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Abstract. In this paper, the [ree vibration of an annular membrane consisting of three con-
cenlric segments is considered. The frequency equation and mode shapes are obtained by
the use of the Green's function method. A numerical example to vibration problem of non-
homogeneous annular membrane is presented.

Introduction

The problem of transverse vibrations of composite annular membranes has been
considered by several authors [1-4]. In the papers [1. 2] the free vibration of com-
posite membranes consisting of two annular segments is investigated. The exact
solution of the problem and vibration analysis of membranes with discontinuously
varying thickness is presented. In reference [2] the finite element method in the
analvsis was also used. The free vibration problem of annular membrane with
many discontinuous variation of the density is the subject of paper [3]. Although
the formulation of the problem deals with the vibration of membrane which consist
ol m segments (cach of constant density). the numerical examples concern the
antisymmetric modes of composite membrane consisting of two segments. [n this
case the frequency equation s obtained by setting the determinant of a 4x4 matrix
ol cocfficients o a derived system of equation, which cquals zero. In many papers
various methods are applied to solution of the cigenvalue problems, The authors of
paper [4] in solving the eigenproblem for annular membrane propose the method
of fundamental solution. In this method the free space Green's function are ap-
plied.

In this paper the free vibration problem of a composite annular membrane con-
sisting of three segments of constant densities is presented. The solution of the
problem (frequency equation, mode shapes) is derived by using the properties of
Green's functions corresponding to the Helmholtz operator in an annular domain.
An example of numerical frequency analysis is given.
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u,(r.0.0)=0, (r}cosnfcosar. s, (r}=S, cosor (4)

where ¢ is the natural frequency of the membrane. l'aken into account equations
(4} differential equation (1), continuity and boundary conditions (2)-(3), we obtain:
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‘I'he solution of the problem (5)-(8) can be obtained by the use of the Green's
(unction method. The Green’s functions corresponding o the operator L, satisfy
non-homogeneous difterential equation
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and the homogeneous boundary conditions:
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Multiplying the equation (5) by »G,(r.£) and integrating in interval (i}_l.,r,)
for i = 1,2,3. we obtain
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Next, we use the seli-adjointoess of the operator L. i.c.:
h
jr[vl,m (u)—uL, (r)]dr =0 (ora<r<h (12)

tor all functions #. v which satisfy the same zero conditions (10) as the functions
G,. Taking into account (12) in equation (11) we can write

U, (r)==S_G, (ra )+ SG(rn). rn <rsr (13)

where we have used the property of Dirac delta function
h
j,f’(;)d(g-r)dg;f(r) for asr<b (14)

Using (13) in conditions {6) we obtain a system of equations:

J‘Sln I:(;Iu ('i"i ) + (;211 (,‘l ,f'| ):I - SI'.HG.’.n ("l"‘l) = 0

(13)
l_3‘1;16211 (’.2"1 )+ Sl'i: |_G2U ("Z“r'_') + G_:,, ("2‘103 )-I 0

These equations have a non-trivial solution for the values of parameter « which
are roots of the frequency equation

|:(';ln ('rl‘rl) + (]‘2-'; (rl‘rl):“:(;:u (rﬁ!’r'_‘ )+ (}3" (FE"".B ):I - (;2;! (’i’rl}(}ln ('2"‘1) =0 (16)

Equation (16) is then solved numerically with respect to the non-dimensional fre-

quency n = O T ‘

The mode shapes of vibration corresponding to the determined frequencies we
oblain from cquation (13)

(’ylu(r)=SlnGln(r'rl}~ ¥ =¥ 5’]
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where 5., is received trom (I5a)

Gy, (1.1)+ Gy, (73.77)
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2. Numerical examples

Consider a non-homogeneous annular membrane whose density changes step-
wise in a radial direction. The membrane is characterized by radii: »y, — 0.2,

ri =04, r:=0.6, r- = 0.8, and by ratios of densities of the segments: o, = A and
£
£ N . :
o, === The eigenfrequencies of the membrane we calculate numerically by us-
24

ing the frequency equation (16). The bisection method was applied. The non-
dimensional (requencics corresponding to symmetric modes of vibrations for vari-
ous values of ratios o, and &, arc presented in Table 1. The comparison ol the
results presented in the table leads to the conclusion that increase of the densities
ralios causes decrease ol the lrequencies of the membrane.

Table 1

|
- - | . N a
First live [requency values £, = a).,,.r_‘\ll s , [or nonhomoegencous membrane shown in Figure 1

R

for various values of o and o,

Q'll | QUZ Q" " QlH Q{.\.‘.
g
o, =0.1
{11 7.22575 19.09385 31.38584 43.66073 5538157
1.0 6.12412 9.09007 18.70560 20.28878 32.31386
5.0 1.43392 3.82080 6.26935 797733 8.94993
10.0 U.71866 191728 3.13893 140742 3.63636
o, =1.0
.1 448688 10.11479 1613784 2228729 28 48738
1.0 1.09769 8.32377 12.52867 16.72628 20.92059
3.0 1.40561 3.70511 374119 6. 78442 8.83797
10.0 0.71516 1.90563 3.13651 4.36547 5.54419
o, =50
.1 1.01913 2.89382 3.18390 7.56466 9.91070
1.0 1.01416 286149 311402 743692 9.68276
5.0 0.89200 2.01103 3.20914 143146 5.66214
10.0 0.62994 1.43690 2.08907 304102 3.82215
o, =100
0.1 051144 1.45939 2.62192 3.830689 5.06853
1.0 0.51081 1. 43356 2.61350 3.82366 5.04984
3.0 049336 1.33866 220651 287151 3.78983
10.0 0.44705 1.00976 1.61248 222774 284796
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cd. The frequency equation and mode shapes are expressed by Green's functions
corresponding to relevant Helmholtz problems. Numerical results presented in the
table show the effect of change the densities of the membrane segments on the
cigenfrequencics of the system: ncrease of the ratios of densities causes a decrease
of the free vibration trequencies. The presented here the method to solution of the
tree vibration problem of a membrane consisting of the three segments can be gen-
cralized on the annular membrane consisting of an arbitrary number of concentric
segments.
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