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INTRODUCTION

The book can be treated as a set of contributions to the estimation
of a vector of the averages of variables in a finite population. The methods
presented are not only a simple generalisation of the well known problems
on amultidimensional case but alot of them can be treated as original ones.

Particularly, several sampling strategies dependent on auxiliary
variables are proposed. The problems of optimising a sample size are
considered in detail for stratified and two-stage sampling designs in the case
when more than one average in a population is estimated. The well known
discrimination and clustering methods and their modifications are used
for optimal dratification or clustering of a fixed population. Solutions
obtained here can be useful in optimisation of estimation on the basis
of adouble sample.

The book presents some contributions to interpretations of the
following measures of accuracy of vector estimators. the generalised
variance, the mean radius and spectral radius defined as a determinant, the
trace and the maximal eigenvalue of the variance-covariance matrix,
respectively. Some definitions and theorems, known in a one-dimensional
case are extended to the vector estimation case. They let us compare the
accuracy of vector estimators. The properties of sampling designs and
sampling schemes depend on the parameters of auxiliary variables like the
sample generalised variance, the squared difference between the sample mean
and the population mean are considered. The approximate expressions of the
variance of the Horovitz-Thompson estimator of the mean value are derived
for these sampling designs. The unbiased estimators of the generalised
variance are found in the cases when the smple sample is drawn with as well
as without replacement.

The basic properties of the vector of the regression estimators
are derived. It is proven that the vector of regression estimators is efficient
in the class of the vector of the difference estimators in the case of a smple
sample.

Let the double sample consist of the following two samples: the first
one is a simple sample drawn without replacement from a population, the
other one is a'so a simple sample but selected from the first sample. Several
problems concerning the optimisation of determining the size of the above
two samples are formulated and solved. The square risk function (or the
generalised variance of the vector of the regression estimators) is minimised
under the fixed total cost of observation of variables in the double sample.
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Next, the cost function is minimised under the fixed variances of the
regression estimators of the means of particular variables either under
the fixed value of the generalised variance of the vector estimators or under
the fixed square risk function.

Similar optimisation problems are formulated and solved to determine
the sizes of a stratified sample or a two-stage one. Moreover, the sizes
of the samples drawn from given strata are determined through minimisation
of the spectral radius of the vector of the sample means under the fixed total
cost of observations of variables in the sample. It is shown that in the case
of the proportional allocation of the sample in the strata, the mean vector
of the dratified sample means is not less accurate than the mean vector
of the simple sample means.

The multidimensional auxiliary variables are used to dtratify
a population. Strata can be obtained on the basis of the well known cluster
method by Ward or the k-mean method or their modifications. For instance,
in the case of the regressive superpopulation, the strata are selected through
minimisation of the spectral radius of the intra-strata variance-covariance
matrix of auxiliary variables.

A new class of classification estimators is proposed. They are
constructed as linear combinations of sample means from sub-samples
determined after a sample selection. The weights of this combination
are functions of sizes of subsets of a population determined by some
classification procedures. This method can be explained as a procedure
of stratifying a population after a sample selection on the basis of the auxiliary
variable observed in the population and in the sample.

The properties of the mean vector from the cluster sample
are studied. Its variance-covariance matrix is expressed as a function of the
introduced matrix of the coefficients of the intra-cluster correlation. It is
proven that the vector of the cluster means is not a less accurate estimator
of the vector of population averages than the vector of the simple sample
means when the matrix of the coefficients of the intra-cluster correlation
is defined as non-positive. A new method of dividing a fixed and finite
population into groups of the same size on the basis of a multidimensional
auxiliary variableis proposed. This method maximises the intra-cluster scatter
of the observations of a multidimensional auxiliary variable.

The book can be treated as lecture notes. The readership consist
of undergraduate statistics students, statisticians interested in survey
sampling methods.



I. FOUNDATION OF SAMPLING STRATEGIES

1.1. Fixed population approach

Let us introduce the following notation: A finipepulation is a col-
lection of N unitQ={wy,.... LN}, Wwhere N <o, and N is called the size of the
population. The units of a finite population aréds® be identifiable if they
can be labeled from 1 to N and the label of eaghisiknown, see e.g. Cas-
sel, Sarndal and Wretman (1977). The label k remissthe unitowy
of a population and that is why a population candemoted as the set
of the natural number§2={1,2,...N}.

An m-dimensional variable is denoted ys3{y;...y] and its observa-
tions are columns of the matrpe[y;], i=1,...,N, j=1,....m, where;yis the
value of the j-th variable attached to the i-thtuni

Definition 1.1: The matrixy is called a parameter of the population
if to each unitQ is attached the i-th row of the matyix

The space of the population paramegeis denoted byWORM™.
The vector of auxiliary variables will be denotetXs{x,....x,} and the ma-
trix of their observations bw=[x;] of dimensions Mp. The matrixy
as well asx are the parameters of a population. ¥gtbe the j-th column
of the matrixy andy;- be the i-th row of this matrix.

Definition 1.2: Any parametric functior®: Y - ©OR™, such that
0=6i(y), i=1,....m is called parametric function or thector of described
parameters.

The set of possible values of the vector is denbte® and called
the space of described parameter vector. The etsnaérthe vecto® cha-
racterize properties of variables. The followingctees of described para-
meters are frequently used in statistical research:

The vector of mean values is denotedyby[y,..¥ 1", where:

y=N7y'J, (1.1)

wherely is the unit column vector of dimensions N
The vector of the totals of variables is as fokow

y =Ny (1.2)

The matrix of variances and covariances of vagislill be denoted
by C.(y)=[c+] (t,j=1,...,m), where:
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ey, ¥) === X0, =50 -7) L3)

i=1

Particularly, the variance of a variablge is defined by the expression
V= (Y))=C(Y;, ¥i)-

The correlation matrix will be denoted bR = R(y) = [ry]
(t,j=1,...,m), where:

_ (Y. Y)) (1.4)

r[j —_—
\jVD(% )VD(yJ‘ )

Definition 1.3: Let us define the mean radius of an m-dimensional
variable as the square root of the trace of vadgammyvariance matrix:

e (y) = JrC{y) (1.5)

The parameter(y) is the square root of the mean of the squared
distances among the points whose co-ordinates @qual €0 appropriate
observations of variables from the point whose hrates are equal to
the averages of those variables

Definition 1.4: [Wilks (1932)]: The generalized variance of an
m-dimensional variable is equal to the determimdrhe variance-covariance
matrix. Hence:

9) = detC-(y)) (1.6)

From the geometrical point of view the generalizadance can be
interpreted in several ways. L&t =y - Jy Y be the vector of the scores.

Theorem 1.1:[Anderson (1958), p. 167]The generalized variance
g(y) is proportional to the squared volume of the Wel@gram spanned
on vectors, all attached to the origin paiqt The ends of these vectors are
in the appropriate points;,... e, in an N-dimensional space.

Let m(y;.,....y; .,y; .)be the volume (measure) of the m-dimensional
parallelogram spanned on the vectors which areattdiched to the point
y; ., and the ends of this vectors are in the appr@ppaintsy; .,....y; ..

This volume is determined by the equation

MY Y o) =(det 1.7)

! See, e.g. Borsuk (1969).
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Let m(y.,....y; -,Y) be the volume (measure) of the m-dimensional paral

lelogram spanned on the vectors which are all la¢tddo the pointy and
their ends are in the pointg; .,....y; .. Anderson (1958), p. 168-170, proved

the following property.

Theorem 1.2: The generalized variancew(is proportional to the
following sum of squared volumes spanned on theovecwhich are all
attached to the poiny and whose ends have co-ordinates which are appro-

priate m-element combinations of rows of the matrix
aly)= N"“{i ;im} mz(yil*,...yim* ,y) (1.8)

Theorem 1.3: [Wywiat (1992a)]: The generalized variancey)gis
proportional to the following sum of squared volw®panned on the (m+1)
points whose co-ordinates are (m+1) - element coatinins of rows of the
matrixy:

gy) =N T MY e, Yo, (1.9)

Tyl maa}

Hence, the generalized variance can be used a®diicient meas-
uring the scatter of observations of a multidimenal variable. When
g(y) = 0, all observations of an m-dimensional vagaate on not more than
(m-1)-dimensional hyperplane, see, e.g. Andersébg)L

Let A; (j=1,...m) be the eigenvalues of the varianceaciance
matrix C«(y) andA; = A, = ..=> A,,. On the basis of the well known properties

of principal components, we know that ﬁe(ty)=|m|)\i >0. Then, for each
i=1

value A; there exists such an (m-1)-dimensional hyperplane
HO kznj‘iaf(”xk =0 that the mean of squared distances of the peimtg.-y
(i=1,..N) from H?, is equal toA;. In the case wheN>0, for j=1,..., ng-1

and Aj=0 for j=my, my+1,..,m, pointse. (i=1,..,N) are on the (l)-
dimensional hyperplane. Particularly Aif, = 0 andA,,.:>0, then all point®

are on the hyperplang ™ .

The paramete); is equal to the variance of the j-th principal eom
ponent. The values of this principal componentsdatermined by the equa-

tion: u; =a’e! (i=1,...,N), where:a? =[a{” ..a?] anda®(C:(y)-Im\j)=Om.
Hence,a? is the eigenvector of th@.. The j-th principal component will be
denoted bwj:[ulj...LN,-]T. From the geometrical point of view, the principal

components are obtained through such a rotaticcoofdinates' system that
entire variables are transformed into orthogona&soealled principal compo-

nents. The vecton,\,l;j is perpendicular to,u; (j#t=1,...,m). This leads
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m

us to the equationdetC(y) = []A; - Then we can infer that the generalized
=1

variance is equal to the squared m-dimensionalmelof the parallelogram

spanned on the vectorstJj (j=1,...,m). The length of the j-th principal

component is equal tg/)\_j.
The square root of the maximal eigenvalueof the covariance
matrix C«(y) is called the spectral radfusop(y) = \/)\_1

Letz = [z....z]" be the vector of the observations of the variable
The vectorz is the linear combination of the columns of thanray and letb
= [by...by]" be the vector of coefficients of this combinatiand b'™b = 1.
Hence,z = yb. Hence, the variance of the variablis as follows:

V() =b"C.(y)b (1.10)
The well known properties of square forms allovgsta conclude
that:
v(z,) =b!C. (y)b, =maximum{b C. (y)b} =A, (1.11)
bszl

where z; is the variable whose observations are expresgeithed transfor-
mation: z;=yb;. Hence, the spectral radius of the maf@ix is equal to a

standard deviatioq/vizii of the variable whose values are the linear combi-

nations of the data matrix The coefficients of this combination are the ele-
ments of such a vectby that the variance ) takes the maximal value.

