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problem. The numerical inversion of the Laplace transforms is applied. The effect of the 
order of the fractional derivative on the temperature distribution is investigated.  
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1. Introduction  

The basis of the classical theory of heat transfer is Fourier's law described by 
a parabolic partial differential equation [1]. In this model, however, a certain unre-
ality appears, namely the infinite speed of heat propagation. One way to avoid this 
is to go to a fractional calculus [2, 3] and/or introducing a phase-lag parameter to 
heat flux in heat conduction law [4, 5]. However, analytical solutions to fractional 
differential equations exist only in the case of certain types of equations [6]. In most 
cases, the only way is a numerical solution [7, 8]. 

In this paper, heat conduction described by the fractional Cattaneo equation is 
presented. The object of the consideration is the whole-space 1D domain. In addi-
tion, a relaxation time is introduced which delays the heat flux. The primary aim  
of the research is to investigate the effect of the fractional order derivative on  
the temperature distribution. A solution of the problem is determined by using the  
Fourier-Laplace technique, and the final solution is obtained by numerical inver-
sion of the Laplace transform. 
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2. Problem formulation 

We consider the following 1D fractional Cattaneo equation without the capacity 
of internal heat sources in the form 
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where T [K] is the temperature, x [m], t [s] denote the geometrical co-ordinate  
and time, c [J/(kg K)],  [kg/m3] and λ [W/(m K)] are the specific heat capacity of 
the medium, the density of the material and the thermal conductivity, respectively. 
The parameter τq [s] is the thermodynamic property of material called the thermal 
relaxation time. In Eq. (1), the fractional derivative of function T(x, t) of order 
αq+1, for αq  (0,1] occurs, which is defined in the Caputo sense [2, 6] as 
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where  denotes the Gamma function. 
We solve Equation (1) in a whole-space domain taking into account the follow-

ing initial-boundary conditions (the so-called Cauchy problem) 
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where  is the Dirac’s delta function. 

2.1. Derivation of considered problem 

One can find many laws of the heat conduction in the different materials in  
literature [7, 9-10]. Typically, they are described by the relation between the heat 
flux vector  ,tq x  and gradient of temperature  ,T t x  in the point x of the con-

sidered domain and at the moment of time t. In the case of the classical Fourier 
law, the relation    , , t T tq x x  occurs. One of the non-Fourier constitutive  

models is the Cattaneo heat transfer model [4] expressed by the following relation 
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    , ,qt T t   q x x  (5) 

Here, one can notice that the heat flux and temperature gradient occur at different 
times, wherein the heat flux is delayed by the relaxation time τq. If τq = 0, the rela-
tion (5) becomes the aforementioned classical Fourier law. 

The second important equation is the energy conservation equation 
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where the function  ,Q tx  [W/m3] is a capacity of internal heat sources. 

In order to derive the heat transfer equation, we need to combine Eqs. (5) and 
(6) by eliminating the heat flux q. To do this, we expand the left side of Eq. (5)  
using the Taylor series. Here, we apply the fractional expansion of function q near 
τq in the Taylor series of the fractional order (0,1]q   [11]. Hence, the left side of 

Eq. (5) can be expressed as follows 
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and 
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In general, any number of terms of the fractional Taylor series can be consid-
ered. Here, we take into account only the first two terms of this series. Thus, the 
approximation for the heat flux q can be written as follows 
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and next after putting Eq. (10) into Eq. (5), one obtains the following heat conduc-
tion constitutive equation  
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Now, we combine Eq. (11) with the energy conservation equation (6) by elimi-
nation of the heat flux vector. If we apply the divergence operator to both sides of 
Eq. (11), then we have 

  
 

   
,

, ,
1

q q

q

C
q

q

t
t T t

t

 



