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Abstract. In the paper the dilfusion equation with (emperature - dependent source function
describing the heat conduction problem in axisymmetrical domain is considered. The [un-
damental solution is determined and the results oblained by means of the boundary element
method are compared with the analytical solution.

1. Formulation of the problem

The following ordinary differential equation is considered

p) d( dT]
2 2P KT+ 0=0 1
F dr’dr te th

N 7

where » s the spatial co-ordinale. » e[R,,R:], A is the thermal conductivity, K
is the malterial constant, @ is the constant heal source,
Equation (1} can be written in the form

The solution of equation (2} is found under the assumption that the following
boundary conditions must be (ulfilled

J;'=R,: q(r‘)=—/l%=“’_2"(")_r'J (3)
{rzii:: r(r)=1,

where ¢ is the heat transfer coefficient, 7, is the ambient temperature, 7}
is the constant boundary temperature.
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2. Analytical solution

It can be observed that equation (2} 1s the second order nonhomogeneous linear
ordinary equation. Hence its solution can be written in the form

T=PSNE+GSHE (4

where G.SJLE. is the general solution of the corresponding homogeneous
equation and P.S.N.E. 15 the particular solution of the nonhomogeneous equation
(2). Tt can be observed that

PSNE. = 4 (3
K
‘The homogeneous equation corresponding to the equation (2) has the form

Z s _T-0 (6)

To obtain the general solution of equation {6) the following substitution

is introduced
’/l
. — 7
r e ] (N

[lence unknown temperature 7 1s the compaosite function of the form
() =T{r{u) (8)

The first order total derivative of function 7 has the form

a7 _d7 dr

- 9
de dr du ©)

2

. N . L d
From tormula (7} onc obtains the derivative
u

in the form

dr A
- - (= 10
du K (10

Introduction of dependence (10} to the formula (9) leads to

d7 _d7 |2

du dr VK
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or
d7 K dT
— =, —— (12)
dr A du
In a similar way onc has
AT 474 4 (13)
de dr” du VK
Taking inte account the dependence (10} the above formula has the form
d°T d&°T 4
LR A (14)
duw dr” K
Hence
CERRE (15)
des A du’

Intreduction of (7). (12) and (15} into equation (6) leads to the homogeneous
linear equation ot the form
&°T 14T
—

—t+———1=0 16
de~  u du (16)

Equation (16} can be writien in the cquivalent form

NS B IS (17)
die”  du

It can be observed thal equation {17) is the particular case (i — 0) of the modified
Bessel equation of the form
AT

d¢ ..
W —+——u - )T=0 18)
du  du ( ) (18

Hence, it can be proved [ 1] that the general solution of equation (17) has the form
T(u}=C I {u}+C.- K, (u) (19)

where Z(x), K, (u) are the modified Bessel functions of the first and the second
kind, respectively. Symbols ). 5 stand for arbitrary constlants.

Functions 7,(«), K,(x) have the form [1]
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. ¥ m+l .
LK, (u)— u) ln—+z ( 1"" {20)
k= 4 (k‘}_ " m=01 4”("”‘
m
where  W(m+1)=—y+ Z— and y is the FEuler-Mascheroni  constant,
¥y = ]imL —— ln(n)J
l— b= l
From cquation (7) onc obtainy
X
U=r - (20
A

Bearing in mind solution (19) and formula {21) onc can lcan that the general solu-
tion of homogeneous equation {6) has the following form

T{A)=CL{r)+C.K, (#) (22)

where

e ek | K et el [ s K ()
KO(;)_KO(\E r]— I1,(r) h{ v ;]+mzo @) ey r 24

Using the dependences (4). (5) and (22) the general solution of equation (2) has
the form

T(r )=Q+( I,(')+(‘:IC’“(;~) (25)

where functions 7,(r), Ky (r) have the form (23) and (24). respectively.
Taking mto account the boundary conditions (3) onc obtains the following system
of equations with €. 'y as unknowns

r

_)'(('.Ii‘ (‘Rl)_(-‘"_‘lgrl (RI )) =0(( , +(-'|i-?.-(R| )+C"3K<:-(R| ) _]:;]

=

{26)
\5 L CL(R)+CE (R) =T,
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where
2(k+1)K*"

a0 S T ey

3 _i Z ()= —1In i-r . ) ?'U("'I)KM r:s-|_in(")+
[\1 (r)_d)‘ ]\,}( ) l (\/; ] J'Z;(d;l)ul ((k+l)!): .

i 2m+ )K" (i +2)
+ =
o (4;‘.)’"‘I ((m + I)!)"

