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Abstract. In this paper, we use Markov models for studying the reliability of series systems 

with redundancy and repair facilities. We suppose that the units’ time to failure and  

recovery times are exponentially distributed. We consider the cases when 1 c m   and 

1 ,m c m n     for the system of n operating units, m unloaded redundant units and c  

repair facilities. Using the exponential distributions properties, we obtain stationary reliabil-

ity indices of the series systems: steady-state probabilities, a stationary availability coeffi-

cient, mean time to failure, mean time between failures and mean downtime. 
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1. Introduction 

Series systems of identical independent units with a common group of redun-

dant units are common in engineering practice. Formally, such a structure appears 

if a system consists of units of several types [1, 2]. A set of units of the same type 

can be considered as a “series system”, for which there is a stock of spare units.  

It is reasonable to consider these spare units as unloaded; these units wait for being 

switched into operating position after one of the operating units has failed. Failed 

units are directed to a repair shop from where, after recovery, they again enter the 

system’s stock. The switching of a spare unit into an operating position is usually 

assumed instantaneous. 

Recoverable series systems differ by their recovery processes. Assume that dur-

ing recovering a currently failed unit system continues to stay in an operational 

state, so new failures may appear. In principle, in this case one can observe even  

a situation when all system units have failed. It can happen if, for instance, a recovery 

process is very slow. 
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Consider a system that consists of r m n   identical units, namely, n  main 

operating units and m  unloaded redundant units. The system stops functioning  

in normal mode at the moment when the number of failed units reaches 1.m    

Assume that those 1n   units, which were serviceable at the moment of system 

failure in idle time during recovery, continue to operate and may fail. In addition, 

the number c  of repair facilities can be restricted ( ),c r  so failed units can form  

a queue for recovering.  

If we consider the described system as a queueing system, then in the absence 

of redundant units ( 0),m   it is a classical closed queueing system [3]. The closed 

system is also known as a system with a finite number of sources or the Engset  

system. 

The method of potentials was used in [4] to construct an algorithm that makes it 

possible to calculate the steady-state distribution of the number of failed units for  

a single-channel closed system with an exponential distribution of the units’ time to 

failure and an arbitrary distribution of recovery time. This method is not suitable 

for arbitrary distributions of the units’ time to failure. 

A method for calculating steady-state probability distributions of the multichan-

nel closed queueing systems with exponential distribution of the time to failure and 

an arbitrary distribution of recovery time is proposed in [5]. 

In most academic approaches, a random time to failure and a random recovery 

time are assumed exponentially distributed for all units that give a possibility to use 

the Markov model for a reliability study. In work [1], steady-state probabilities kp  

of having k  failed units were found for the case when .c m n   In this paper, we 

consider the cases when 1 c m   and 1 ,m c m n     and we obtain stationary 

reliability indices of the series systems: steady-state probabilities, stationary avail-

ability coefficient, mean time to failure, mean time between failures and mean 

downtime. 

Let kp  be the steady-state probability of having k  failed units, then the station-

ary reliability indices of the system are determined by the formulas: 

 
0 1

, .
m r

k k

k k

K p N kp
 

    (1) 

Here, K  is the stationary availability coefficient, and N  is the average number of 

failed units. 

2. Stationary reliability indices of the series systems 

Let us denote states by natural numbers 0, 1, 2, ..., where the number of a state 

corresponds to the number of failed units. Then the state graphs have the form 

shown in Figures 1 and 2, respectively. 
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Fig. 1. Graph of system states in the case 1 c m   
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Fig. 2. Graph of system states in the case 1m c m n     

Here   and   are the parameters of exponential distributions of the time to 

failure and the recovery time, respectively. For this system, the time to failure SX  

and the time between failures SXɶ  do not coincide, because the first time interval 

begins at the time of transition from state “1” to state “0”, and the second begins at 

the time of transition from state “m+1” to state “m”. Both states end simultaneously 

at the moment of transition from the state “m” to the state “m+1”. The downtime 

SIX  is the time spent in a group of states ( 1,..., ).m m n   

Since the processes, described by the state graphs shown in Figures 1 and 2, are 

the birth-death processes, we can derive formulas for steady-state probabilities .kp  
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Fig. 3. Graph of states for the birth-death process 

For the birth-death process, described by the state graph shown in Figure 3,  

the following equations hold: 