   
           

q x
q x x  (12) 

and next from Eq. (6) we determine  ,t q x  and put it into Eq. (12). Hence, we 

derived the Fractional Cattaneo Equation (FCE) of the form 
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The FCE (13) we supplement by two initial conditions 
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and by the boundary conditions depending on the considered problem. 
It should be noted that for τq = 1, Eq. (13) becomes the classical Cattaneo equa-

tion (as the hyperbolic-type partial differential equation) in the form 

 
         2

2

, , ,
, ,q q

T t T t Q t
c T t Q t

t tt

   
                

x x x
x x  (15) 

and for τq = 0, Eq. (13) reduces to the classical Fourier heat transfer equation  
(as the parabolic-type partial differential equation)  

 
     

,
, ,

T t
c T t Q t

t


       

x
x x  (16) 

whose solution is characterized by an infinite speed of heat propagation. 
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If we take into consideration the 1D space domain in Eq. (13) then  xx , and 

the infinite space domain, i.e. x    (for the Cauchy problem:    0T x x  , 

 1 0T x  ), and we additionally assume that the parameters c,  and λ are constants 

and  , 0Q x t   then we obtain the governing equation (1) supplemented by the  

initial-boundary conditions (3) and (4). 

3. Solution of the considered problem 

In order to simplify the further calculations, we introduce the dimensionless  
variables t' and x' 
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where tref is reference time. The particular partial derivatives in Eq. (1) after  
replacement of the variables are as follows 
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and after inserting them into Eq. (1) and simplifying this equation we obtain  
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Additionally, if we assume  / 1q
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      then Eq. (21) simplifies again 

and can be written as 
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while the initial-boundary conditions have the following forms 
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3.1. Solution using the Laplace-Fourier technique 

It should be pointed out that four constant thermophysical coefficients c, , λ 
and τq in Eq. (22) have been eliminated. This approach not only allows us to derive 
a simplified form of the equation solution, but more importantly, it makes it possi-
ble to eliminate the influence of these variables on the solutions. In the calculation 
examples, the influence of the parameter αq will be mainly investigated. 

We solve the initial-boundary problem described by Eqs. (22)-(24) using the 
Fourier-Laplace transform technique. Let’s introduce the notations: the Laplace 

transform of  ', 'T x t  is      ', ' ',T x t s T x sL  where s is a complex parame-

ter, and the Fourier transform of  ',T x s  is      ˆ', ,T x s T s  F  where ω is 

angular frequency. Hence,  , s  denotes the Fourier-Laplace space. In addition to 

the well-known properties of the Laplace transform, we use the transform of the 
Caputo fractional derivative [2, 9] in the form 
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for 1m m    , mℕ .  
Therefore, the Laplace transformation of Eq. (22) can be written as  
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and taking into account the initial conditions (23), we obtain  
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or in the following form 
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If we use the Fourier transform for the above equation, taking into account the 
boundary condition (24) and the following known properties [14] 
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In order to find the inverse Fourier transform (31), we apply the known inverse 
transformation [14] 
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In the next step, to get the solution of Eq. (22) in space  ', 'x t , we must apply 

the inverse Laplace transform 
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Expressing the above solution containing the inverse Laplace transform by the 
form of analytical function seems to be a complex problem. One can expand the 
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Laplace transform into a series and then find the inverse transform of the particular 
components of the sum [5], but from a computational point of view, such a series 
may slowly converge. Here, the use of numerical methods to find the inverse  
Laplace transform in Eq. (34) comes in handy. In the next Section, in order to  
determine values of functions presented in the plots, we applied the numerical 
method described in [15] by de Hoog et. al., which is characterized by high preci-
sion of computations. 

3.2. Analytical solution of the particular case (classical Cattaneo equation) 

Let’s consider a particular case. If 1q  , then Eq. (34) takes the form 
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Further transformations of the above equation lead to 
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Let us recall the known inverse Laplace transforms [12] 
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If we put Eqs. (37) and (38) into Eq. (36), assuming that 
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       
 

 and 1/ 2a   then we obtain 
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   
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1 ' 1 ' 1
', ' exp ' ' ' '

4 2 2 2' '

1 '
' ' exp ' '

2 2

t t
T x t I t x I t x

t x

t
H t x t x

 
                        

      
 

 (39) 