After determining ). (', from (26). one gets the solution of equation (2) ful-
filling the boundary conditions (3) in the form

2kl

(27)

2m=1

=Q+ ak“(Rl}(Y:/K_Q)"'{Q_7;-K)(QK1(R|)_j'[€’| (Rl )) 7 (,.)+
K K[KO(R:)(AL R)+al,(R)}-1,( R’)(alz,.(R —AK,{R,))J ’

N —al, (R)(1 K =Q)-(Q-1,K )l (R} 1 21 (R)) 2.0)
R'[K’4J(R:)(’{,| RI)+(z,'l?(Rl))_l'.;(R.l ((zk’i‘(Rl)_ﬂk’l(Rl})-‘ '

(28)

3. Boundary element method

To tormulate the boundary element method [2-5] equation {2) can be written in
the form

d'T ., dT

Ar + A——Krl' +0Or= 29
dr’ dr o =2
The weighted residual criterion for equation (29} is of the lorm
3
’ [/uj’—T x‘;—z - KrT = Qr | T (&r)dr=0 (30)

i

. . . ,,* - . - -
where & is the observation point. 7' {£.r) is the fundamental solution and
it is function of the form

(a2 “ (‘fj ( K j [\EH@H 61)
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It can be checked (using for example the computer package Maple) that this func-
tion fulfils the equation

ir T (.:I) i AT (5.7}

- KeT (s.r)==68(Er) (32)

ar” or

where S(¢.7) is the Dirac function.
Heat flux resulting from the fundamental solution is of the form

T (&)

‘]' (:‘ r) = _)" ar

this means

. \/ngn(r—{f) CIR Yy (T ( P TaR
Sr)=—F"7—"| K, ,ﬂ—"’ I J—- K /—- Ll = || 34
q (‘: ’) 2\/; i ;'-'JIL },, + l\ /{"J l 2’5/ (34)

\

where sgn(r— &) is the sign function.
To apply the property (32) equation (30) can be expressed as follows

R
I:rq'{.«;‘.;‘)Y‘(/‘)—I‘Y”(.f.r)q(r)]::" + Q| r1(Er)dr +
! #

& IR .. (35)
[/{r(::‘T (;i) +).8T (g,r) 3
or” or

+ —Krf” (é,i‘)J'['(r)dr =0

)

The last integral in the above equation is equal to

R

' Ayt s O - R

I [}u' arien), ,der) R’rT‘(i,r)}T(r}di‘ == [ 5(E)T(r)dr ==T(£)
or- or ) I

R

(36)
and then equation (35) takes the form

"
&

[;'q'(,‘,r}T(r}—rT"(f.i’)q(}‘)] +QT[ T (&r)dr-T($)=0  (37)

or

T(*;) R:-([‘ (’f*Rz)T(Rf)_R:T’ (‘:\":*R:)Q(R’:)_qu“(;;-Rl)T(Rl)_

. B 38)
+ RT(ERYg(R)+ Q[ rT (Er)dr (
H
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For & = R and & — RS onc obtains

%T(KI_} :R:qd (Rlst)T(R:)_ RJ:’J-(‘RI ~K:)‘I(R:)_qub (RI'RI )T(Kl ) +
, (39)
+RT(R.R)g(R)+ Q[ rT"(R.r)dr

R

and

%T(R:) —Rq (R.R)T(R)-RT (R.R)q(R)-Rq (R.R)T(R)+

@ (40)
~RT(R,R)q(R)+ Q[T (R..r)dr
N
The system of equations (39), (40) can be written in the matrix form
G-q HT-0Z (41)
where
G= er‘(Ran) _R:T‘(Rnkz) (42)
RT(R.,R) -RT (R.R.)

‘!(R:)

qz{q(&)l @)

1 . .
:"'qu (RI‘RI) -Ryq (RHR_‘)
H=|"~ (44)

4 l +
qu (R:fkl) ;_R:q (chRr)

T={T(R])} (45)

r(r)

R_-. R
[ #T(R,.r)dr

R

Z= . (4())
[r1” (R,.r)dr

Bl
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In the matrix equation (41} two of four values T(Rl), T(R,). ¢(R)). q(Rz) are
known from the boundary conditions, the remaining two should be determined.
Introduction of values T(R;). T(R,). ¢(R). ¢(R,) to formula (38) allows one to
determine the temperature at the optional point S from interior of domain.

4. Example

The cylindrical layer of thickness 0.04 m (R =0,01m. R, =0.05m) ix consid-
cred.  Thermal  conductivity  is  equal o A=10W/mK), cocllicient
K =2000 W/(m“ K), parameter Q =1000 W/m’ . On the internal surface r = i
the Dirichlet condition 7(R)=100°C is assumed, while on the external surface
r =R, the Robin condition q(Rz)=a[T(R2)—7},]. where o =250 W/(m°K).
T, =20°C. is accepted.

‘The problem has been solved by means of the BEM. Under the above assump-
tions the equation (41) takes the form

A-Y=F (47)
where
“RT'(R.R)  @RT (R.R)-Rgq (R.R)
A= . | . . (48)
-RT(R,.R) :+aR37‘ (R, R.)=Rg (R,.R.)
R
r{&,)
and
F=T(R,)C+aR?'I;,D+QZ (3
while

1 «
| SR (R.R)

—qus(RrRl)

D:|:T (RI’RI):| (52)

T'(R,.R.)






24 1 Borewska. J Klekot

Conclusions

The fundamental solution for diffusion equation in cylindrical co-ordinate sys-
tem with temperature - dependent heat source is determined. The example of com-
putations is presented and the results obtained by the boundary element method are
compared with the analyvtical solution.
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