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Abstract. In this research, we discuss the construction of the analytic solution of the
homogenous initial boundary value problem including partial differential equations of
fractional order. Since the homogenous initial boundary value problem involves a local
fractional order derivative, it has classical initial and boundary conditions. By means of
separation of the variables method and the inner product defined on L2 [0, l], the solution is
constructed in the form of a Fourier series including the exponential function. The illustrative
examples present the applicability and influence of the separation of variables method on
time fractional diffusion problems. Moreover, as the fractional order α tends to 1, the
solution of the fractional diffusion problem tends to the solution of the diffusion problem
which proves the accuracy of the solution.
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1. Introduction

Since mathematical models including fractional derivatives play a vital role frac-
tional derivatives, they attract a growing attention of many researchers in various
branches of sciences. Therefore, there are many different fractional derivatives such
as the Caputo, Riemann-Liouville, and Atangana-Baleanu. However, these fractional
derivatives do not satisfy the most important properties of the ordinary derivative
which leads to many difficulties in analyzing and obtaining the solutions of fractional
mathematical models. As a result, many scientists focus on defining new fractional
derivatives to cover the setbacks of the defined ones. Moreover, the success of mathe-
matical modelling of systems or processes depends on the fractional derivative it in-
volves, since the correct choice of the fractional derivative allows us to model the real
data of systems or processes accurately.

In order to the define new fractional derivatives, various methods exist and these
are classified based on their features and formation such as nonlocal fractional deriva-
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tives and local fractional derivatives. The proportional derivative is a newly defined
fractional derivative which is generally defined as

PDα f (t) = K1 (α, t) f (t)+K0 (α, t) f ′ (t) , (1)

where the functions K0 and K1 satisfy certain properties in terms of limit [1], and f is
a differentiable function. Notice that this derivative can be regarded as an extension
of a conformable derivative and is used in control theory.
In this study we focus on obtaining the solution of the following fractional diffusion
equation including various proportional derivative operators by making use of the
separation of variables method:

PD
α

t u(x, t) = uxx (x, t)+Bux (x, t)−Cu(x, t;) , (2)

u(0, t) = u(l, t;) = 0, (3)

u(x,0) = f (x)e−
B
2 x (4)

where 0 < α < 1,0 ≤ x ≤ l,0 ≤ t ≤ T, B,C ∈R. Here we use the following forms of
the proportional derivatives:

PDα f (t) = K1 (α) f (t)+K0 (α) f ′ (t) . (5)

We especially consider the following ones:

P
1 D

α
f (t) = (1−α) f (t)+α f ′ (t) (6)

and

P
2 D

α
f (t) =

(
1−α

2) f (t)+α
2 f ′ (t) . (7)

From a physical perspective, the intrinsic nature of the physical system can be
reflected to the mathematical model of the system by using fractional derivatives.
Therefore the solution of the fractional mathematical model is in excellent agree-
ment with the predictions and experimental measurement of it. The systems whose
behaviour is non-local can be modelled better by fractional mathematical models,
and the degree of its non-locality can be arranged by the order of a fractional deriva-
tive. In order to analyze the diffusion in a non-homogenous medium that has memory
effects, it is better to analyze the solution of the fractional mathematical model for
this diffusion. As a result, in order to model a process, the correct choices of a frac-
tional derivative and its order must be determined.

In this study, the local fractional derivative is used to model diffusion problems,
since models including local fractional derivatives gives better results than models in-
cluding integer order derivatives. In the mathematical modelling of a diffusion prob-
lem for different matters such as liquid, gas and temperature, the suitable fractional
order α is chosen, since the diffusion coefficient γ

2 depends on the order α of a frac-
tional derivative [2]. This mathematical modelling describes the behaviour of matter
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in a phase. There are many published works on the diffusion of various matters in sci-
ence, especially in fluid mechanics and gas dynamics [3–20]. From this aspect, anal-
ysis of this problem plays an important role in application. Moreover, sub-diffusion
cases for which 0 < α < 1 are under consideration. The solution of the fractional
mathematical model of sub-diffusion cases behaves much slower than the solution of
the integer-order mathematical model unlike the fractional mathematical model for
super-diffusion.

