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Abstract. This paper focuses on the parallel machine scheduling problem related to
maximizing the minimum completion time. This problem affects several industrial appli-
cations. The application of this problem in real life is very impressive. This paper is based
on the development of new lower bounds for the exact solution of the studied problem.
It is shown in the literature that the problem is strongly NP-hard. The first developed lower
bound is obtained by utilizing the probabilistic method to generate several solutions for
the lower bound. The second is based on the knapsack problem with the iterative method.
These numerical methods give new, better lower bounds.
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1. Introduction

In this paper, we focus our study on the problem of parallel machines.
The objective is to maximize the minimum completion time machines. This problem
is also cited in the literature as the machine-covering problem. The machine-covering
problem was first introduced in [1]. The problem can be found in several industrial
application sectors such as the maintenance of gas turbine aircraft engines. In our
work, the studied problem can be described with the following notations. Let a set of
n jobs (tasks) be denoted by J and a set of machines be denoted by {M;,M>,...,M,}.
The jobs are independent, and the machines are identical and parallel. Each job
J 1is characterized by its processing time p;. All processing times for all jobs
{p1,P2,-..,pn} are positive. All jobs must be scheduled on a set of m machines
seeking the maximization of the minimum completion time. The load of a machine
is obtained by summing up all the processing times of jobs scheduled on the
machine. Using the well-known notation of [2], the described problem is denoted
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by Pm||Cpin. Authors in [3], treated the machine-covering problems in the case of
semi-online scheduling. In the latter work, the authors proposed an optimal solution
for the corresponding problem with three different semi-online versions.

In [4], the authors show that the off-line scheduling version may be given

a solution in O(mn). Additionally, the authors showed that the ratio that measures the
L

competitiveness for the randomization on-line method was L and Z % for L-uniform-
-machine problem and L-identical-machine problem, respectivelly.lln the same con-
text concerning the allowing of the preemption in the case of the semi-online prob-
lem, the authors in [5] developed a new resolution for the problem. In the latter work,
the authors developed an exact algorithm for each machine speed ratio s € [1,).
In addition, the authors proved that an idle time has to occur during the scheduling

6
function of algorithms for any s > \/g . An enhancement of the (2 + €)-competitive

approach with a deterministic reassignment factor was developed in [6]. The princi-
pal result in the latter work is that for any € > 0, one may hold a (1 + €)-competitive
solution for a different fixed reassigned factor r(€). A randomization-based algorithm
was developed to solve the online problem with running time O(y/mInm) [7].

In [8], the authors developed a new optimal algorithm using the branch-and-bound
method for the problem of parallel machines seeking to maximize the minimum com-
pletion times on machines. Different improved lower bounds and upper bounds were
also proposed in the latter work. In addition, the authors discussed the comparison
study between the proposed solutions and the results developed in [9].

The author in [10], proposed a solution for the semi-on-line problem for maxi-
mizing the minimum of makespan.

The Santa Claus problem is studied in [11]. In fact, the authors determine a critical
value p(n,m) that can predict the performance of algorithms.

Several real-life applications for the Pm||C,;, problem are studied in the litera-
ture. Recently, the authors in [12] developed new heuristics as a solution of equity
assignment of the projects to the region problem. In addition, the authors in [13]
developed an exact solution for the latter problem. This exact solution is based on
the branch-and-bound method. In addition, mathematical models and heuristics were
developed in [14] and [15]. Gas turbine aircraft are another domain of application for
the studied problem. Indeed, the authors in [16] and [17] developed several heuris-
tics to solve the problem of gas turbines in the aircraft. However, the application
of the studied problem can be formulated to be utilized in the network. Indeed, the
author in [18] proposed a new formulation for the application problem and several
heuristics to solve the problem. A multifit-based heuristic and subset-sum with an it-
erative method are proposed in the latter work. These real-life applications are based
on the solution of the studied problem with some modifications. In the same con-
text, the authors in [19] proposed probabilistic algorithms to solve the problem of the
maximization of the minimum into the network.
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Recently, an application of the maximization of the minimum was developed
for smart parking during the COVID-19 pandemic in [20].

In this study, a mathematical model and lower bounds for the studied problem
is proposed. The formulation of the problem utilizes the probabilistic approach and
the knapsack iterative problems.

The paper is organized as follows. Two lower bounds from the literature are
described in Section 2. A definition of the knapsack problem utilization is presented
in Section 3. In Section 4, two proposed lower bounds are presented with detailed
examples. Finally, a conclusion is given in Section 5.

2. Lower bounds from literature

Several lower bounds are developed in the literature. In this work, we present
the two famous lower bounds from the literature, and we develop two new bounds.
The first one from the literature is the trivial one and is based on the LPT heuristic.
The second one is developed by iteratively using the solutions of the subset-sum
problems [9]. The two newly proposed lower bounds are based on the iterative use of
the solution of the knapsack problem and the randomized algorithm.