Let us consider the following example. The popatatonsists of N
households. Let;y(i=1,...,N;j=1,...,m) be the quantity of the jgiood which
is bought by the i-th household. The prices oféhgsods are elements of the
vector:p=[p....px]". The vector of the standardized priteis determined by
the equationb = a™p, wherea? = p'p. Let us suppose thai>0. We say that
b, is the worst standardized price vector if the atace of the household
expenditurez; = yb; takes the value which is not less than variandeioéd
for another standardized pribe Moreover,

v(z) = v(yb,) = a*v(yp,) = a,*v(w)

where: a? =p/p,, andw; is the variable whose values are elements of the
vector w;=yp;. The elements of wdetermine the households expenditure
under the worst price vectpy = ab;. Hence, the standard deviatiQ,‘;(Z)

can be treated as a specific coefficient of variatf the expenditure distribu-
tion because it is the ratio of the standard dmriat/ viw, ) and the lengtlr,

of the price vectop;.

% see e.g. Ralstona (1975)
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1.2. Superpopulation model

Let us assume that the population paramgtés an observation
of the random matrixy = [Y;] (i=1,...,N; j=1,...,m). Hence, the space
of the parametey becomes the sample space of the random matrix
Let Ff) be the distribution function of the random mafi

Definition 1.5: [Cassel et al. (1977)By a “superpopulation mod-
el”, or simply a “model”, we shall mean a specifieet of conditions that de-
fine a class of distribution functions to whicty)}-{s assumed to belong.

The expected value, variance and covariance aftindom matrixy
are denoted bi(.), D¥.) andCov(.), respectively and particularly:

E(Yy) =1y, DA(Yy) =E(Yj - py)° = 0%
Cov(Yij, Yi) = E(Yij = Mij) (Yt - i) = Oii jt

LetY = [Yu...Ysn], where Y.\ = [Yy;...Yy] (5=1,...,m). An outcomg; of the
random vectolYs can be treated as an observation of the j-th biridn the
one-dimensional case the transformation superptipnlés as follows, see
e.g. Cassel et al. (1977). In the case of a j-tiekike, the superpopulation
model is determined by the distribution functions; (¥ las,b4,1,0,p)
(j=1,...,m). The elements of the vectas[alj...mj]T (8%0 for each pair i,j)
andb*jz[blj...b\,j]T are parameters of the following transformation:

U =—"—3i=1,..N (1.12)

The parameters of the elements of the vetigr= [Ulj...UN,-]T are given
by the expressions:

E(Uij) =M, DZ(Uij) = 02, COV(Uij,Ukj) = p02 (1.13)

where:
-(N-1)*<p<1 (1.14)

This and the expression (1.12) lead to the follgwne:

E(Yj) = ajjl +bj
D2(Y;) = a”?oz (1.15)
ol Yij, Yig) = g ay;pa”
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The generalization of this model on the m-dimemaicuperpopula-
tion model denoted byds as follows: let B((a,b,u,0,p) be the distribution
function of the random matriX, where:a=[a-;...a«n] andb = [bs;...b«y]. The
elements of the random mattix = [U;] (i=1,...,N;j=1,...,m) are determined
by the equation (1.12). The parameters of the elesnef the matrixJ are
determined by the expression (1.13) and the foligwéne for j, t=1,...,m,
izk=1,...,N:

{COV(U“ RIKR 022 : . (1.16)
Cov(U;,U,,) =po” dla i#zk oraz j#t

The parameters of the random matrbare shown by the expression (1.15)
and for j,t=1,...,m#k=1,...,N, by the following one:

{COV(Y“',Y“) = ajaitpjto-2 (117)

Cov(Y;,Y,) = ga,.p0” dla izk, j#t

Let R=[p;] be the correlation matrix for the random vectors
Up=[Ui1...Upn], where: i=1,...,N. LetP=pJ J| and U.=[U;« ... Un<]". The
expressions (1.13) and (1.16) allows us to infat the correlation matriR-

of the vectorU. is of and degree Nm and is determined by the vidtig
equation:

R P ..P

PR ..P
Ry=

PP ..R

Theorem 1.4 [Wywiat (1992)]: If detR«)>0, the coefficient
of correlationp fulfils the following inequalities:

1 1
- <ps<

(N-13aTRJ,, JIRJ,,

(1.18)

and particularly for m=1 these inequality are restlito this given by the ex-
pression (1.14).

Proof: The determinant of the matrix can be written ia tbllowing
way (see e.g. Rao (1982)):

detR ) = det"*(R - P)detR + (N -1)P)
The characteristic equatiatetR ;- «l ;) = 0 can be rewritten as follows:

det"*(R-P -kl )detR+(N-)P -kl )=0
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On the basis of the equatimhat(A +bb’ )= (1+ bTA'lb)det(A) we have:
detR + (N -1)P) = defR + (N -1)pJ, J7.)>0

(H (N-DpJ ] R'lJm)det(R) >0

This leads to the first inequality of the expreasf®.18). Under the assump-
tion thatp=0 we have:

detR - P) = defR +(iy/pd)(iy/p3"))> 0

where f=-1,
[i-paTR ™3, )detR) >0

This result leads to the second inequality in thpression (1.18). The as-
sumption thap<0 leads to the same result.

Let us notice that the particular case of thedfi@emmation model al-
lows us to consider the stratified superpopulatidioreover, if we assume
that for each i=1,...,N and j=1,...,m; b 0, and g1, andp = 0O, the super-
population model becomes the simple statisticalptamwhich is well known
in classical statistical inference.

Let us assume that the matix= [x;] (i=1,...N: t=1,...p) which con-
sists of observations of a p-dimensional auxiliargriable: x=[x;...X]
in a population, is available. We introduce theldming notation:

XT=’x}...xL*] where  xs=[Xi..%] and  X=[x«q..Xs], where

xIt =[Xgt...Xnt]- If we assume thah=0, then, on the basis of the expres-
sions 1.12-1.15, we have:

E(Yy) = by =X B; (1.19)
for each i=1,...N; j=1,...,m, whe(§ = [Blj...Bp,-]T is the vector of parameters
of the linear regression. This regression expltiasscatter of the j-the varia-
ble Y4 by means of the auxiliary variables. This defanitieads to the fol-
lowing results

E(Y) =b =XB (1.20)

where:B = [B1...Bn].
Let U=Y-E(Y) be the residual matrix. Hence:

Y=XB+U (1.21)
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This model is called regression (superpopulatiomdeh see e.g. Royall
(1970). The central moments of the second ordé¢heklements of the ma-
trix Y are determined by the expressions (1.15) and X1LET us note that
they depend on factorg &=1,....,m; j=1,...,N) which are usually deterniine
by functions of auxiliary variables.

1.3. Sampling designs and schemes

Let us introduce the following definition, see.eG@assel et al (1977).

Definition 1.6: A sequence s={k...,k}, such that K1Q, for i=1,...,n
is called an ordered sample of fixed size n. TH&SsEQ) of all sequence s
is denoted b¥.

Definition 1.7: The number of a distinct elements of a sequence s
is denoted by ¥ n and called the effective sample size.

Omitting the repetitions in the sequence s, wed=fine a set s cor-
responding tQ s:

s={k:kOs} (1.22)

Definition 1.8: A nonemptyset s such that X2 is called an unor-
dered sample. The number of elements of s is tfextefe sample size.
The set of all sets s is denoteddy

Definition 1.9: The function P(s) orS, satisfying the following
properties

P(s)=0forall 1S and X P(s)=1, (1.23)
S

is called an ordered sampling design.
Definition 1.10: The function P(s) orS, satisfying the following
properties:

P(s)= 0 for all 1S and xP(s)=1, (1.24)
€S

is called an unordered sampling design.
Let us introduce the following set:

Alky,....k) ={s: k Os, dlai=1,...,r}

Definition 1.11: The probability of selecting the fixed unitg .k, k
to a sample s is called inclusion probability oflerr and denoted by i -

It is determined by the expression:

Tk = Y. PO (1.25)

P

DA (K k,)
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Similarly, we can define the inclusion probabilitya sequence case.
The sampling design of the simple and ordered Eafpis as fol-
lows:

L Pe=N (1.26)

€5
Pi(s) is the sampling design of the simple samplevdnaith replacement.
LetS.O_S. Let 1S, if and only if the size of a sample s is the effe
tive sample size. Hencg; consists of all ordered samples without any repe-
titions.
The sampling design of the simple and ordered kamih a fixed
effective size Ris as follows:

Y ] (1.27)

ER=H N!

The sampling design of the simple and unorderexpkais deter-
mined by the expression:

|: P,©) =ﬁ (1.28)

n

The inclusion probabilities of the first order fitne sampling designs
P, and R are as follows:

m?=n®=— fori=1,..N (1.29)

n
N
and in the case of the sampling design P

n® =1-@-N™", fori=1,...,N (1.30)

The inclusion probabilities of the second order foe sampling
designs Pand R are determined by the expression:

n® = =M, for i#j=1,...,N (1.31)
N(N -1)

Let us note that Czerniak (1971) derived the iriolusprobabilities
of the second order for the sampling designThe inclusion probabilities
of the order r<n for the sampling designsaRd B were derived by Herzel
(1986).
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The sampling design is a draw-by draw mechanismsédecting
units such that there is a predetermined set et8eh probabilities for each
unit in each draw. A sampling scheme is said tolémgent a given design
P(s) or P(s) if the draw-by-draw mechanism repredube probabilities P(s)
or P(s).

The set of probabilities implementing a samplingide is defined
in the following way. Let p( be the probability of selecting a fixed
population element.kto a sample. The conditional probability of salegt
the fixed population element; ko a sample, provided that the elements:
ki1,....ke have just been selected to this sample, is ddrimte

p(kllkll ,...,l@_) p(ki_l,.__,kl) (132)

where k=1,...,N for i=1,...,n. The defined probabilitiegfill the equation:

n

p(kl)l_l p(ki |ki—1""’k1): F(§)

N

where: k=1,...,N and i=1,...,n.
The inclusion probability can be determined on thasis
of the following formula:

_ . n
Mok = (n-r)!

p(k,,...k,) (1.33)

Particularly, in the case of the sampling designs
p(klKi1 ....k)=p(k)=N"*for i=1,...,n and k1,...,N
In the case of the designg &t P

p(k)=N"*for k=1,...,N

p(K; Ky k) = fori=2,...,n and k1,...,N

1
N-i+1

Theorem 1.5[T.V.H. Rao (1962)]: For any given design_P(s)
there exists at least one sampling design thateimehts P(s).
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1.4. Data and statistics

Let us remind you that a population parameterhis matrix y
of dimensions Mm. Each row of this matrix is a function of an eterhof
a population. Each column of the matyixs treated as a set of observations
of a character (variable) of the population. Altighales can be treated as an
m-dimensional one.

