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Abstract. In this paper, the object of considération is a membrane consisting of one circular 
and two annular segments. The Green’s fonctions method for the free vibration of this 
membrane is applied. A numerical example illustrating this method is given.

Introduction

The détermination of vibrational characteristics of mechanical structures is an 
important problem in various engineering fields. In particular, the eigenfrequencies 
of membranes have great significance to the design of aeronautical, naval and civil 
structures as well as musical instruments. The free vibration of composite, circular 
annular membranes are the subject of papers [1-3].

The solution to the vibration problem of a composite membrane consisting of 
two concentric membrane segments (each with constant density), can be derived in 
an exact form [1,2]. In this case the membrane segments create the non- 
homogenous membrane for which the frequency équation by determinant of a 4x4 
matrix is expressed. Using this équation in paper [1] the eigenfrequencies of the 
membrane for various ratio of membrane densities and various ratio of radii of the 
distinguished membrane segments were numerically determined. The general for
mulation of the eigenproblem for membrane of arbitrary discontinuous variations 
of the density in the radial direction is given in paper [2], The presented numerical 
example also deals with the double connected membrane. In paper [3] the natural 
frequencies of the composite, doubly connected membrane obtained by using the 
finite element method are compared with the exact values. Examples of the appli
cation of the Green’s function method to vibration problems of homogenous mem
branes are presented in book [4].

The séparation time and space variables in the differential équation of the 
transverse vibration of a membrane leads to the Helmholtz équation. In the case of 
composite membrane consisting of many membrane segments of constant densi
ties, the Helmholtz équations oblige in each segment. The continuity conditions 
are satisfied at the concentric circles which separate the segments of constant den
sities. The solution of this eigenproblem can be derived by using the Green’s func-
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tion properties. The Green’s fonctions which occur in the solution were derived in 
páper [5],

The present páper deals with the free vibration problem to a composite mem
brane consisting of three membrane segments of constant densities. The solution is 
obtained by using the Green’s function method. The symbolic and numerical calcu
lations were performed by the use of Mathematica [6],

1. Formulation of the problem

Consider the free vibration of a membrane consisting of one circular and two 
annulai" segments as shown in Figure 1. The differential équation for the displace
ment u, of the /-th membrane segment is

-.2
sV2u,-pi^- = 0, i = 0,1,2 (1)

where \ is the tension per unit lenght, p: is the density of z-th segment of the

. ^2 d2 1 d 1 d2membrane, V" = —- +------F —----- - where r, (j are polar coordinates and t is
dr 2 r dr r2 dO2

time.
The step-wise changes of densities of the membrane are at circles with 

radii r0 and i\. These circles détermine the uniform segments of the considered 
membrane. At the distinguished circles the following continuity conditions are 
satisfied:

Fig. 1. A sketch of membrane under study
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m0 (r0,é>,i) = w, (r0,9,t), u} (r\,9,t) = u2(i\,9,t)

du0 (r,9,t) dux (r,9,t) dul (r,9,d) du2 (r,9,t} (2)
dr dr r=rG

y
r=r0

dr dr 
r=rY r=rx

Moreover, the functions u0 and u2 satisfied the conditions

|w0(<W)| < °O’ M2(r2^^) = 0 (3)

The mode shapes of vibration of the membrane are obtained by using the clas- 
sical method of séparation of variables to équations (l)-(3). The modes of vibra
tions can be written as

M, = Uin (r) cos n9 cos mt
(4)

where <a is the natural frequency of the membrane and n is an integer. The fonc
tion Ujn occurring in the above équation is a solution of the eigenproblem derived 
by substitution (4) into équations (l)-(3):

1 d
r dr ' = 0,1,2

U0„(r0)^Uln(r0), M'iWU'i)
duon(r) dUïn (r) duM dU2n{d

dr dr dr drY=f0 r=f\

t70„(0)<oo, i/2„(r2) = 0

where Ą =

(5)

(6)

(7)

(8)