2. Main results

Let us consider the following problem including the proportional derivative in (6)

PD
α

t u(x, t) = uxx (x, t)+Bux (x, t)−Cu(x, t;) , (8)

u(0, t) = u(l, t;) = 0, (9)

u(x,0) = f (x)e−
B
2 x (10)

where 0 < α < 1,0 ≤ x ≤ l, 0 ≤ t ≤ T,B,C ∈ R. The analytic form of the solution
for the problem (8)-(10) is established by employing the well known separation of
variables method.

u(x, t;α) = X(x) T (t;α) (11)

where 0 ≤ x ≤ l,0 ≤ t ≤ T .
Utilizing (11) in (8) and rearranging them leads to the following:

PDα

t (T (t;α))

T (t;α)
+C =

X ′′ (x)+BX ′ (x)
X (x)

=−λ
2. (12)

Taking the right hand side of equation (12) and related boundary conditions (9) into
account, the following problem is obtained:

X ′′ (x)+BX ′ (x)+λX (x) = 0, (13)

X (0) = X (l) = 0. (14)

which has the solution X (x) = erx. As a result, the following characteristic equation
is reached r2 +Br+λ = 0.
Case 1. If B2 − 4λ > 0, the solutions of the characteristic equation are two distinct
real roots r1 ̸= r2 which allows us to obtain the solution of the problem (13)-(14) as
X (x) = c1er1x + c2er2x. The first boundary condition yields X (0) = 0 = c1 + c2 =⇒
c1 =−c2. Similarly, the second boundary condition leads to X (l) = c1

(
er1l − er2l

)
=

0 =⇒ c1 = 0,c2 = 0 which implies that X (x) = 0 which implies that there is no solu-
tion for B2 −4λ > 0.
Case 2. If B2 − 4λ = 0, the solutions of the characteristic equation are two
coincident real roots r1,r2 which leads to the solution of the problem (13)-(14) as
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X (x) = c1er1x + c1er2x. By making use of the first boundary condition, we have
X (0) = c1 = 0. Similarly, the second boundary condition leads to X (l) = c2ler1l =⇒
c2 = 0 which implies that X (x) = 0 which implies that there is no solution for
B2 −4λ = 0.
Case 3. If B2 −4λ < 0, the solutions of the characteristic equation are two complex
roots which leads to the solution of the problem (13)-(14) as

X (x) = e−
B
2 x

(
k1 cos

(√
4λ −B2

2
x

)
+ ik2 sin

(√
4λ −B2

2
x

))
. By making use of

the first boundary condition, we have X (0) = k1 = 0. Similarly, the last boundary

condition leads to X (l) = e−
B
2 lik2 sin

(√
4λ −B2

2
l

)
= 0, which implies that

sin

(√
4λ −B2

2
l

)
= 0, which yields the following eigenvalues

λn (β ) =
4w2

n +B2l2

4l2 =
4w2

n +(Bl)2

(2l)2 ,n = 0,1,2,3, . . . ,λ1 < λ2 < λ3 < .. . (15)

where wn = nπ, n = 0,1,2,3, . . . satisfy the equation

sin(wn) = sin

(√
4λn −B2

2
l

)
= 0.

As a result, the solution is obtained as follows:

Xn (x) = sin
(

wn

(x
l

))
e−

B
2 x,n = 1,2,3, . . . (16)

The second equation in (12) for eigenvalue λn yields the ordinary differential equation
below:

PDα

t (T (t;α))

T (t;α)
=−(C+λ ),

K1 (α) Tn (t;α)+K0 (α)T ′
n (t;α)

Tn (t;α)
=−(C+λ ),

K0 (α)T ′
n (t;α)+(C+λ +K1 (α))Tn (t;α) = 0, (17)

which yields the following solution

Tn (t;α) = exp
(
−C+λ +K1 (α)

K0 (α)
t
)
,n = 0,1,2,3, . . . (18)

The solution for every eigenvalue λn is constructed as

un (x, t;α) = Xn (x)Tn (t;α)

= exp
(
−C+λ +K1 (α)