After observation of values attached to elemenis, kve obtain the
outcome of the m-dimensional variable denoted &s ftllowing vector:
Yie=[Yia.--Yml- Let ys be the matrix of dimensions<m. It consists of the
rows: y, . =[Yy;--Y«ml, where i=1,...,n and s={k..,k}}. Hence:

Y,

The following definitions are introduced as genierat) the appropriate defi-
nitions by Cassel et al (1977) on a multidimensiaase

Definition 1.12: The pair:D = (S,ys) or D = (S,ys) are the data
of a multidimensional variable obtained through thleservations of its
outcomes in a sequence s or s, respectively.

The unlabeled data are denoted Yoy and ys in the sequence
and set cases, respectively. They can be obtaingdlébeled dat® andD.

The data can be treated as outcomes of a multidiioreal random
variable. The sample spaces of the random varlat@edD, taking value
andD, are as follows:

D={D: sUUS, YUY}, D={D: s1S, YOY}

whereYOR" is the space of a population parameter.
Definition 1.13: Statistic Z=uD) is a function on suctD that,
for any given 8IS, u(.), depends olY only through thosgy for which Kls.
The statistic in the set case is defined similarly

1.5. Strategies
1.5.1. The fixed population approach

The estimation problem of a vector of parametrimction:
0=[6,...6,]0O is being considered. It is estimated on the bakith® data
d = (s, ys) which is an outcome of the random mafdix (S, ys) determined
by the definition 1.12. The probability distributief the matrixD depends
on the population parametgiand on the sampling design.
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A vector of statistic$p=[tp;...tom] Will be called an estimator of de-
scribing parameter80 O, if tp takes values from the spa@ Similarly,
the estimatortp as a function of the dat@ from an ordered sample S

can be defined. The symbdls tp can be replaced hy, ts. The estimator

ts is a random variable because it depends on tidoma sample S whilg
is a value of the statistig. The valuets is determined by the data observed
in an outcome s of the random sample S.

For example the vector of population averagesl[y, ..y, ] can
be estimated by means of the vector of sample geergs =[Vq .. VYsm | -
where:

_ 1
Yis == 2. Y

N ks

Hence, an estimate of a parameter veBtdepends on the estimator
and sampling design. These two elements determsaengling strategy.
Definition 1.14: [Cassel et al. (1977)An ordered pair of an estima-

tor and a sampling desigts,(P(s)) or(tS ,P@)) is called the sampling strate-

gy of a parameter vectd.

For example let P(s)=f), where the sampling desigp($ is de-
termined by the equation (1.28). In this case #mming strategy ¥ ,Ps(S))
is called the vector of simple sample means.

The vector of estimation errors is as follows:

B =B(t, 8) = ts- 0 (1.34)

Definition 1.15: The pair {s,P(s)} is an unbiased strategy of the pa-
rameter vecto®=0(Y) if and only if:

%E(ts) =>t.P) =9 (1.35)

Definition 1.16: The pair {s,P(s)) is a consistent strategy of the pa-
rameter vecto®=0(Y) if and only ift,=0(y) for eachyOY.

The vector of simple sample meang( Ps(s)) is an unbiased
and consistent sampling strategy for a vector opufation means
V=59, 1.

Letl ., be the unit matrix of degree m and ¢gtbe the column vector
of all its m elements equal to zero. lfetbe a matrix of dimensions»m, let
b be a row vector of dimensionsrh and letly be a column vector of dimen-
sions N1, each element of the vectdy being equal to one. L& andD'

be data dependent on population parametersdy’, respectively. Moreover,
let y'=yA+Jyb.
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Definition 1.17: A vector estimatoty, is linear invariant if and only
if y' =yA +J,b and for each outcomel andd of dataD’ andD, respective-
ly, it is®:

tg =b +t4A (1.36)

The vector estimatdy, is origin invariant ifA=I ,, andb#o,,,. The vector esti-
matortp is scale invariant if the matriX is diagonal with positive diagonal
elements and=oy,.

The matrix of the second mixed moments of estimaterrors
is denoted by sx(t9)=Vsx(ts)=E(B"B)=[E(BiB;)], where:

E(BBy) = %:S(tis =6,)(t =6, JPE) (1.37)

We say thaV sg(ts) is the matrix of mean square errors.
The covariance matrix of an estimateis:

V(t9=E(ts-E(ts) (tsE(ts)).
This matrix can be decomposed in the following way:
Vsr(ts) = V(ts) + EBTE(B) (1.38)

When a vectots is an unbiased estimator of a vedp¥W sx(ts) = V(ts).
For example the covariance matrix of the samplstgategy

(Vs.Ps(9)) is:

N-n

V(Vs.Py)= o

C, (1.39)
where: C=[cAyi,y;)] and:

co(Y:, yj') :ﬁgl(yik _Vi)(yjk _Vj)

12 -
VoY) =coly i) =———= > (Vi —Vi)?.
N-1ia
An unbiased estimator of the varian()e(yS ,P3) is determined
by the equation:
N-n

Vs(VsPs):WCEB (1.40)

3 See, e.g. Cassel et al. (1977), p. 78, where anerdiional case is considered.
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where:C.s=[C:s(Yi,y;)] and

1 _ _ 1
Cs (Yi ) yj') =n %(yik _yiS)(yjk _ij) 1 Yis =H ésyik (1.41)
—lios

Vis(Yi) =Cs (Y, Y1) :ﬁ_ %:S(Yik -Vs)?

Usually, accuracy of the vector estimatty is characterized
by means of the vector [E(B...E(B,)?]. Its elements are the mean square
errors of the appropriate elements of the vetdsft;s..tngd. The variances
of these estimators are represented by the vedt@rd)...D*(tmg)].

The next method of assessing the accuracy of wexftimation
is based on the trace of the matrix of mean sqaei@s which is defined
by the equation:

Qar(ts) = trVep(ts) (1.42)

The parameterqg,(ts) can be interpreted as a mean distance between

the point whose coordinates are determined by elesmef the vecto®
and the points whose coordinates are assigned lpormas of a vector
estimatorts.

The coefficient

ats)= [tV (ts) (1.43)

can be treated as a mean distance between the #toand the outcomes
of the estimatots. It can be called the mean radius of the estirator

The expression (1.38) leads to the conclusion: Eits)=6,
dsr(t9)=q(ts).

For example the expressions (1.39) and (1.41) tedte following
one:

—y_ [N-nm
qys)= N 2 Ve (1.44)

Wilks (1932) introduced the generalized variansetl®e measure
of a multivariate scattérlt is the following determinant of a variance-agance
matrix:

g(ts) = deW/(ts) (1.45)

4 Wywial (1996a, 1997) defined a more general coiffit of multivariate scatter than the gene-
ralized variance.
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Similarly, we define the generalized mean squarerexs the deter-
minant:

Gsr(ts) = dewsg(ts). (1.46)

On the basis of Wilks' (1962, p. 546) result weeha

0sk(ts) = gtts) (1 + E@)V(t9E'(B)) = g(ts) (1.47)

If tsis an unbiased estimator of a vedpgsr(ts)=g(ts).

The spectral radidof a matrix is equal to its maximal eigenvalue.
Let psr(ts) andp(ts) be the spectral radius of the matriseg(ts) andV(ts),
respectively. Let us define the following statistit,s=tsw', where
wW=[w;...Wy] andww'=1 andwOR*{0,}. The statistic s estimates the linear
combination: 6,=8w'. The mean square error of the statistig t
is: Ver(ted=E(tos8o)*=WVsx(tdw'. The variance of the estimatogs tis:
D¥(t,9 = wV(tgw'. The well known properties of the maximal eigemeal
of a non-negative definite matrix lead to the faliog result:

Psr(ts) = maw)svimlum{WVSR (ts)WT} (1.48)

p(te) = maxiTrrzllurT{WV(tS)wT} (1.49)

Then, psr(ts) is a mean square error of estimation of a lineanbination
0,=6w' by means of the statistiesttaw’ under the worst vectowy
of coefficients of the linear combinatioBw’ in this sense that

Psr(td=Eltsw-8wh)? = Etw’-6w")? for such w that ww'=1

and WDWE =1, where: w,wIR™{0,}. The parametem(ty) is similarly
explained. Moreover,p(ts)=psr(ts), when ts is an unbiased estimator
of the vector®.

Let us consider the linear combinati®p6a’, where aOJR™{0}.
Then, the linear combinatioda’ is unrestricted in comparison to the linear
combinationéw'. Let t.<=tsa’ be an estimator of the parame@gr Its mean
square error and variance are as followsy(ty)=E(t:s0:)°=a'Vr(to)a,
D*(tx9=a'V(t9a, respectively. Let us assume that the veatds not known
during the estimation. In this case the accuracthefestimation can be as-
sessed on the basis of the maximal values of thening coefficients:

t
Ugg (L4, O) =%=WVSR&SW (1.50)

® See e.g. Ralston (1975).
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D(t
u(t g, a) = ( f) =wV (tg)w' (1.51)
aa
where:
a
w =
aa’
Then,ww'=1 and
maximum{uge (t s, 00} = pslts) (1.59)
maximum{u(t s, @)} = pts (1.60)

We should find such a strategy of estimation ofeater 8 which
is unbiased and whose variance (or mean squarg &akes the minimal val-
ue in some set of strategies.

Let (t&, PY(s)),(t?, P(s)) be two sampling strategies of estima-
tion of a vecto®=[0;...6,].
Definition® 1.18: A sampling strategy(t® ,P%(s)) for estimation

of a vector®=0(y) is not worse than the strate(ht” ,P?)(s)) if and only if

L v (t@a™ PP @) < v (tPa’ PP @) (1.52)

aR "0} YOY

where:
Ver (t¥ PO ) =Et¥a™ -0aT), for k=1,2

The sampling strateggt & ,PY(s)) for estimation of a vect®=0(y) is better

than the strategyt ? ,P?(s)) if and only if the inequality (1.52) is fulfid

and for at least one fixed paramegehe inequality (1.52) is sharp.
Hence, for a fixedy, we can say that the mean square scatter

of the random vectot? around the point whose coordinates are determined

by the vectorf(y) is not bigger than the scatter of the random oxetfsz)
around the same point, if the inequality (1.5Xul§lled.

®1tis the adaptation of the definitions of Borovk@984) and Cassel et al. (1977).
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Theorem’ 1.6: A sampling strategyt® , PY(s)) for the estimation
of a vector§(y) is not worse (not better) than a sampling stratg¢’ P(s))
if and only if for eactyY the matrix:R=Vsg(t 2 ,P(s)) Vst P ,PY(s)) is

non-negative (non-positive) definite. When for eadt one parametgil¥Y
the matrix R is positive (negative) definite, then the samplistgategy

(19 PY(s)) is better (worse) than the strateg§(,P?(s)).
For example, let us compare the strategigs;,®;) and (ys.Ps).

where the first (second) strategy is called theoreof the mean value from
a simple sample drawn with (without) replacementisiwell known that:

V(VS,P1)=NN—_1CD. This and the expression (1.39) lead to the falgw
n
one:

_ _ -1
Ro =V(ys'P1)_V(ysaP3)=nN_nCD

The matrixR, is positive definite if d&i.>0. Hence, the strategyy(,Ps)
is better thanyg,Py).