 1 1 1 0

00 1

, , 0 1; 1.
k r
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Therefore, 
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Introducing notation / ,    for the case when the number of repair facilities 

satisfies the condition 1 ,c m   we get: 
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 (4) 

If 2 ,m c m n     then 
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If 1,c m   then 
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Let us introduce notation kT  to denote the average time from the moment  

the system comes to state “k” to the transition to state “m+1”. Then 0( ) ,SE X T  

( ) .S mE X Tɶ  

Suppose that 1 .m c m n     Using the properties of exponential distribu-

tions, we have 
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Consistently expressing kT  through 0T  for {1,2,..., },k m  we obtain the  

equalities 
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So we have an equation to find 
0T  
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from whence we obtain 

11

0 1
1 1

1 1 11

0

1 1 1

( 1)! 1 !
( ) , ( ) ,

( 1 )! ( ) ( )!( )

! ( 1)! !
, 1 1.

( )! ( ) ( 1 )! ( ) ( )! ( )

i im m

S m Si i
i i

i i ik m k

k i i i
i i i

m m
T E X T E X

nm i i n m i n

k m k
T T k m

k i i n m i i n k i i n

 
 

  
  




 

  

  


    

  


      

   

 

  

ɶ

 

  (10) 

Thus, we determined not only the mean time to failure and the mean time between 

failures, but also the average “travel” time kT  from state “k” (1 1)k m    to the 

moment of system failure. 

Let us introduce notation k  to denote the average “travel” time from state “k” 

to state “m”. Then the mean downtime 1( ) .SI mE X    Let us define the mean 

downtime as the average time spent in a group of states ( 1,..., ),m m n   assuming 

that 1 .m c m n     

Let mpɶ  be the steady-state probability of being in the state “m” for the subsys- 

tem, the state graph of which is shown in Figure 4. Given that the average staying 

time in the state “m” is equal to 1/ ,n  and the probability of being in the group of 

states ( 1,..., )m m n   is equal to 1 ,mp ɶ  we have 
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Fig. 4. Graph of states for the subsystem to determine the mean downtime  

in the case 1m c m n     
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Using formulas for stationary probabilities for the birth-death process, described 

by the state graph shown in Figure 4, we obtain the equality 
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Therefore, the mean downtime of the system is defined as 

 1

1 1

! !
( ) , 1 .

!( )! !( )!

k m k mc m n

m SI k c
k m k c

n m
E X m c m n

n k m n k c m n k c

 




 

 
   

 
       

    
   
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In the case when 1 ,c m   using the properties of exponential distributions,  

we have 

 

1 1
0 1

1 1 1

11
; , 1 ;

1 1
, 1 1; .

k k
k

k k m
k m

k T n T
T T T k c

n n k

c T n T c T
T c k m T

n c n c

 
  

  
   

 

  

 
    



  
     

 

 (14) 

Consistently expressing kT  through 0T  for {1,2,..., 1},k c   we obtain the 

equalities 
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Expressing kT  for { 2,..., }k c m   through cT  and 1,cT   we have: 
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Using relation (16), we can express mT  and 1mT   through cT  and 1cT   and, hence, 

through 0 .T  At the same time, 
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Equating the two obtained expressions for ,mT  we obtain an equation for finding 

0 ,T  and we find 
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  (18) 

By calculating 0T  and using formulas (15) and (16), we can find not only the mean 

time between failures ( )S mE X Tɶ  but also the average “travel” time kT  from state 

“k” (1 1)k m    to the moment of system failure. 

To find the mean downtime 1( )SI mE X    in the case when 1 ,c m   it is  

sufficient to solve the system of equations 
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Consistently expressing 
k  through m n   for { 1, 2,..., 1},k m m m n      we 

obtain the equalities 
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Equating expressions for 1,m   obtained from (19) and (20), we have an equation 

for finding m n   and we find 
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Substituting the expression for m n   in (20) for 1,k n   we obtain the formula  

for the mean downtime of the system 
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3. Conclusions 

This paper shows that the application of Markov reliability models allow us to 

find stationary indices of the series recoverable system with redundancy and repair 

facilities for the cases when 1 c m   and 1 .m c m n     We have derived  

exact formulas for stationary probabilities of system states, a stationary availability 

coefficient, mean time to failure, mean time between failures, mean downtime,  

the average “travel” time kT  from state “k” (1 1k m   ) to the moment of system 

failure. 
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