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Abstract. The subject of this paper is the stochastic model of client requests processed by
an insurance company. The model takes into account the limited duration of insurance con-
tracts and the dependence on time of requests service rate. A closed exponential queueing
network with single-type messages is used as the model. The goal of the study is to solve the
problem of finding the optimal number of employees of the insurance company on certain
time intervals. The study is conducted in the asymptotic case of high network load. The
results of this paper could be applied to optimize the functioning of insurance companies.

Introduction

The process of functioning ot an insurance company, concluding same type in-
surance contracts with its clients is considered [1]. It's supposed that the maximum
number of clients is K. For instance, it could be the citizenship of a town in which
the company operates. m, of company employees engaged in contracting (insur-
ers). Upon presentation of a claim, it goes through two stages of processing - the
assessment stage and payment stage. The assessment of claims involved m, em-
plovees (evaluators). The payment of the charges involved m lawsuils cashicrs.
Each of the company’s customers can be in one ot the following states: (5 - in
a waiting state. not going 1o submit an insurance clain | - in an assessment
claim state: ¢'; - in the cash transactions state: ¢, - in the state of making of
a contract. Let's also introduce state (. meaning the staying of the company’s
potential customer in the “external environment™. Assume that processing time of
claims by cvaluators is distributed exponentially with time-depending parameter
My (). the processing time of customers by cashiers is exponentially distributed
with (¢}, the processing time by insurers is exponentially distribured with o, (¢).

The transition of some insurance claim from state C; to state . as well as
from (', to C,. occurs at random instants of time ndependently on state of ather
claims, and regardless ot the time so that probability of transition ', —— ¢, on
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Dy - company’s revenue per umt of time per customer, when the customer 1s going
to sign a contract, 1.e. on stage ', (the amount of the premium the insurer intro-
ducing is taking into account):
D - company’s losses per unit of time per customer that is on stage ot evaluating
ol the claim, i.e. on slage ' (the amount of the insurance paid and the cost esti-
mate of the claim 1s taking into account);
D; - company’s losses per unit of time from a single claim, when it is on the pay-
ment stage (' (the cost of customer service at the payment stage taking into
account);
E, - the cost of keeping one evaluator per unit of time;
E; - the cost of maintaining a cashier per unit of time;
E, -the cost of keeping one insuret per unit of time.

Then the company’s carnings al time £ s given by

() = Dok (1) + Dyky (1) — Dy (1) — Dok (1) — Evmy) — Esmy — Eqmy
Obviously k(¢) is the Markov process with continuous time and a finite set of

states, so f7(r) is also a random process. With 77(¢) it’s easy to find an expression
for the average income brought in by one customer at a time interval |77, 75

1
RO s my myomy) = ! '[M{H(t)}df:

T-Ti | K
) (2)
l a4 4
=—J’ S dnny=> Ed |dt.
T:_’ _I; 7| =1 =]

12 /

k(1 . .
where #,(1)= M{%,) - the average relative number of customers on stage C,

i=ld.d =-D.d. =D.d ==D.d =D/ ="01=13.4.
.=D..d,=-D i

We are interested in the problem ot determining the number of evaluators m,,
cashiers #7; and insurers s, on the time interval [7.7,], that will maximize the

average relative income (2) in the average absence of queues at the stages of cus-
tomer service:

I(W('Ii.T;,fn,,m;.nq}—> max ., (3)
ey )
]n,{t}s[,, i=L3.4. te[,.T,].
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To solve (3} it's necessary, first of all, to {ind the components of vector

n(ey=(m ()., (1), (0)m, (1)) @

2. Obtaining the system of differential equations for the mean relative
number of messages in queueing systems

The tollowing transitions into state &{f + A¢) = (k. + A¢) of the considered net-
work during time A¢ are possible:
— from state (k —7,.7) with probability
[ \
Lo (Do (D + DAY + oA = 1y (1)(/( =Y k+ IJ/\t +o{A);
=1

— from state (k 1 7, = 7,.7) with probability
o (ymin{am, k(1) + 1) A7 + o(Ar) ;
— from state (k +7;—1,.1) with probability
,lg(l)nﬁn(m_,.k;(t) I l):\( I o(A):
— from state {k + 7,.¢} with probability
AL P U () + 1AL — 0(AL);
— from state {k + 7, —/,.¢) with probability
AP (D) + DAL+ 0(AD)
— from state {k + 7, — I;,¢) with probability
prymin(m k() - DA+ o{Al) s

— from state {k.¢) with probability

4

; 4 4
- pn(l)tl(— k,(t)]+2p, (ymin(nz,, k() |Ar -
=1

1=l
=2

!