Theorem 1.7: [Rao (1982)]: Let the matricesVs(t? ,P(s))
and V(1 ,PY(s)) be positive definite. If a sampling stratedy’(P(s))

for the estimation of a vect@(y) is not worse than the strategy P2(s))
in the sense of definition 1.6, then:

keltd PO ©)<as(t? PP @) (152)
9srt PO(8))<gse 19 PO (s)) (153)
psrlt PY ©)<psst? PP ) (1.54)
|m Ver (12 PP 9)) < ver (12 PP @) (1.55)

Proof. Rao (1982), p. 89, showed:Hfis positive definite and
(A —B) is non-negative definite then d&)edet®). This and the theorem

1.6 lead to the expression (1.53). The well knowopprties of the trace
of a sum of matrices lead to the expression (1.68).A=Vgx(t? P2(s))
and B=Vey(t® ,PY(s)). The maximal eigenvalue of a matricasand B
are denoted b¥;(A) and A{(B), respectively. Hence:

’ See Borovkov (1984), Rao (1982).



30
SOME CONTRIBUTIONS TO MULTIVARIATE METHODS...

A (A)= maxaAd}

a’a=1

1, (8) = max(p B}

If (A - B) is non-negative definite then for all non-zeroteesy:.

y'Ay-y'By=0 (1.56)
Hence:
N\ (A)=y Ay=y'By=0,
)
A (A)=A,(B)

This leads to to the expression (1.54). The inetyuél.56) lets us derive
the expression (1.55).
Kish (1965) defined the following coefficientt:

deff (&, ,PE) = —‘;Ré:s ’;’((SS))))

where R(s) is given by the expression (1.26])° ('yS,Pl(s)):M
n

is the variance of the mean from the simple saroplsize n drawn with re-
placement,vg; (& ,P()) is the mean square error of a strate(gy,P(s)) de-
termined on the basis of a sample of size n. Tledfficeent deff (t ,P@)) is
called as sampling effécand it measures accuracy of a stratggy, P©)) in
relation to the mean from the simple sample dravth weplacement. Particu-

larly, deff (‘ys,Pz(s))=H, where B(s) is defined by the expression

(1.27) and (ys ,B, (8)) is the mean from the simple sample drawn without

replacement.
Rao and Scott (1981) generalized the deff coefficinto the multi-
variate case in the following way:

deff €5 ,PE) = p (Ver ts POV (Vs R S)) (1.57)

wherep(.) is the maximal eigenvalue of a matrix. The siné the samples
of the sampling designs are fixed and the samd. @& equation (1.57)
is equivalent to the following:

8 Bracha (1996) sugested thaeff (, ,P(s)) should be rather called as strategy effect.
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deff ¢ ,PE) = sup [VsR(CTtS ,P(s))J_ sup (M]

R ™0} DZ‘CTVS,H(S)j _CER'“—{O) CTV(VS,R(S))C

where ¢ OR™{0} is a column vector. Hence, there exists sughthat
deff €5 ,P(S)) takes a maximal value of the ratio of the mearasgjerror

of the strategy(coTtS ,P(s)) and the variance of the strate(;;6T7S R (s)).

. N -
Particularly, deff (y, ,F, (5)) :N—: .
Crameér (1958) proposed to compare the scatteruttfidimensional
random variables on the basis of the concentragitipsoid. In our case

the concentration ellipsoid of a vectdrg is defined by the following
expression:

K(ts)={z: [z-Elts)V ' [z-Elts)]  <m+2 zOR"| (1.58)

Let us assume that strategigs! ,P’(s)) (i=1,2) are unbiased
and thatdetV (t‘S‘))> 0. It is easy to prove that if the strategy(,P(s))
is not worse than the strategy} ,P?(s)), K(t & )OK(t&).

Let us note the problem of construction of the fickemces' sets
for estimation of the parameter vec@rWe limit our consideration to the

confidence set in the shape of an ellipsoid. tlsdbe an unbiased estimator
of the vecto®. An unbiased estimator of covariance ma¥f{ts) will be de-

noted by \7(ts). Hence, the ellipsoid confidence set for the wvedo
is determined by the expression:

P{Qs<qlB} 2y
where:

Qs = (ts-6) V7 (ts)(ts- 6)" (1.59)

Under some assumptions connected with a limitidigion of the
estimator vectotts, the limit distribution of the statistic Qs of the x2

with m degree of freedom.
The precision of the estimation can be assessethdans of the
volume H of the ellipsoitd

H =cqy" g™ (ts) (1.60)

Y

° See, e.g. Cramer (1958).
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where:

T[m/2

c=——
[ (05m+1)

Hence, the volume H depends on the generalizednaig(s)=detV (ts).
For example, let us consider the well known urddastrategy
(Ys,Ps(s)), called the mean from a simple sample dravthowit replacement.

The unbiased estimator of its variance-covarianatiris determined by the
expression (1.40). In this case the statisti¢daRes the following form:

Q= (Vs - ¥) V' (Vs.P)(Vs - V) (1.61)

here the matri¥/s(Ys,Ps) is defined by the expression (1.40).

The precision of the estimation can be assessadelays of the vol-
ume of the ellipsoid &g, This volume is determined by the expression
(1.60), where d§)=9(Ys,Ps)=det V«¥,Ps). Hence, on the basis of the ex-

pression (1.39) we have:

_ [ N-n "
9(Vs.Ps)= ((N—l)nj g (1.62)

where:

N-1)"
=|——=| detC.
J ( N ]

Mikhail and Mir (1981) proposed the following uabed estimator
of the generalized variantey.

(NJ

~ n nn-1)"

O = oo % (1.63)
n-m-1

where:
gS = detCEB

10 5ee Wywial (1996, 1997).
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is a biased estimator of a population generalizadance g. Hence, when
in the expression (1.62) we substitute the germdlvariance g for its esti-
mator §g, we obtain the unbiased estimator of the genemwlizariance

of the strategy ¥ ,Ps).

1.5.2. The superpopulation approach

According to the definition 1.5 of the superpopiaia model the
population parametey can be treated as an outcome of a random médtrix
of dimensionsNxm. Properties of probability distribution of the tnia Y
determine the superpopulation model. The paramdtricction 6=0(y),
determined by the definition 1.2, should be treaedn outcome of the ran-
dom vecto©@=0(Y) of dimensions gm.

Let us assume that the size of a sample is fixeDegual to n. Let
us remember that the matiy, vy, ] is a sub-matrix of the matrix More-

over, outcomes[y, Yy, ] are treated as outcomes of random variables
[Yy, Y, ] observed in a sample s={k.,k}. Let D=((k,yx), kUs) be the data

from unordered sample s. The ddfacan be treated as an outcome
of the random variablB=((k,Y), ks).

Let us assume that noninformative sampling desigiisbe consi-
dered. It means that a draw of a sample s doedap®nd on the distribution
of random variablesy, ...Y, , where s, see, e.g.: Cassel et al (1977).

Hence:
PD =D) = P(s)PY =Yy, for kI s) (1.64)

The valueB(y) of a random variabl®=0(Y) is predicted by means
of a statistid(D). This statistic will be denoted By and called the predictor
of ©. An outcomeT; of the predictorTs is obtained for a fixed sample s.
If [Yy, =YYy, =Y« 1, an outcome ofTs is denoted byts. Finally,
if a sample s is fixed an@y, =y, ..Y, =y, ] then an outcome ofs
will be denoted bys.

Definition 1.19': The statisticTs is called a p-unbiased predictor
of @ if and only if for a given design p and f6lY

E(Ts)=8(Y) (1.65)

The strategyTs, p) will be called p-unbiased Tfs is a p-unbiased predictor
of O(Y).

1 see cassel et al. (2977), p. 92.
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The statisticTs is called a&-unbiased predictor o® if and only
if for a given probability distributio

E(Ts-©) =0 (1.66)

Tsis called a ft-unbiased predictor @ if and only if for a given p
andg

EE(Ts-©) =0 (1.67)

Precision of the strategy § p) will be determined by the expected
value of the matrix of mixed second moments of jotézh errors:

E[Vs(T9)] = EE(Ts-©)(Ts- ©) (1.68)

Let V(TO=E(T<E(T)]"[(TsE(T)] be the&-covariance matrix of prediction
errors and [eB(Ty= E(Ts -©) be the&-bias of a strategf¥f.. Moreover, let
V(©)=E(e-E(0)]'[(6-E(0)].

Theorem'? 1.8 If a sampling design p of a strateds(p) is nonin-
formative, then

EVsy(Ts) = EV(T¢) + EBX(Ty) + V(©)- 2E{© - E(O)}E{T s - E(©)}

(1.69)
Particularly:
a) If Tsis p-unbiased:
EV(Ts) =EV(Ty) + EB*(T) - V(O) (1.70)
b) If Tsis p<-unbiased:
EV(Ts) =EV(Ts) - V(O) (1.71)

The synthetic coefficients of accuracy of a vecmmediction
are as follows: the mean square radius of a siaf€gp) is determined
by the equation:

A (Ts) = trEV: (Ts) (1.72)

The generalized mean square error of predictiodefned by the
expression:

gxR(Ts)=detEVsy(Ts) (1.73)

2 This theorem is the generalization of the theolsnCassel et all (1977), pp.94, on multi-
dimensional case.



35

I. Foundation of sampling strategies

The mean square spectral radius of a strat@gyp) is denoted
by px(Ts) and it is equal to the maximal eigenvalue valti#he mean square
errors matrixeVsy(Ts).

Let M be a class of superpopulation models. B=Ts-©
and Bs=Ts,© be prediction errors. The following definition &@milar
to the definition 1.18.

Definition™ 1.20: {T,, P} is not a worse strategy tham £P,)
if and only if, for each probability distributidgiiM

|_ EE(Bs«€')’ < EE(Bs£')? (1.74)
eR*—{0,)
or
ﬂlT ) eEVsx(TsyPy)e’ < eEVsy(TsPo)e" (1.75)

If there exist suchedR™ and such&OM that the inequalities (1.74)
and (1.75) are sharp thehg, P)) is a better strategy thamd,, P,).

Theorem* 1.9: If for each §&0M the matrix L=EVex(TsnPs)-
EVsr(Ts,Py) is not negative definite,Tg,P;) is not worse than the strategy
(Ts2,Po).