4. Examples of solutions 

On the basis of the solution presented in the previous section, we performed 

sample calculations that are presented in the several plots. We investigated the  

effect of the time-fractional orders of the Caputo derivative αq on the temperature 

distribution T(x', t') for the non-dimensional variables in the 1D domain. At first,  

in Figure 1, the sample solutions as temperature distributions over space (at the se-

lected moments of time t' = 0.2; 0.5; 1; 2; 5; 10; 20) and over time (at the selected 

points of the domain x' = 0.2; 0.5; 1; 2; 5; 10; 20) for αq = 1 are presented. This 

case corresponds to the solution of the classical Cattaneo equation and can be treated 

as a reference to the solutions of the fractional Cattaneo equation for 0 < αq < 1. 

The next two Figures, 2 and 3, show the effect of the time-fractional orders of 

the Caputo derivative αq on the temperature distribution over space at the selected 

moments of time and over time at the selected points of the domain, respectively. 

As we expected (according to the assumed boundary condition), for |x'|  , the 

temperature decreases to zero for all values αq, and the solutions are symmetrical 

with respect to the point x = 0. It can be seen that largest differences of the temper-

ature occur in the initial period of time t'. The temperature in a whole-space do-

main decreases with |t'|  . As we can see, for αq = 1 (i.e. the classical Cattaneo 

model), the sharp front of thermal wave propagation occurs which is related to the 

assumed Dirac’s delta function in the initial condition. For αq < 1, the sharp front 

flatten more if the parameter αq decreases more. 

The main aim of the research was to investigate the effect of the fractional order 

derivative on the temperature distribution, so the numerical calculations in all cases 

were done and presented in all Figures for the non-dimensional variables given by 

Equation (17). Of course, one can easily rescale horizontal axes in those Figures 

for original variables x and t by using the following relations which contain the 

given thermophysical parameters of materials 
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 
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1
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x x
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
 

  
  

   and   
 

'
1

q

q

q

t t




 
  

 (40) 

but the analysis of the influence of these parameters on the solutions was not the 
subject of this manuscript. 

 

   

Fig. 1. Temperature distribution T(x',t') over space and over time for αq = 1 (classical 
Cattaneo equation) 

   

   

Fig. 2. Effect of fractional order αq on temperature distribution T(x',t') over space  
at the selected moments of time t'  {1, 2, 5, 10} 
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Fig. 3. Effect of fractional order αq on temperature distribution T(x',t') over time  
at the selected points x'  {1, 2, 5, 10} 

5. Conclusions 

The non-Fourier model of heat conduction, being a generalization of the Catta-
neo model, has been considered. Here, the Cattaneo law of heat conduction has 
been expanded into the first-order fractional Taylor series, which enabled us to de-
fine the fractional Cattaneo heat transfer equation. Thus, the additional parameter 
αq  (0, 1] appeared in the model. Such an approach allows us to obtain new fea-
ture solutions of the model compared to the solutions of the classical (also called: 
integer order) Cattaneo model.  

In this work, we only investigated solutions related to the one-dimensional Cau-
chy problem, however, in a more general case, it can also be extended to other ini-
tial conditions. We investigated the effect of the time-fractional derivative order αq 
on the temperature distribution in the whole space domain. As can be seen in the 
example results, the sharp front (with peaks) of thermal wave propagation occurs 
only in the classical Cattaneo model (the case for αq = 1) – such a front is related to 
the assumed initial condition (the Dirac’s delta function), of course. In the case of 
the solutions for values of parameter αq < 1, one can notice that the sharp front 
flats, as the value of parameter αq decreases more. It seems to us that such solutions 
can be more realistic in the case of modeling real thermal problems. Another gener- 
alization of the considered model may be the fractional dual-phase-lag model [5]. 
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The considerations in this paper concerned only the expansion of the formula 
(7) into the fractional Taylor series, which was truncated to the first two terms.  
Of course, one can take more terms of this Taylor series, derive the related frac-
tional differential equations and find solutions for them with the appropriate 
boundary initial conditions. We plan to conduct such research in the future. 
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