+ Ha (1)K (OAE+ oA,

— from all other states with probability o(At}.
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Using the law of total probability and passing to the limit Az — 0. one can ob-
tain the Kolmogorov system of difference-differentials equations for states proba-
bilities

aP(k,r) b

’ 1
e u(_.(l)|\K _gk’(”,
U VP K — 1y, 1)+ gy min{m & (O)[PCk+ 1, - T = Plh.o]+
+ g (O[minGmy, kg (0 +1) = min{ar, k O)PG + 1, - I5.0) +
+psmin(m b (ONPk + L= 15,0 - Pk,0)]+
+ s (Ominem, ks (1) +1) = min (e Ay )Pk + 1, = 1.6) + (5)
+ll:(’)17:n(’)k3(1)[]’(k+]:J]—P(k~’)]+ palf) poo (D (P R+ 1,00 +
+ 1) P (D [P+ £ = 1,0 = Ph.0]+
D)y (AP K+ 1y = 110} =
+,(7) min(m, N (r))[P(k +1 = IL.t)y— P(k.f)] +
+ 1y (/)[min(m] K@)+ 1)- min{m,. &, (r))]!’(k +14 —15.t).

[Ptk —1,.00- PCR.D]+

Next let’s consider the case of a large number of messages in the network.
. . . . k()Y .. .
K >>1. and introduce a vector of relative variables £(¢f)=| —— |. it’s possible the

values belong to a bounded closed set
._] . e
(r=]x=(xl, X Xy Xy x, 20,4 =l.4.2x,~ < IJf.
X =

. . . . . I
where they are placed in nodes of 4-dimensional lattice at a distance & =X from

each other. By increasing X “fill density™ of set (7 by possible components of
this vector is increasing as well, and it becomes possible to assume that is has con-

tinuous distribution with probability density p(x./)= K'P(xK.1). xe(, where
plx.8) is the meaning of the probability density of the random vector £(/).
Let’s denote by ¢, 4-dimensional zero vector with the exception of /-th com-

= [Loae>0.
poncnl that cquals €, i=L4, c(u)= 10 <0 Here
LI =
. . ¢ min(e, v
min{z, v+ 1) = min{u.v) + (v —v). c(u—v)= (A—(} . because of

o

L Yoz, . R .
min{z. v) :{ . Rewriting system () for density p(x.f), one get
[IRTEAY
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-

N 4
% I\HU {f}| Z ]b}'(.\' —e5.0)— pla. {)] +
) =

+”-\'J(I)P(-\’_"J-l)+
I K ()ymand/,. t,)DJ(Y ey —e;.l)—p{x.l)] t
gy 2 ) e e+
,XJ

+ Aps(Hymind/s, .\'_«,)[p(.\' —¢;—¢a.d)— p(.r,!)]+
dmin(fs. x:
4 (M) mnl(l_,..v,) plx+e;—es.t)+
Wy
+ KP!(’)P}U“)-"}[I’(-"— "»’)_P(XJ}]"'
FIL (O P plx + ey, )+
+ K1G () pa (i), [P(-\' tex—enr)- P{x-’)]+
(D) paO)plx+ e —e. )+
+ KL s ymin(f|. x )[p(x+el —e;.!)—p(x,l)]+

cmin(/. x)

+ (1) p{x+e —e;. )

(A1)
Let’s represent the right-hand side of this system of cquations up to terms
of order of smallness €. It pi(x.f) is twice differentiable by x. then the
relations:

ap(x.) LB g’ ] (‘r ()
ox, 20 @y

plxte . D)=p(x.tte o(e™).

ap(x.t) B ap(x.t) ) N

plyte —e, )= ple)+ a[
\

3 )
ax, ar, )
3 o y Y 5,
| & plxd & p(x)y & plxd )
+ I‘\(’ )_2 1,.‘ )_ 1 1 ) +O(82},
20 &y ox O, o,
=14

Using it and also €K =1 one can obtain that the probability density function
plx.7) of the network states vector satisfies the Fokker-Planck-Kolmogorov equa-

: - 2
tion up to terms of order of smallness €7:

BN
Al

-~ E] -~ 4
pixh _Z§(4(xr)p(rr))+—z (B, (x.0)plx.1). (6)

O
[ Il(\ ,,1( 72X,
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where

A0 = (O py, (G — g ()mind.x,):
A (x.0) = e deymin(/ . x) — pa)x-;
Aty (Omind/ L x) + g (mind L x)) — g (Fpmind,. x,): {7)

4,00 = 10 =Y ) = g (Omin(l, )

=1
B(x.t) () ps (Hxs + 1y (Hymind L x));
B {x,ny= g (Hmin(f.x,) — .x.;
B (x,ty= g (H)min(/.x, ) + g, (Fymind{. x,);

4

B.u (X1’) = ;JJ(I)IniI](]4,.\’4 } + )ut;(I)(l - Z"‘v}:

=1
Bia(x.n) =By {(x,1) =—palypay (H)xa2
B (x,1)= By (x.8)=—p,ymin(f . );
Byz(x.1)= B (2, f) = —pa () mind/s, 3 )
Byy(x.1) = Bi(xar) =—p () mind/y, x, )
Bi(x.)y= B (x.0) =By (x.0) = By (x.1) =0