Theorem™ 1.10: If det EVsg(Ts,P1)>0, (Tsy,Py) is not a worse pre-
dictor of a vecto® than a strategyT(s,P>) in the sense of the definition 1.20
then for eaclgOM

Osr(Ts1,P1) < Asr(Ts2Pa) (1.76)
Osr(Ts1P1) < sr(Ts2,P2) (1.77)
Psr(Ts1,P1) < Psr(Ts2Pa) (1.78)

13 This definition is an adaptation of ones consideby Borovkov (1984) and Cssel et al.
(1977), p. 93.

14 See Borovkov (1984), Rao (1982).

15 See Rao (1982).



II. VECTOR OF HORVITZ-THOMPSON ESTIMATOR

2.1. Basic definitions

Let us assume that a sample s of a fixed size drasn without
replacement from a finite population. If00k, a=1 and if Kls, a=0.
This leads to the following properties:

T[sz(ak)1 M = E(@ai)’ 2T =n,

D*(a)=m,(1-m,) Co(a ,a,)=m, ~T,T.

Horvitz and Thompson (1952) proposed the followasgimator of popula-
tion averagey :

AYi 2.1)

k

T‘TMZ

1
tHTS ﬁ

The statistic 4rs is the unbiased estimator of the population méan
Its variance is determined by the expression:

DZ(tHTs)zNi (ﬂJ T[k(l_nk) égz_/[::yl (T[kl _T[T[k) (2.2)

For the effective sample size:

k<| =1 T[i

Dz( HTS) L i%(“kn T[k|{:_/[k _L) (2.3)

The varianceDZ(tHTS) is estimated by means of the following statistic:

Bz(tHTS)_FZ (ﬁkJ (1 T[k)+_zz a vy Ty ~TLT

k=1 k#i=1 T[k T[i T[ki
(2.4)

This statistic is the unbiased estimator of theiavae DZ(tHTS) but
it can take negative values.
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Sen (1953), Yates and Grundy (1953) derived thkoviahg non-
negative valued estimator, in the case whgn-1i; >0 for each ¥i=1,...,N:

2
M~ 2 kal T[kT[ T[kl Yk _L 2 5
D (tHTS) N2 é% a< i T[kT[i T[ki (T[k Tl'-] ( . )

Let us note that Horvitz and Thompson proposedesitenator of a popula-
tion average in the case when a sample is seledthdeplacement. Proper-
ties of the Horvitz-Thompson estimator were studeed. by: Godambe
and Joshi (1965), Joshi (1965, 1966), Ramakrisiih@n5), Sarndal (1976),
Hartley and Rao (1968, 1969).

Let us assume that a sample is selected withoptagement
from a fixed and finite population. The vector abiditz-Thompson statistics
will be denoted byyrs=[thT1s.-.THTms, Where:

T &Y _
HT|S Z s =1,

Ny m,

L, M

It is the estimator of the vector of population @ges denoted by
y= [yl---ym]. The vectotyris is the unbiased estimator of the vecyar

The covariances of elements of the vedtgis are as follows (see
Thompson (1997)):

YicY
Cov(t s thms) = Z e @-m)+
+2N 2 ZZ Yi¥n (n,, -m,m,) (2.6)
k>h=1 T, TT,
or:
Yic Y
CoUt yms, thms) = N° kZhllZ (T[ - m, ]( T[Jk - T[Jh J(nknh T[kh) (2.7)
> k k h

Let G be a diagonal matrix of degree N with the follogvitiagonal
elementsry, k=1,..,N. Moreover, lea=[a;...ay] andTe= [1...T]. Hence:

1 -
tirs =3 2C Ty (2.8)
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This leads to the following expressions:

V(turs) = N yT G ;1V (@G ;ly (2.9)

where: V(a)=[Cov(ag)] is a variance-covariance matrix of the vector
Cov(ag)=Ty-i1y, D*(8)= Cov(aa)T(1-T), i#j=1,....N.

If for each kh=1,..,N, the inequalityy,>0 is fulfilled, the unbiased
estimator of an element of the matvityrs) is the following statistic [see e.g.
Konijn (1973), p. 235]:

Yie Y ik
T

(1_ 1T, )ak +

Mz

CoV(t e t wms) =N N

=
i

2 N VY (T, - TT)
+ 2 J kh k™ h .
2N gh::lZ — o aa; (2.10)
fori,j=1,...,m.
Next estimator is as follows (see the estimatortha variance
by Yates and Grundy):

_ N N (7T, =TI, TT, i n || Yi _Yi
CoV(t s tyms) = kzz M(V_k - y_hJ[_Jk - —‘“Jakah

Shel T, mooom, \ T, T,

(2.11)

2.2, Taylor’s approximation of variance

A variance of the estimatoy ur.s can be expressed in the following
way:

DZ(VHTS)=i(§y—‘+§ 5 u]—v (2.12)

2
N°limm  Eieg T,

Let us treat this variance as a function of thetae of inclusion
probabilites  denoted by TE[Th...TW Tho...Tun Tha...Ton.. . Than]. SO

u(m = D2(7 HTS). A derivative of this function is denoted as folk

ey - .H.-HZ(T[)
orgorcore
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When 1 =1 and i = n(n-1) , the  point
N N(N -1)
T[0=L: I: I\rl]((rlll li)},the derivatives are as follows:
H{+°+°(n0):(—1)fm[(r\| 2n+1)y? + 2N(n-Dyy, | r21
—DN" 1 1
o (g ) = ooyt DZONT M s
o) = 2(-1) (N W
1
H|0;0+1(T[0) = F le]
r+t+ r+ Nrﬂr! t!
Hi’jll( ):2(—1) t e Y r=0t=1
Particularly:
Hﬁ*‘“"(no)-m[(N 2n+1)y? + 2N -1 y,] (2.13)
Hf*"*"(no)-m[(N 2n+1)y? + 2N -1 ,] (2.14)
" 2(n-D)N
Hwo e 2.15
() = "N (2.15)
-2N
HiP ) = —= vy, (2.16)
Let
A= -0, A = - 207D (2.17)
N N(N -1)

The Taylor's series expansion of the variarbé(VHTs):u(n)
is as follows.
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ur = () + SHE (), + 3 SHE (), +

i i=li% =1

F IS HEO A+ 1 SHE (A A, +

i=1 i=1izj=1
N N

+%Zl,§1"'i130ﬂ(% A4, + R®,N,n) (2.18)
i=li£j=

whereb [0 (0, 1) and R4, N, n) is the remainder.
Let p=f1(x;) and ¢=fx(X;), be functions of an auxiliary variable and

A =%pi =o(N?) (2.19)
AY =%[a(pi + pj)+ ba;q; +C] = O(nN‘z) (2.20)

where a,a,b,c= O(nkN“) and k0.

where z,9,6{0,1,2}.

Wywiat (2000) derived the following Taylor's expsan of the
Horvitz-Thompson estimator:

_ N - 1 __
DZ(yHT,S)zN—nnVEQOO +H[2(a_a)y(vno +y p)"’

_ _ a o
+ b(Vlol +y q)2 + Cyz]"'F[_ AV, + yp+
+(0—a) (Vo + 0)? + (20 - Q)Y (Vizo + W) +

=B(Vi1y + W) (Vigr + YO) = CY(Vigo + y_p)] + O(n _3) (2.22)
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2.3. Approximation of variances of strategies

2.3.1. Sampling design proportionate to sample average of auxiliary
variable

Let x=[x;...xy] be the vector of an auxiliary variable's obsepra.
Moreover, let each value of the auxiliary variab&epositive. The sample and

population means of the auxiliary variable are deddy X, :EZXK and
*Thig

X =

Mz

% X, , respectively. The size n of a sample is the &ffecsample
1

size. Let sampling design of an unordered samplées proportional
to the sample mean of the auxiliary variable, tH&(s)d nxg and

=
I

P4(S):nZYS - (2.23)
s °

Hence, whenX, >X, the probability of selecting the samplgis larger

than the probability of selecting the sample s
Lahiri (1951) considered the following sampling ides

1 X
P()=—25S 2.24
% ©) N X (2.24)
n
The probabilities of the first and second orderagdollows (see e.g. Wywiat

(1991a, 1992, 1995, 2000):

_ N-n X=X n
m=—-—+—
(N-DN X N

(2.25)

_ n(n-1 N (n-H(N-n) X, +x,—2X

= - (2.26)
N(N-1) (N-2)(N-DN X

where kzt=1, ..., N.
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When we state thatc =0, b =0 and

o) a- S ) 1

(2.27)

the expression (2.22) leads to the following appnation of the variance:

DZ(VHT,SP4)_ N_n EE(y)+_|:2 V(v X)—= 21(va)+
00,3 Tk
X X X
(2.28)
where:
- 3w -9 (x - %) N
Vrs _Vrs(y!x) - N |=1(y. y) (Xi X) ’ VD’S N_lvrs' (229)
Ve (Y) = Vo(¥iX), V (X) = Vo (V,X)
(2.30)
Let
\Y
s = rs ’X = 2 rssz L] 11 ,X = 231
Nis =Nis (V2 X) = r,(y)v,()n(y)p (2.31)
Vo0, 23 @32)

v

DZ(VHT,S|P4):D2(_yS’P3) 2()’) (ZKP YiNar T YxKN + Kz_yipz)*’
on*N")+oln?)=p?(y..R,) + oln?) (2.33)

where:

D(V,.P,) =

Nn Ve () (2.34)

is the variance of the mean from the simple saregleawn without replace-

ment.
Hence, when N o, n— o in such a way that N — B oo,

DZ(VHTSPA)—’ DZ(_YS’Ps)- (2-35)
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Let us assume that;(¥:) i =1, ..., N can be treated as outcomes
of a two-dimensional normal random variable. Irsthase the expression
(2.33) is reduced to the following one:

N-n v, (Y)
N Vet ;2 (2K9+K2-v§pz)+

+o[n*N)+ o) (2.36)

Hence, under the stated assumption, the streliggys ,P,) is more accurate
than the simple sample mean when

p<y£2(1—w/1+y§) or p>viz(1+w/1+y§) and

X X

Y, >yi(1+w/1+y§) (2.37)

X

D’ (V HT,S|P4) =

Moreover, the size of the sample should be ratmails

2.3.2. Sampling design proportionate to total of values of auxiliary var-
iable which are not observed in sample

Wywiat (1992,1995, 2000) considered the sampliegigh R, ()

proportional to the total of the non-observed valire the sample. Hence,

R@E O NX-nX,=> X, = > X, .This design is as follows:
- iOs i0Q-s

NX —nX

(NJ(N -n)Xx
n

When > x, > > x, the probability of selecting the samplgis larger
i0Q-s; i0Q-s,
than the probability of selecting the sample s
The inclusion probabilities of the first and sedororder
are as follows:

RO = (2.38)

_n__n
TEN TNN-D P (2.39)
= nn-1) n(n-1)

“TN(N-D) N(N-D(N-2)

(b +p)) (2.40)
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« -%
where: p, =—

 k#l=1,...,N (2.41)

Wywiat (1992, 1995) determined the conditionalbabilities of the
sampling scheme implementing the sampling desig?MBwiat (2000) pro-
vided the following expressions:

== o) o),

a= _%= —+olNz)=oln) b0 c=0

This and the expression (2.21) lead to the appratxim of the variance
of the strategy:

D2 (tyrs,Ps) = D (%,P) + O™ (2.42)
Let us note that in the case of two-stage sampfagan be a sampling

design of the first phase of the sampling apdan be treated as communica-
tion cost (e.g. by bus) from the center of rese&wahe k-th region (cluster).