K0 (α)
t
)

sin
(

wn

(x
l

))
e−

B
2 x,n = 0,1,2,3, . . . (19)
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which leads to the following general solution

u(x, t;α) =
∞

∑
n=1

Ane−
B
2 x sin

(
wn

(x
l

))
exp
(
−C+λ +K1 (α)

K0 (α)
t
)
. (20)

Note that it satisfies the boundary condition and fractional differential equation.
The coefficients of the general solution are established by taking the following initial
condition into account:

u(x,0) = f (x)e−
B
2 x =

∞

∑
n=1

Ane−
B
2 x sin

(
wn

(x
l

))
. (21)

The coefficients An for n = 1,2,3, . . . determined by the help of inner product with

a weighted function defined on L2[0, l] as < u,v >=
2
l

∫ l

0
u(x)v(x)eBxdx:

An =
2
l
< e−

B
2 x sin

(
wn

(x
l

))
, f (x)e−

B
2 x > .

=
2
l

∫ l

0
sin
(

wn

(x
l

))
e−

B
2 x f (x)e−

B
2 xeBxdx.

=
2
l

∫ l

0
sin
(nπx

l

)
f (x)dx. (22)

3. Illustrative example

Let the following mathematical problem be considered:

ut = uxx +ux −u,

u(0, t) = 0, u(2, t) = 0,

u(x,0) =−sin(πx)e−
1
2 x (23)

whose solution is given in the following form:

u(x, t) =−e−
1
2 x sin(πx)e−(π2+ 5

4)t (24)

where 0 ≤ x ≤ 2,0 ≤ t ≤ T .
Example 1. Now the following time fractional form of above problem is taken into
account:

P
1 D

α

t u(x, t) = uxx (x, t)+ux (x, t)−u(x, t) , (25)

u(0, t) = u(2, t) = 0, (26)

u(x,0) = sin(πx)e−
1
2 x (27)
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where 0 < α < 1,0 ≤ x ≤ 2, 0 ≤ t ≤ T . It is clear from Eq. (20) that the solution of
the above problem can be obtained in the following form:

u(x, t;α) =
∞

∑
n=1

Ane−
1
2 x sin

(
wn

( x
2

))
exp

(
−

1+ w2
n+1
4 +1−α

α
t

)
(28)

where wn = nπ . Plugging t = 0 into the general solution (28) and making it equal to
the initial condition (27), we have

−sin(πx)e−
1
2 x =

∞

∑
n=1

Ane−
1
2 x sin

(
wn

( x
2

))
. (29)

The coefficients An for n = 1,2,3, . . . are determined by the help of the inner product
as follows:

An =
2
l
< sin

(
wn

( x
2

))
e−

1
2 x,−sin(πx)e−

1
2 x >

=
∫ 2

0
sin
(

wn

( x
2

))
e−

1
2 x (−sin(πx))e−

1
2 xexdx.

For n ̸= 2, An = 0. n = 2 we get

A2 =−
∫ 2

0
sin2 (πx)dx =−1. (30)

Thus

u(x, t;α) = e−
1
2 x sin(πx)exp

(
−

1+ 4π2+1
4 +1−α

α
t

)
. (31)

The accuracy of the obtained solution is checked by substituting α = 1 into (31),
which leads to the solution of the problem (24).
Example 2. Now the following time fractional form of above problem is taken into
consideration:

P
2 D

α

t u(x, t) = uxx (x, t)+ux (x, t)−u(x, t) , (32)

u(0, t) = u(2, t) = 0, (33)

u(x,0) = sin(πx)e−
1
2 x (34)

where 0 < α < 1,0 ≤ x ≤ 2, 0 ≤ t ≤ T . It is clear from Eq. (20) that the solution of
the above problem can be obtained in the following form:

u(x, t;α) =
∞

∑
n=1

Ane−
1
2 x sin

(
wn

( x
2

))
exp

(
−

1+ 4π2+1
4 +1−α2

α2 t

)
. (35)
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Fig. 1. The graphics of solutions for Ex. 1 and Ex. 2 in 2D at x = 0.1 for α = 0.8

As in Example 1, after similar computations, the solution can be constructed
as follows:

u(x, t;α) = e−
1
2 x sin(πx)exp

(
−

1+ 4π2+1
4 +1−α2

α2 t

)
. (36)

The graphics of solutions for Ex.1, Ex. 2 and Problem (23) in 2D and 3D are given
in Figures 1 and 2 respectively.

