 0.025 

x 
Numerical 

solution 

Exact 

solution 
Error 

0.0 0.11059861 0.11068500 0.00008638 

0.05 0.21847393 0.21864457 0.00017064 

0.1 0.32096969 0.32122039 0.00025070 

0.15 0.41556211 0.41588670 0.00032458 

0.20 0.49992202 0.50031250 0.00039047 

0.25 0.57197218 0.57241894 0.00044675 

0.30 0.62993849 0.63043052 0.00049203 

0.35 0.67239363 0.67291882 0.00052519 
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Fig. 1. 3D graph of absolute error in Problem 1 for ℎ = ��2 , 0 ≤ � ≤ 1, 0 ≤ 	 ≤ 1 at 
 = 1 

  

Fig. 2. Contour graph of absolute error 

in Problem 1 for ℎ = ��2 

Fig. 3. Density graph of absolute error 

in Problem 1 for ℎ = ��2 

Problem 2. 

Consider the two-dimensional diffusion problem (1) subject to the initial condi-

tion [15] 

 ���, 	, 0� = 0 (24) 

and the boundary condition 

 ���, 	, 
�|�� = 0, (25) 

Ω = ���, 	�|0 < � < z, 0 < 	 < z  and �Ω is the boundary of Ω. 

���, 	, 
� = �Γ�� + 3�2 
� + 2
�B�� L(g�L(g	 (26)

 ��, 	, 
� = ���, 	, 
� = 1 (27) 
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For the problem (1) with conditions (24)-(27), the coefficients P� and P� written 

as the following 

P� = P� = Γ�2 − ���#
���#��� , 
The exact solution is of (1) with (24)-(27) conditions, ���, 	, 
� = �
�B��L(g�L(g	. 

In Table 4, numerical-exact solutions and errors are given for � = 0.1 and  � = 	 = 1,41, different time steps for #
 = 0.001. The rate of convergence and  

the CPU time for a different h are given in Table 5. 

Table 4. Numerical-exact solutions and errors for Eq. (1), (19)-(22) with ℎ = 0.05, #
 = 0.001 

x 
Numerical 

solution 

Exact 

solution 
Error 

0.0 0.371172e-6 0.735880e-7 0.297584e-6 

0.01 0.493086e-7 0.630957e-6 0.581648e-6 

0.02 0.151825e-7 0.221759e-5 0.220241e-5 

0.03 0.973888e-8 0.540994e-5 0.540020e-5 

0.04 0.685596e-8 0.108047e-4 0.107978e-4 

0.05 0.571549e-8 0.190141e-4 0.190083e-4 

0.06 0.453485e-8 0.306627e-4 0.306582e-4 

0.07 0.406969e-8 0.463858e-4 0.463818e-4 

0.08 0.339779e-8 0.668280e-4 0.668246e-4 

Table 5. The rate of convergence and the CPU time for different ℎ and >�S% = 1 

h Error Rate CPU time 

π/10 2.947734e-19 – 17 sec 

π/20 2.268427e-18 2.94 70 sec 

π/30 0.782234e-18 2.62 180 sec 

 

 

Fig. 4. 3D graph of absolute error in Problem 2 for ℎ = z/10, 0 ≤ �, 	 ≤ z at 
 = 1 
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Fig. 5. Contour graph of absolute error 

in Problem 2 for ℎ = z/10 0 ≤ �, 	 ≤ z at 
 = 1 

Fig. 6. Density graph of absolute error 

in Problem 2 for ℎ = z/10 0 ≤ �, 	 ≤ z at 
 = 1 

5. Conclusions 

In this paper, splitting difference schemes for solving the two dimensional time 

fractional diffusion equation is proposed. Based on the LOD strategy, we seperate 

the two-dimensional equation into the two one-dimensional equation. These equa-

tions form two implicit systems. After solving these systems, the results are com-

pared with the exact solution and are supported them with tables and graphs. The 

convergent rate is consistent with the order of the cutting error in the finite differ-

ences and numerical experiments, and the CPU time show that this scheme effective 

and acceptable. This method seems particularly suitable in the sense that it can be 

easily applied to fractional diffusion equations. With the LOD method process,  

more discrete numerical solution values are reached with fewer errors. 

The method and techniques proposed in this paper can also be applied to solve 

different kinds of fractional partial differential equations and also fractional partial 

delay differential equations. 
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