2.3.3. Sampling design proportional to sample variance of auxiliary variable

The sample variancer, (x) and population variancev,(x) of
an auxiliary variable are denoted as follows:

Va0 =23 xF Vo= b )

ks kDQ

Singh and Srivastava (1980) proposed the samplesign F, (S)
proportional to the sample varianug(x):

nN-1) vx(x)

o3 ]

Singh and Srivastava (1980) proposed the samplihgme imple-
menting this sampling design.

RO=

(2.43)
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Let
(X, —X)? X, =X
=——-1 = , fork=1,...,N 2.44
pk v qk \N ( )
The probabilities of inclusion are as follows ($&gwiat (1995)):
n N-n
M =—+ 2.45
TN N(N-2) Py ( )
M =1- N-n(2(n-1) N-n-1 N
N N-2 N-3
(N-n) (,_(N-)(N-n-1)
+ N(N—2)(1 N(N=3) ](pk+p‘+2)+
_2(N—n)(N—n—1)qq
N3(N-2)(N-3) ™
or

_ -9 (N-n) ([ _(N-D(N-n-D (b, +p,)+
“TN(N-1)  N(N-2) N(N-3) o

_2AN-m(N-n-y - 2N“M(N-n-Y
N2 (N-2)(N-3) K& NZ(N-D(N-2)(N-3)

(2.46)
fork#t=1,...., N. Hence:

a= E:g :1+%+O(nN'1);

CNN=n)(, (N=DN-n-D) 1 n.5_ .
T aN-2) (1 N(N-3) ]'1 o NN TOeTN

__2(N-n)(N-n-1) _ 2 4 8 ofon-?):
~ n(N-2)(N-3) n N nN

2N-n)(N-n-1) __2 4 10 + ol iN):

n(N-D(N-2)(N-3)  nN N2 nN2
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The approximate variance of the strategys(Ps) is as follows:
Dz(tHTS Ps) = D (Vs ,P3) +

+§(—V§ (2p2 N2 +l)+yy (ﬂ14 _4n12)+no4 _1)"'

>

o *N)+ o) (2.47)

\
7o Nu(y:X) =p

where: Nis = nrs(yi X) = +
vy 2 (Y5 (%)

Under the assumption thah,,=1+2p> n;2=0 and n.=0 (e.g.
in the case when variables (y,x) have an approginavo-dimensional nor-
mal distribution) the variance takes the followfogm:

2y? 1y - -
D*(tyrs,Ps) = D (¥s.,P3) +%(1_V§(1+292))+O(n N l)+o(n 3)
(2.48)
For sufficiently large n and N the strateQ\t,.s,P;) is better than(ys,P;)
. . 1 1] 1
if [yy|>1 orif 1>|y[>—= and|p]>.|=| =-1]|.
% Iyld\/5 Ipl 2[2 J

y

2.3.4. Sampling design proportional to function of sample variance
of auxiliary variable

Wywiat (1992, 1995, 2000) considered the samptiegign R, (5)
proportional to Ny(x)-nv,4x). Hence:

P = N-1  (N-Dnv,(x) (2.49)
N —n) N N(N —n) N V., (X)
( N q Ve
or
PO=— -2 RE (2.50)

(N- n)(:j
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The probabilities of inclusion are defined by tbdwing expressions:

n n-1
= 2.51
T, N N(N-2) Py ( )
T[kt - n(n_l)(N _1) _ n- 1 (6) (252)

N-n N1

where: k# t = 1,...,N, andn is determined by the expression (2.46)

and p by (2.44). This inclusion probability can be tremmed into
the following form:

LGl Y

N(N -n) Nz(a(pﬁpr)*bqkqtﬂ) (2.53)

kt

where:

_(n-DN (1_ (N-1)(N-n-1)

__n -1y = -1
n(N -2) N(N-3) j_ N FOMN ) =0mNT)

(2.54)

_2n-)(N-n-1) _20N-2N-2n?+2_2
" n(N-2)(N-3) nN-2(N-3) N

+OMNN?)=0(N™)

(2.55)
— _ 2
__b _ 20N-2N-2n"+2 _ +O(N2) = O(N?)
N-1 n(N-)(N-2)(N-3) N2
(2.56)
a=- n_lz——+o( 1)= ofnn?) (2.57)
N-2
The approximate variance of the sampling straiegy
D2 (tyrs P;) = D (%s.,Py) + O ) (2.58)

Hence, the variances of both strategid$, ,P,), (Y5, P,)
are almost the same.
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2.3.5. Sampling design proportional to squared estimation error
of auxiliary variable mean

Wywiat (1995, 2000) considered the propertieshef following de-

sign:
RE=— " N X =" (2.59)
V.
(N—n)( j
n
The probabilities of inclusion are as follows:

_nh_ N-2n

AL (2.60)
_ (-1 (W -DI(N-2n+D(p, +p)+2N-n-19,q,] ,
“ON(N-D) N(N-2)(N-3)

2(h-)(N-n-1) (2.61)

N(N-)(N-2)(N-3)
where p and ¢ are defined by the expression (2.44) aat-k,...,N.

N-2n n _ _
=1-—+0O(N*)=1+O[nN*
N-2 N O o)

a=

_(M-DN(N-2n+D) . 1 2n a)_ )
a= n(N=-2)(N=-3) _1_F_W+O(N )—1+O(n )

_2Nn-)N(N-n-2) __ 2 2n a)_ )
= AN-2(N-3) _Z_H_WH)(N )—2+O(n )

__ 2-DN(N-n-1) _ 2 2 A
CCTAN-D(N-2(N-3 N W+O(nN )=oln?)
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The approximate variance is as follows:

2
Dz(tHTS Pg) = D? (Ys.Ps) +HV2(Y)(92 +%J+

y

1 _
_(1+ 2PN g3 +2N1, ~Noy _n14)j + O(n 3)

y

1
+—V,(Y) 1-Ny —2pn, -

n
(2.62)

This expression is more simple when we assumetligatvariables
(y,x) have an approximately normal distribution.nide, n,,=1+2p% n.=3p
and

D% (tyrs P3) = D7 (3. P2) + 2 v, ()9 +2Vrj‘y’(

4sz + o(n‘3)

(2.63)

y

2.3.6. Sampling design proportionate to decreasing function
of squared estimation error of auxiliary variable mean

Arnold and Groeneveld (1981) proved the followingduality:
(%—1]v2(¥s -X)? for each BS, where S is the sample space.
Wywial (2000) considered a sampling design propogl to
(%—1]v— n(X, —X)*. Itis as follows:

N-1 n(x, -x)*
RE) = (1— > J (2.64)
(N _2)(NJ (N-n)v
n
_ N-1 1
or PQ(S)_ (Nj (N_Z) PS(S)
(N-2) 0

where: R(s) is defined by the equation (2.59). Hence, wbstimation error
(X, -X)? is larger than(x g -X)?, the probability of selecting the sample s
is larger than the probability of selecting the pbas.
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The probabilities of inclusion are as follows:

n N -2n
mn=———-> 2.65
TN N(N-2)? P« ( )

_nh-) 1 ® (2.66)
“TON(N-2) (N-2) '

or
_ n(n-1) _ (n-1((N-2n+1)(p, +pt)+2(N_n_1)Qth)+

“ T N(N-2) N(N-2)2(N-3)
~ 2(N-n-1)
N(N-1)(N-2)*>(N-3)
where: g, g.and ¥ are defined by the right sides of the express{@ri)
and (2.61), respectively. After appropriate transi@tions we have:

a=-NZ2 12 N2y =N

(N-22 N N2

a=_ (N-)N(N-2n+1) =O(N'1)
n(N-2)*(N-3)

= 20°ONINZN-D 2, o an1)= ofn )
n(N-2)*(N-3) N

2N(N-n-1) __.2n
n(N-D)(N-2)*(N-3) nN?

2 o
+F+O(n IN7?)

The approximate variance is as follows:

D*(tyrs Ps) = D (V5 ,P5) + O(n's) (2.69)

2.3.7. SIMULATION ANALYSIS OF ESTIMATION
PRECISION

Let us assume that the variableg/)( have an approximately two-
dimensional normal distribution. The varialylés treated as a variable under
study and the variablex as an auxiliary variable. The pseudovalues
of a normal two-dimensional random variable havenbebtained by means
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of Hastings’ (1955) generafofThe simulation procedures were written down
by means of the matrix language of the SPSS stafispackageé
We considered sample sizes of 2, 5 and 10 elem&hts.population size
was 100 elements. The relative efficiency was da@tesd as a ratio
of the variance of Horvitz-Thompson strategy to tlegiance of the mean
from the simple sample drawn without replacementie Tvariance
of the Horvitz-Thompson strategy was determinedhanbasis of 1000 repli-
cations of the set {x,y} of the fixed size.

The computer simulations lead to the conclusicat the simple
sample mean is a better estimator of populatiomaaes than the strategies
(thrs, P7) and (tirs, Po).

The figure 2.1 shows that the strategigegs(tPs) and (tirs, Po)
are only a little more efficient than the simplengde mean. The relative effi-
ciencies of the strategies are expressed by neatlinfunctions
of the population size as well as of the corretatoefficient of the auxiliary
variable and variable under study and the ratidhef variation coefficients
k=v./yy. As we have expected, under a fixed populatioe, stze relative effi-
ciencies of the strategies 4Py, (tits, Ps) usually decrease
when the sample size is smaller and smaller.

In conclusion, from a practical point of view, thgategies (s, Ps)
and (trs, Ps) can be preferred. In the case of the strategys, (tP,)
the correlation coefficient should take a high pesivalue and the variation
coefficient k should belong to the appropriate rvé In the case
of the strategy (ks Ps) the absolute value of the correlation coefficient
should be close to one. Both these strategies @gHmilespecially preferred
instead of the simple sample mean when a populatiEas well as a sample
size are rather small. Hence, they can be usefthhéncase of a two stage
sampling design.

More details on results of the simulation studye ashowed
by Wywiat (2000).