4. Conclusion

In this study, the analytic solution of time fractional diffusion problem including
local fractional derivatives in one dimension is constructed analytically in Fourier
series form. Taking the separation of variables into account, the solution is formed
in the form of a Fourier series with respect to the eigenfunctions of a corresponding
Sturm-Liouville eigenvalue problem.

Based on the analytic solution, we reach the conclusion that diffusion processes
decays exponentially in time until initial condition is reached. As α tends to 0, the
rate of decaying increases. This implies that in the mathematical model for diffusion
of the matter, which has a small diffusion rate, the value of α must be close to 0.
This model can account for various diffusion processes of various methods.
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Fig. 2. The graphics of solutions for Ex. 1 and Ex. 2 in 3D for α = 0.8

References

[1] Baleanu, D., Fernandez, A., & Akgul, A. (2020). On a fractional operator combining propor-
tional and classical differintegrals. Mathematics, 8(360).

[2] Bisquert, J. (2005). Interpretation of a fractional diffusion equation with nonconserved probabil-
ity density in terms of experimental systems with trapping or recombination. Physical Review E,
72, 011109.

[3] Sene, N. (2019). Solutions of fractional diffusion equations and Cattaneo-Hristov diffusion
model. International Journal of Analysis and Applications, 17(2), 191-207.

[4] Aguilar, J.F.G., & Hernández, M.M. (2014). Space-time fractional diffusion-advection equation
with Caputo derivative. Abstract and Applied Analysis, 2014, Article ID 283019.

[5] Naber, M. (2004). Distributed order fractional sub-diffusion. Fractals, 12(1), 23-32.
[6] Nadal, E., Abisset-Chavanne, E., Cueto, E., & Chinesta, F. (2018). On the physical interpretation

of fractional diffusion. Comptes Rendus Mecanique, 346, 581-589.
[7] Zhang, W., & Yi, M. (2016). Sturm-Liouville problem and numerical method of fractional

diffusion equation on fractals. Advances in Difference Equations, 2016(217).
[8] Qureshi, S., Yusuf, A., & Aziz, S. (2021). Fractional numerical dynamics for the logistic pop-

ulation growth model under Conformable Caputo: a case study with real observations. Physica
Scripta, 96(11).

[9] Qureshi, S. (2020). Real life application of Caputo fractional derivative for measles epidemio-
logical autonomous dynamical system. Chaos, Solitons & Fractals, 134, 109744.

[10] Arqub, O.A., & Shawagfeh, N. (2019). Application of reproducing kernel algorithm for solving
Dirichlet time-fractional diffusion-Gordon types equations in porous media. Journal of Porous
Media, 22(4), 411-434.



Diffusion equation including a local fractional derivative and weighted inner product 27

[11] Arqub, O.A., & Al-Smadi, M. (2020). An adaptive numerical approach for the solutions of
fractional advection-diffusion and dispersion equations in singular case under Riesz’s derivative
operator. Physica A: Statistical Mechanics and its Applications, 540, 123257(1-13).

[12] Arqub, O.A., & Al-Smadi, M. (2020). Numerical solutions of Riesz fractional diffusion and
advection-dispersion equations in porous media using iterative reproducing kernel algorithm.
Journal of Porous Media, 23(8), 783-804.

[13] Djennadi, S., Shawagfeh, N., & Arqub, O.A. (2021). A fractional Tikhonov regularization
method for an inverse backward and source problems in the time-space fractional diffusion equa-
tions. Chaos, Solitons & Fractals, 150, 111127.

[14] Yusuf, A., Aliyu, A.I. & Hashemi, M.S. (2018). Soliton solutions, stability analysis and con-
servation laws for the brusselator reaction diffusion model with time-and constant-dependent
coefficients. The European Physical Journal Plus, 133(5), 1-11.

[15] Yusuf, A., & Bayram, M. (2019). Invariant and simulation analysis to the time fractional
Abrahams-Tsuneto reaction diffusion system. Physica Scripta, 94(12), 125005.
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