2. Solution to the problem

The solution to the problem is obtained by using the properties of the Green’s 
fonction [4]. The Green’s functions G, (z = 0,1,2) which are necessary in this ap- 
proach, satisfy differential équations (8( ) is the Dirac delta fonction)

r dr I dr J r2 r
i = Q,ï,2 (9)
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and the homogeneous boundary conditions:

=0
dr

(10)

On the basis of équation (5), which corresponds to the uniform membrane 
segment, the following équation can be written

d ( dUm^ 
dĄ )

( 2 A

G,(r,<)^ = 0, i = 0,1,2 (H)

2 A

(12)

(13)

(14)

Using the property of the Dirac delta function

(<)</< =Om(r)

+ <2;-^ U,„(C)dC
\ i J

p(r - (<K = í i-G. + U.

r. , i “s gç

Taking into account the équation (9) in the left-hand side of équation (12), we hâve

where r_, = 0. Integrating by parts, one obtains

J F a f ao,(r,<)

1 ap dę

( dUJd) , . . AaG,(r,<)
=p +dź

in équation (13) and the boundary conditions (6)-(8) and (10), we obtain for 
i = 0,1,2, successively

^oP) = So„GOn(r,ro), 0<r<r0

PMoÄpo) + Si,, Gu,(r,r} ), r0<r<r} (15)
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where So„
duon(r)

7
. Next the use of boundary condi-si„ ='i—— ar

tions (6) leads to a system of équations:

S0n K Fo ■ >1) ) + Gl„ F» ’ 7'0 )] - SlnGln Fo A ) = 0 

-50„Gl„ F ’ r0 ) + ‘Sn [Gl„ F ) + G2» F ’ rl )] = 0

(16)

A nontrivial solution of this équation system (witli respect to So„, S\„) exists for 
these values of parameter co, which are roots of équation

(17)

This équation is solved numerically with respect to the frequency parameter

. A graph of the function lf'„(O) for n = 0, r0 = 0.2, r\ = 0.4, r2 = 1.0,

<j| = 1.0, = 3.0 is presented on Figure 2. We can observe the four roots of équa
tion (17) on this figure.

The mode shapes of vibration corresponding to the determined frequencies are 
given by équations (15) where 51;; can be obtained on the basis of équation (16a)

(18)
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Fig. 3. Frequency parameter values ílui, (i = 1,2.3,4) 

as fonctions ofthe ratio — for varions values of o = —
r2 Pz

3. Numerical example

Consider a composite membrane (as is presented in Fig. 1) with a middle annu-
Z* —

lar segment of small radial size: ----- -  = 0.01. We assume that the density pi of the
r,

middle segment is higher than the remaining portion of the membrane:
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er, = — = 2; 5; 10; 50; 100 and p0 = p,. The frequency parameter Qo/=coozr2./— 
ft ‘ V v

corresponding to axisymmetric modes of vibration of the composite membrane by 
using équation (17) are numerically determined. The first four frequency values

rQ0/ of the membrane versus the location of the middle ring — are presented in 
r2

Figure 3. The location of the middle ring significantly effects the frequency values 
of the membrane. The comparison of the results for the results for the various val
ues of a has shown that the increase of the density of the middle ring causes the

decrease of the membrane frequencies except for the discrète values of —.
r2

Conclusions

The exact solution to the problem of free vibration of a composite circular 
membrane by using the Green’s function method has been presented. The mem
brane consists of one circular and two annular segments, each of constant density. 
The derived frequency équation can be used to investigate the step-wise radial 
changes of the membrane density on the eigenfrequencies of the system. The pre
sented example shows the effect of inside located concentric ring with bigger den
sity as in the remaining portion of the membrane, on the eigenfrequencies of the 
system. It was found that an increase of density of the distinguished membrane 
ring causes a decrease of the eigenfrequencies of the membrane system. The fur- 
ther research in this range should concern the application of the presented method 
in frequency analysis of the membrane consisting of an arbitrary number of mem
brane rings.
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