! See Zieliski (1979).
2 SPSS Advanced Statistics 7.5. SPSS Inc. 1997.
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110

100 4
50 o
50 o
70
B0 (HT, P4, k=5, r=0.9
N ]
50 o (HT, P4, k=2, r=0.1
= 40 -
5 I (HT, F5), k=5, r=0.9
T a0, —
& (HT, P5), k=2, r=0.9
m 2D L EEER
[ah]
= [HT, PE], [f}=0.9
"EJ‘ 10 o .
o
2 a0 (HT, P9, [rl=0.9
200 3.00 500 10,00
sample size
Figure 2.1.

2.3.8. Space sampling design

The present paragraph deals with sampling in @esp@pulation.
It is assumed that the neighborhood of the pomratlements is fixed
and identified by so called neighbor matrix. Fouampling designs
are constructed on the basis of that matrix. Twthein prefer drawing popu-
lation elements, which are neighbors. Next two q@reter sampling elements
which are not adjacent to each other. Those desmars be useful
in research devoted to ecology, protecting envimmeconomic problems
and so on.

The position of population elements can be identiby neighborhood
matrix A=[g;j]. If the elements (i,j) are neighbors (are notgheors)
then g=1 (g;=0).

Let us consider the following population:

2
5 1 3
4

The neighborhood matrix is as follows:
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111 1 1]
111001
A=[1 1110
10111
110 1 1]

The space of samples of size three is as follows:

S={(1.2,3); (1,2,4); (1,2,5); (1,3,4); (2,3.4); (23 (3,4,5); (1,3,5);
(2,4,5); (1,4,5)}

Let A(s)=[aj(s)] be the neighborhood matrix of elements
of a sample s. Hence, for the samples of the spagehave:

111
A23)=A 125 =A134=A 145 =1 1 1|;
111
111
A@24)=A0135=A@239 =1 1 0|;
101

11
A@34)=A@B45=|1 1
01

R =)

101
A (245 =|0 1 1|.
111

Let a sample design prefers the neighbor elenterite drawn with-
out replacement. Wywial (1996b) considered theofeithg sampling design:

>Y36
Ro®=—"""——. (2.70)
22230

SISi=1j>i

Then for our population:

P(l,2,3):P(l,2,5):P(1,3,4):P(1,4,%,=

P(1,2,4):P(2,3,4):P(2,3,5):P(3,4,5):P(1,3,5):F3(53,—_% .
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The inclusion probabilities are as follows:

2 7
m=—, To=TR=TY=TH=—,
173 L=TB=TY=Tk 12
1 I
T[12—T[13—T[14—T[15—§, T[23—T[25—T[34—Tf45——2 2’
1
Tos~Ths=—.
24~Tlg5="

In the case of sampling with replacement, the abdly
of selecting a k-th element is defined proportibn&d the sum of elements
which are its neighbors. Then:

N

%

Pu(K) == (2.71)
akj

Mz

i=1j=1

In the case of the population under consideration:

_i = = = :i
p2(1)= 1 P2(2)= P(3)= P2(4)= p2(5) T

Let us define the design that prefers drawing evthreplacement the
elements which are not neighbors. Then:

P00 -m+a-3¥a, .

i=1j>i

P12(s)>0 provided that>0.

%n(n—l)ﬂx—iZau

i=1 j>i

R, =
[Nj[l n(n —1)+0(}+[3
nj2

1 nin-1)+a-pR,
R, =2 (2.73)

(Nj[l n(n-1) +0(} +pB
nj2

(2.72)

or
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where:

B=ZiZau .

$Si=1 j>i
It is obvious that:

limP, = L (2.74)

1)

Hence, ifa - o, the sampling designsf) tends to be a simple sampling de-
sign.
In the case of our population aad0.1, we have:

P(1,2,3)=P(1,2,5)=P(1,3,4)=P(1,4,51%,

P(l,2,4):P(2,3,4)=P(2,3,5):P(3,4,5):P(1,3,5)=P@7—4§,

13 23
Th=—, ToO=TL=Ty=Tk=—.
1= 32 L=ThE=Ty=T 35
13 23 33
Tho=Th3=Ths/~Ths=— , Th3=Ths=Ths=Ths=— , Thi~Ths=— .
12=13=Th 4= 5 70 b3=Tbs=Tly~Th 70 04=135 70
If a=0.5 then:

P(1,2,3)=P(1,2,5)=P(1,3,4)=P(1,4,%,

P(l,2,4):P(2,3,4)=P(2,3,5):P(3,4,5):P(1,3,5):P@7—4% .

1 5
m=—, To=TR=TY=T=—,
1= L=TE=Tu=Tl 8
- _5 I
T - Th3=Th4~Ths5=—, Th3=Tos=Ths=Tys= -,
22 22
9
Ths~Ts=—— .

22
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In the case of sampling with replacement, prolit#sl| of selecting
the k-th population element can be defined asvallo

N +1—§:aki
P.a(K) = Iz,t N (2.75)
N(N+1) -3 > a,
k=1i=1

Hence, the probability ,gk) increases if the sum of the elements which

are adjacent to the k-th element decreases.
In the case of the population under our analysihave:

92(1):% ' P2(2)= P(3)= pa(4)= p2(5):§_

Table 2.1

The variances

Strategy Variance
Vs 1P 1.6400
thrs Pro 0,7706
tyrs Poia=01 3.3691
tyrs Po:a=05 40.4913

Let us define the variable y: y(1)=8, y(2)=1, %3) y(4)=1, y(5)=3.
The population mean value i§ =32 and the population variance is
v =Ni—1§i(yi -y)? =82.

The population meay is estimated on the basis of the sample mean
Y5 and of the Horvitz-Thompson estimatoy,s, given by the expressions
(2.1). Let us remember thag s the sampling design of the simple sample

without replacement, defined by the expression  §).2
The variance of the strategy is determined by trenf(2.2). The table 2.1
refers the calculated variances of the strategies.

The variance of the strategft,s.P,) takes the lowest value.

The design of this strategy prefers selecting efgsef the population which
are neighbors.
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2.3.9. Sampling designs dependent on the determinant of sample co-

variances matrix

Let x=[x;] be the matrix of dimensionx\. It consists of the values
of an m-dimensional auxiliary variable. Lexg Xy Xl FL.N
be an observation of the m-dimensional variablacattd to a j-th population
element. The vectorx,,=[x,..X,y] (i=1,...m) consists of observations
of the i-th auxiliary variable. Then:

XlD
X = X Xep - Xon] or Xx=

XmD

Values of auxiliary variables observed in a sampl®f size n
can be written as the mato¢=[ X ..., Xy,

— — N
Let z=[x;-xi], where: xi:%inj (i=1,....m; j=1,..,N) and let
=1

zszlzmh..zmjn], where: z;j :|,(le —7(1)...(xmj -X,.)|, k=L..n. Let u=[x;-
X, (s)], where: X, (s):lz X;. Moreover, let us=[ug ..u; ], where:
n DS 1 n

u;jk :l_(xljk —X(s))..(xmjk —Xm(s)) , k=L...n. Then,zs andus are sub-matrices
of the matricesz and u, respectively. Hence, the sub-matricesand us
can be obtained through eliminating all the colurohshe matricez andu
except those which correspond to the populationmefds drawn
to a sample s.

The population generalised variance is definedhieyfollowing ex-
pression:

g=N"|z Z'| (2.76)
The sample generalized variance is defined byaimula:
g=n" Jusug | (.77)

All the sampling designs presented in this andt meragraphs
were proposed by Wywial (1997a, 1999, 1999a).
Let us consider the following sampling design:

|z.2] |
Pu(s—=—"_
YNzl
EBS)
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It can be transformed into the following form:

i
Ro=—12%l s (2.78)
N-m)
N"g
n—-m

When m=1, the sampling design,®8) is reduced to the one considered
by Singh and Srivastava (1980).

Let z(ky,....k) be a sub-matrix obtained through eliminating
the columns of numbers,k.,k from the matrixz. Wywial (1997a, 1999) de-
rived the probabilities of drawing elements,.kk from a population
for a sample in the r fixed selections. The proligds of inclusion
are as follows:

N-n |z(k)z" (K)|

i =1 k=1..N 2.79
K TUN-m NOg L (2.79)
N-n N-n-1
i =1————z(h)z" (h)|+z(k)z" (K)-———|z(k,h)z" (k,h
& (N_nnNmJ}() (k)2 (R —— [z k. hz" ( A}
(2.80)
Let us define the following sampling design:
Rs ©0|zz" Hz.z; BO.
The sampling design is as follows:
T T
22" Hz.2{ | (2.81)

P ()=
15 ( ) N N -m .
- |zz" |
nj{n-m
N-m

Ry = T R
or 5)= - S

PN (N=m) (NY) (N-m) ™

n){n-m n/{n-m

where Ry(s) is defined by the expression (2.78). Wywial 918) showed
how to determine the inclusion probabilities.

Let us note that the sampling design4($) prefers (unlike
the sampling design 1¥s)) the selection of such a sample s that

the determinantz z! | is large.
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2.3.10. Sampling designs dependent on generalized sample variance

Wywiat (1997, 1999, 1999a) considered the sampudegjgn propor-
tional to the sample generalized variangeofjan m-dimensional auxiliary
variable which is defined by the expression (2.Zé}.us consider the follow-
ing sampling design:

Pis(s)=

9s
29,
sOS
This design can be transformed into the followiogf:
nuug |
N-m-1 N
n-m-1 g
When m=1, the sampling desigm®) is reduced to the sampling design pro-
portional to sample variance considered by SinghSnivastava (1980).

Let x(ky, ..., k) be a sub-matrix obtained through eliminating
the columns of numbersg,k.., k from the matrixx. Moreover, let:

Fs ©)= 855 (2.82)

V(Ky oo K )=X(K Ky )X (K e K ) Ny -
Jnaw IS the column vector with all its (N-w) elementguial to one and:

- 1
X(Kyon Ky )= XKy K )

N-w *

Wywial (1997a, 1999a) derived the probability sfwing without
replacement elements;, k.,k to a sample s during the r fixed selections
from a population. The inclusion probabilities ofder r=1 and r=2
are as follows:

N-m-2
(n_m_ j(N_l)

mii® =1
N-m-1 N
n-m-1 g

}v(k)vT(k)| . (2.83)
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16 _q_ 1 N-m-2
o =1 - {n_m j(N 1)[ VOV (k)| +
(n—m—lj
T N-m-3 T
+|v(h)v (h)| ]—(n_m_lj(N—zjv(k,h)v (k,h)|}. (2.84)

Let us considered the following sampling design:

Nlzz" Fnju] |

,sSs.
> (Nizz" Frjuu? )
1S

R; )=

It can be transformed into the following form:

1 ( rlu lj (2.85)

R, )= N”‘”
[PHa"n)
oo R,©= Nl — (1" m_l RO |.
(HN ]L ( J J

n-m-1

where: Rg(S) is given by the expression (2.82).