Equation (6) is the Fokker-Planck-Kolmogorov equation for the probability
density function of the Markov process Z(7). So components of vector of mean
relative  to the number ol messages  in queucing  systems  are

k,(r)] i

a(t) = (o (Eh it (1).ena iy {8)). where m;(7) = .M( e
N

these components satisly the lollowing system of ordinary differential cquations in

. i=14. According to (3]

terms of order of smallness O(&” ):

' (1)=A (), i=1.4, (8)

or using (7}, we obtain the following system:

il ()= g (s (O (1) — g (O mind/, i (1)),

) (1) = g yminl,,m (8) — g (1).

iy (1) = g, (Omin{don, () + 24 (Omindd e (0) —
— . AH)ymingZ, i (1))

9

(8 = g A=Y 1 () — g (min(l,p, (1)),
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Right-hand sides of (9) are continuous piccewise lincar functions. Such systems
could be solved by splitting the phase space and finding solutions in the areas of
linearity of the right-hand sides. For instance, in the area corresponding to the case

of missed queues on client servicing stages 5, {f) </,. =14, system (9) has the
torm

dn (1)
dr
dn. (f)

= 1 () P O () — g (O ().

/ = g (D (1) — g (On,(8).
ot (10

dn;’(l) = 1, (D 1+ 1 (DD — gL (Dn ().
p
dpidz/(’) = WO =7, () =m40) = () = m ()= (O, ().

Solving (10} under certain initial conditions. lor example #,(0) = 0. we obtain
(1), i= I,_4 and we can begin to solve the problem (3). [t should be noted that
the analytic solution of (10} in the case when p,{¢} is a function of time. is diffi-
cult.

3. The solution of the optimization problem

Obviously the right-hand side of (10) doesn’t contain m,. i=13.4, therefore
it’s solutions n,(7), i =1.4. also do not depend on ;. i=1.3.4. Then the objective
function  of  problem  (3) has the florm  W(7.T..m.m.m}=
= f(, )= Cm —Cm, —C.m,, where C, - nonnegative constants. /=1,3.4, and
the solution of problem (3) will be the smallest m,, i=1.3.4. which satisfy the

constraints of the optimization problem. That is the solution of (3) which has the
form

m =(¥ ) om = (N )om, =(N,), (11

_ J..\', xeZz

_.\”T|+] xe 7’ ['\'] - illleg]'a[ part of

where &, =K max I(n, ()}, i=L3.4. (\')

I A
x. 7 -the set of integers.
In practice, the service rate and probability p, (#) are otten defined by piece-
wise constant functions of time. for example, with two intervals of constancy:
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e 2. — [P e T T2
(1) = b ‘ |7- 12/2) =04, 1)31(1)21}"] |7 7/2)

W re(T )2 T | g re@ /2.1,

(12)

Then system (10) is a system of linecar differential equations with constant co-
efficients. And if all the eigenvalues of (10} have strictly negative real parts, then
there are stationary solutions when 71— +cc. In some cases, a steady state is
achieved within a very short time interval. Therefore. when considering sufficient-
ly large time intervals to solve the optimization problem, sometimes 1U's better to
use the stationary solution of (10). Namely. the optimal number of employees
should be determined by formulas (11) on each of the intervals of constancy (12).
Moreover, on time interval [7,.7,/2] we need to consider that

NY=K lim » (). and on time interval (75/2.75] need assume
(BT

N =K lim (#,(1)), 1=1.3.4.

3.1. Example

Let's assume K 40000. The tfunctioning of the insurance company described
by the following parameters:

Ual/}=0.0007sin(2xt /364y + 0.0008, 1, (1) = 0.00005sin{ 2 / 364) + 0.00008,
L (£} =0.0005cos(2me /364) + 0,006, p{e) =1 1sin{2m /364) + 20,
Ly =3.5cos(2m /364)+ 9. py (£} = 0.004s5in(2xe /364)+ 0.008.

We will investigate the company’s work on the titme interval [0,364] with the
inmitial condition 7,{(0)=0, i=14. Lel's solve problem (3).

The right-hand side of {10) with this condition doesn’t depend on m,, i =1.3.4.
Theretore, to solve the optimization problem of the insurance company it is suffi-
cient to know the type of solutions of (10} in this case. Hence. tor the solution of
the system s possible 10 use numerical methods. For the numerical solution of
(10) mathematical computer software Maple could be applied. In particular, func-
tion @solve with option type—rnumeric together with method-options which
allow for the determination of a method of numerical solutions. and function
sdzploc for graphical representation of solution. could be used.

Figures 2-4 graphically represent the behavior of functions K, {¢}. i=1.3.4,
- the average number of messages on stages of evaluation. payment and contracting
under the above imdal conditions.
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According to (11) we obtain sy :<8.33) =9, m; = (l ,79> =2, my= (4.96> =3.

Hence, the optimal number of evaluators - 9, cashiers - 2, insurers - 5.

Conclusions

These studies are valid only at a high network load. i.e. in case of large number
A. The accuracy of results increases with the number of messages in the network.
The procedure for the computer mathematical system Maple that makes it possible
calculate examples was implemented. The results of this paper could be applied to
optinmize the process of functioning of insurance companics.
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