2.1. Longest processing time (LPT)

This heuristic is a dispatching rule. Indeed, we order all the jobs by the non-
increasing order of their processing time, and we schedule the jobs successively to
the most available machine. The most available machine is the machine that has
the minimum completion time.

2.2. Iterative method using subset-sum problems (IMSS)

This heuristic utilized the solution of subset-sum problems with an iterative
approach. Firstly, we call LPT to schedule the jobs. Next, we construct a set of jobs
Jo which is obtained by grouping the jobs scheduled on the most loaded machine and
the jobs scheduled on the least loaded machine. Then, we apply the subset-sum SP to
solve the problem of two machines P2||Cy,;, as follows:

S=max Y pjbj, (1)
jeJo
. Z Aop.
Sp: Zmlyé{ = ’J, )
jefo
b; € {0,1},Vj € Jo 3)

The variable b is defined for each job j € Jo. If job j is assigned to the machine that
has the minimum load, then the binary variable b; is equal to 1; otherwise, b; = 0.
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Let B be the vector constructed by all b; values Vj € Jo. The solution of the system
SP returned two sets of jobs. The first set is H with H = {j € Jo,b; = 1}. The second
set is F = Jo\ H. Now, we schedule H and F on the least loaded machine and on
the most loaded machine, respectively. We calculate C,,;,,. We restart the iteration
considering the scheduled jobs on the two machines that are most-least loaded and
call SP to find a new solution, and so on, until any improvement of result returns.

Example 1 Suppose an instance is given that contains 20 jobs that should be
scheduled on 5 machines. After applying a dispatching-rule heuristic, we obtain the
set Jo, which corresponds to the processing times {25,63,79,70,42,1,35,59,65,68}.
We have {Z]EJOPJJ =253. Then, utilizing the above model of SP, we obtain § = 253
for the vector B={1,1,0,1,0,1,1,1,0,0}. Then, the selected jobs are {1,2,4,6,7,8}.
These latter jobs have the following processing times {25,63,70,1,35,59} with
summation equal to 253. The selected jobs will be scheduled on the first machine.
However, the remaining jobs will be scheduled on the second machine. O

3. Knapsack problem

The knapsack problem is utilized in several domains and applied to different real-
life applications. In addition, the knapsack problem is presented in several forms.
This problem can be presented as follows. We have many items, and the objective is
to put the maximum of values of the items in the knapsack. The items are described
as follows. Each item is characterized by its value and weight. Let n be the number of
items. The objective of this problem is to find an algorithm to put items in a knapsack
characterized by its capacity W to obtain the greatest overall value in the knapsack.
To better explain the problem, we use the following notation: vector v[1,...,n| repre-
sents the values of items, while w[l,...,n] represents weights of items. The capacity
of the knapsack is denoted by W. The objective is to search the subset of items with
the maximum value such that the sum of the weights of the selected items is less or
equal than W.

The preemption of any item is not allowed; either select the whole of item or it is
not selected (1-0 characteristic). The problem denoted by KS; is essentially written
as follows:

KS =max ) v, 4)
KS; : i€y
s Y wi<w, (5)
i€y

The solution of the knapsack problem cited above can be implemented and run
in O(nW). In this paper, we aim to reformulate the knapsack problem to apply it to
the studied problem related to the identical parallel machines while maximizing the
minimum completion time. The system KS; can be written using a binary variable f;.
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Indeed, the value of f; is equal to 1 when we choose item i; otherwise, the value of f;
is equal to 0.

KK = max y fivi, (6)
i=1
KS2:95. Z Fwi <W, %
i=1
fi={0.1},Vie(l,....n] @)

4. Proposed lower bounds

This section is devoted to the proposed lower bounds. The first lower bound uti-
lizes the probabilistic method to determine the best value after multiple iterations.
For the second lower bound, we decompose the main problem into several problems
consisting of the two machines. Each sub-problem will be solved using the knapsack
problem.

4.1. Probabilistic-iterative lower bound (PILB)

The PILB is developed by introducing probability when we choose the job to be
assigned to the machine. In the beginning, we sort all jobs according to the non-
increasing order of their processing time. For this work, we propose choosing ran-
domly between the three longest jobs to be assigned to the more available machine.
Indeed, we apply randomly a probability 8 when we choose the first longest job
and a probability B when we choose the second-longest job with 8 € [0,1 — 6]. The
probability of choosing the third-longest job is 1 — 6 — 3. This probabilistic method
extends the choice and provides a result that is more extended than obtained by LPT .
In practice, the randomly values are generated using the uniform distribution.

Example 2 Suppose an instance is given that contains 10 jobs that should be sched-
uled on two parallel machines. The processing times are given in Table 1.

Table 1. Processing times of 10-jobs for Example 2

j 1 2 3 4 5 6 7 8 9 10
P 3 37 29 45 48 34 31 42 48 45

Applying the longest processing time rule on the instance in Table 1, the schedule
will be as follows: On machine M, jobs {5,4,8,7,1} are scheduled and on machine
M, jobs {9,10,2,6,3} are scheduled. Therefore, the completion time on M; is 169,
and the completion time on M; is 193. Thus, C,,;, = 169. If we apply the proposed
PILB algorithm, the schedule will be as follows: suppose that the probability 6 gives
the selection between the three longest jobs illustrated in Table 2. The latter table
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shows that for iteration I, the Pos is given of the longest job selected to be scheduled
on the most available machine.

Table 2. The positions among of the three longest jobs chosen for each iteration

It 1 2 3 4 5 6 7 8 9 10
Pos 33 3 3 2 3 2 1 1 1

For iteration 1, the third-longest job is selected to be scheduled on M;. Then,
the third-longest job among the remaining jobs is selected to be scheduled on M>,
and so on until all the jobs have been scheduled. The schedule is as follows: on
machine M, jobs {10,2,9,5,1} are scheduled and on machine M5, jobs {4,8,7,6,3}
are scheduled. Thus, the completion time on M is 181, and the completion time
on M, is 181. Therefore, C,,;, = 181. The C,;,, value obtained by LPT equals 169;
the value we obtained exceeds the C,;, value by 12 time units. The proposed PILB
algorithm gives a better result for this instance.

4.2. Iterative Knapsack problem resolution (/KR)

This lower bound utilizes the same techniques described for /MSS. In addition,
we provide some enhancement. Indeed, the resolution of the P2||C,;,, will be using
a knapsack problem instead of a subset-sum problem. Let Jo be the set of jobs defined
in the Subsection 2. The modeling of the problem will require some definitions as
follows. Define a modified processing time p; = \Jo|p i—1Vje Jo. We denoted by
Jo. the set of jobs with modified processing times and by P the vector constituted
by all elements p; Vj € Jo. Now, we formulate the appropriate knapsack problem
as follows:

(R:maxZﬁ,yj, )
jejo
KN : YicioPi
s.t. Y piy; < 5 (10)
jeo
y; €{0,1},Vj € Jo (1)

We denoted by Y the vector constituted by all y; values Vj € Jo.

Proposition 1 The above system (KN) can be an improvement over system (SP). o

PROOF The above system (KN) has an objective to search the jobs that satisfy Equa-
tion (10). Equation (2), described in Subsection 2, is equivalent to the equation
explained in KN. In fact, applying system (KN) returns the minimum number of
jobs that can be satisfying to the constraint given in Equation (10). Therefore, the
remaining jobs will have shorter processing times compared with the processing
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times of the jobs returned by applying system SP. Jobs with shorter processing times
are always easier to manipulate

Example 3 In this example, n is fixed to 30, and m is fixed to 7. After applying
a dispatching-rule heuristic, we obtain Jo, which consists of the jobs having the
following processing times: {25,63,79,70,42,1,35,59,65,68}. Then, we must use
the system (KN) to obtain the enhanced solution. The modified set of jobs Jo.,
after applying the modification in the processing time p; = |Jo| pi—1,Vje Jo, will
correspond to the processing times: {249,629,789,629,419,9,349,589,649,679}.
Then, we apply the system (KN), and we obtain the maximum value R of 2525

M = 253. The best R value is reached for Y = {0,1,1,0,1,1,0,0,0,1}.

Thus, the selected jobs are {2,3,5,6,10} with processing times of {63,79,42,1,68},
respectively. The sum of these latter processing times equals 253. The obtained jobs
will be scheduled on the first machine. However, the remaining jobs will be scheduled
on the second machine.

with

Remark 1 The result obtained by the resolution of (SP) in Example 1 is compared
with the result in Example 3 by solving (KN). This comparison shows that for
Example 1, the selected jobs are {1,2,4,6,7,8} and the selected jobs for Example 3
are {2,3,5,6,10}. The job selections prove the superior performance of system KN
compared with the performance of SP. O

5. Conclusions

This paper focuses on the well-known problem Pm||C,,;,. We proposed two lower
bounds for the studied problem. The first lower bound is based on the probabilis-
tic approach. The second is using the solution of the knapsack problem iteratively.
The mathematical formulation of the studied problem by using the decomposition
of the initial problem into several problems consisting of the two machines is used
to enhance the solution found using the subset-sum problems. The mathematical
models are explained with an example in this paper. For future work, we will try
to implement the mathematical model in a programming language and give some
experimental results. In addition, the mathematical formulation proposed in this
paper can be used for several other scheduling problems. An exact method for the
studied problem can be elaborated in the future.
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