The sampling design;®s) prefers (opposite to the sampling design
Pis(s), given by the formula (2.82)) selection of sueh sample s
that the generalized variangg= n*m‘u SUE\ is not large.

Wywiat (1997a, 1999a) derived the probability oawing elements
from a population into a sample during the r fixedections.
The next sampling design is as follows:

|zz" Huuq |

gSszT Huu!|)

R 6)=

We can prove that:

lgN"-g.n") (2.86)

Rs 6)=
N-1) (N-m-1 i
n-1 n-m-1
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The probability of drawing elements, k.,k from a population into
a sample s during the r fixed selections can bvekbr(see Wywiat (1997a,
1999a)). The inclusion probabilities are as follows

a8 — 1
-
N —_
n-1 n-m-1
(N'm'Z](N—lnv(k)vT(kn
n-m-1

ngN™

T,

1—E(N'm'1]+ (2.87)

nin-m-1

9 = 1 h.ﬁ(N -m _1]+
o [NE)N-m- " nln-m-1
4 n-1){n-m-1

. N-1(N-m-2
ngN™ { n-m-1

J(v(k)vT (K)+v (VT ()}

—2(N-m-3
—:;Ni[n_rr:_lj|v(k,h)vT(k,h)|}. (2.88)

Let us suppose that the average value of a variaider study
is highly dependent on a vector of auxiliary valesb We can expect
that some of the considered sampling designs cavide a good sam-
pling strategy of estimation of the population ager of the variable un-
der study. The Horvitz—Thompson estimator will he tinbiased estima-
tor of the average but it seems that any analysis @ccuracy should be
supported

by a computer simulation. The sampling designs gutignal to
a generalized variance for P will be used to construct the regression
strategies at the end of the chapter 6.



III. STRATIFIED SAMPLING

3.1. Basic properties

Let us assume that the populati@ris divided into non-empty strata
denoted byQ, (h=1,...,H) andQ,nQ=0 for each pair #l=1,....H and

H
UQ, =Q. Let N, be the size of the stratu@, (h=1,...,H) andw, :%,

h=1
H

where: N=> N, . A simple sample of size Og&N; drawn from the h-th
h=1

stratum will be denoted by, Sh=1,...,H. The sampling design of the stratified
sample S={$%...,5} is as follows:

P, ©= ﬁ(N“]_ (3.1)

h=1 nh

in the case when the samples are drawn withouacepient or
H
PY () = [TN™ (3.2)
h=1

in the case when the samples are drawn with rempiace
Let vk be the k-th observation of an i-th variable inhatt stratum.

_ 1 N
Yin =N—k2ymk, Vi (Y1) = ¢ (% ,Y5)

h k=1
1 N = =
Con (YY) = ﬁz(yihk Vi) Vi = Yin)
h Lk
yh :[ylh.“ymh]’ C*h :[C*h(yivyj)]'
The statisticsys, =[Yi, **"Yms, ] andC.g =[c5 (¥ ,y;)] , where:

1 _ _ _ 1
Cs, (Vi,Y)) zm% Yk =Yis, )ik =Yis,) Vs, :n_h%yihk (3.3)

are unbiased estimators of parametersy, =[y,,---Y..] and
C., =[c (¥ ,y))], respectively.



64
SOME CONTRIBUTIONS TO MULTIVARIATE METHODS...

The vector ¥ of population means is the following function
of the strata means:

H
Yus = 2 Wi Vs - (3.4)

Its covariance matrix in the case of sampling witheeplacement is as fol-
lows:

N, —n,

C.,. (35
N, O (3.5)

H H
V(Vus:Po) = hz_lwﬁV(vsn) = hz_lwﬁ

The variance of the i-th element of the vectorsiineatorsy,,s is as follows:

205 8 o Ny -ny
D (Vuis Pu) = 2 W5, Vi (Vi) - (3.6)
h=1 NN,

An unbiased estimator of the matNky s ,P,,) is as follows:

H N -n
VS(VWS'PW): Zwﬁ : " C

h=1 h'h

. (3.7)

where the elements of the matri€.s =[c (¥ ,y;)] are determined

by the equation (3.3).
In the case of the sampling with replacement, theadance matrix
of the estimatoiy ¢ is as follows:

_ AN
V(Tus:P) =Y —WwWiC, (3.8)
h=1 Ny
where: C,= NhN_:LQh

An unbiased estimator of the matNXy 5 ,P;, ) is as follows:

_ H oW
VS(yWS 'PW) = Z C*Sh (39)
h=1 N
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3.2. Optimization of samples sizes

3.2.1. Proportional determination of sample sizes

H
Let n be the total size of a sample selected Bvatai.en=>%n, .
h=1

Let ny, be size of a sample selected from the h-th stratMhen we assume
that ny, is proportional to the fraction of population eksmis in the stratum:

n, =nw,, h=1..,H (3.10)

The sampling designs for samples of such sizésgted without re-
placement from strata, can be derived on the lidsise expressions (3.1),

(3.2) and (3.10). It will be denoted thé and R in the cases of sampling with

replacement and without replacement, respectivdig. expressions (3.5) and
(3.10) lead to the following variance-covariancetnwraof the sampling strat-

egy.

_ _N-n&
V(ywS’Pp) - thc*h (311)
Nn =

In the case of sampling with replacement, the tops (3.8)
and (3.10) lead to the following variance-covarentatrix:

_ : 1l4d
V(ywS'Pp)zﬁthhCh (312)
=1

Theorem 3.1 [Wywial (1992)]: The sampling strategWWs,PF;)
is not worse than the stratedy,P,) in the sense of the definition 1.18.
When the sizes of the strata (=1,...,H) are sufficiently large, the sampling
strategy (Vs ,P,) is not worse than the stratedys,P;), where (Ys,P)
and (ys,P;) are mean vectors from a simple sample drawn withvaithout

replacement, respectively.
Proof: Let B = [Vih —Vi] be the matrix of dimension ¥hl, where

V., is the mean of an i-th variable in an h-stratuime Vector of stratum frac-

tion is w=[wy...wy]. Its elements are the diagonal elements of thé&ixna
D,=diag{w). After a simple transformation we have:

- - "
V(yslpl) = V(ywS 1Pp) +HBDWBT :
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The matrix BD,,B" is non-negative definite. This and the theorem |&t6

us say that the strateqyws,PF',) is not worse tharfy,P,) (the means from

the simple sample drawn with replacement). In #eeof the samples drawn
with replacement the proof is similar.
This result and the theorem 1.7 lead to the comoiuthat all con-

sidered synthetic measures of the strat@yS,P‘;) precision are not larger

than the appropriate measures of the strat@gyP,) precision. A similar

conclusion deals with strategi@ws,Pp ) Vs Py) and(ys.P,) .

3.2.2. Minimization of risk function under fixed cost of data
observation

Neyman (1934) determined sample sizes selecteddtmta through
minimization of the estimator variance under aditetal of sample siz&€%
The solution to this problem is connected with oot variable under study.
A generalization of this optimization problem isnswered.

. Costs of data observation are described by thewiig linear func-
tion™":

k() = k(nyonyy) = S K,N, (3.13)

where: n =[n,..n,] and ky, is the unit cost of data observation in an h-th

stratum, h=1,...,H. An admissible level of the katasts of data observation
is denoted by K.
Let us consider the following risk function:

1,(N) = 28,0 (tys P,) (3.14)

where @0 and D*(V,.,P,), i=1,...,.m, are determined by the expression
(3.6). After some simple transformations:

Hwib: 18
fi(n) = 2= == > Wby (3.15)
et Ny N h=1

where:
bﬁ zéaivth v)) (3.16)

18 cochran (1963), p. 97, noted that this problem bheen stated and solved by Tschuprow

(1923), too.
1 Beardwood, Halton i Hammersley (1959) consideredr&linear cost function.
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If a=1 for i=1,...,m, f(n) is equal to the trace of the covariance matrixhef
sampling strategyy s ,P, ) -
The problem is: how to determine such a vectosaihple sizes

n=[n;...n4 ] that the risk function takes the minimal valueder fixed total
costs of observation K.

(3.17)
k(n) < K,0, <n<Nw

{fl(n) = minium
where: k@) is given by the expression (3.18), is a vector of the dimension
1xm whose all elements are equal to zerds a vector of strata fractions and
NW:[N]_...NH ]

A more general problem was solved by Hughes ana ®879).
In our case, the algorithm of deriving the solutimnthe problem (3.17)
is as follows: firstly, we determine the quantity:

A, = h=1,..H.

bh
Nk,

Let us assume that the sequencg) {#\not increasing. Moreover, let

"
G,=0, G, Aiz b, /Kn,
h=1

S w,b \/—) zk N,, i=1.H-1 (3.18)

|+l h=i+1

kN,

G)
I
HMI

Let z (z=0,1,..., H1) be such index thatkO[G,;G,,). Finally,
the solution is shown by the expression:

n, =N, dlah=1,...z

gh=cowhbh dlah=z+1,...H (3.19)
Ji,
where:
K- ikhNh
C,=——ML (3.20)

1
bk

h—z+1
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H
Particularly, let KU (0;,G,], what means thaK <G, =AiZthh,/kh .
1 h=1

So, in this case z=0 angsiN, for all h=1,...,H. Moreover, let us note that
z=0, if N, - o foreachh=1,....Hor

N, >k£ (3.21)

0

where:k, = minimum{kh} .
1. H
If m=1, solution (3.19) is reduced to the well lumoNeyman’s loca-
tion of samples in strata.

A particular case of the risk functiog(rf) is equal tog*(Y,s,P, ),

2
i

if &=1 for all i=1,....m. Gré (1964) proposeda, :_i for all i=1,...,m.
y

In this case{n) is the sum of the squared variation coefficiasftelements
of the estimator vectoy,,s.

Wywiat (1990) considered more general risk functiduxiliary var-
iables are applied to optimization sample sizeBayal (1985).

3.2.3. Minimization of total cost of observation under
fixed risk function
Let us consider the following optimization probtem

{k(n) = minimum (3.22)

f,(n)<f,,0, <n<Nw

The constrainifn)<f, is equivalent to the following one:

H Ww2h?2 H
fz(n):zwh_thfOJ,iZthh =1,
he Ny N h=1

The solution is a particular case of the solutioratmore general problem
formulated and solved by Hughes and Rao (1979). alperithm of getting
the solution is as follows:

Nk
B, =£,h=1,...H (3.23)

h

where the parametey, s defined by the expression (3.16). Let us assinaie
the sequence (Bis not decreasing. Let
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f.g =0
b H

f., =—=>w,b,k, (3.24)
Nk, =

h H
f*hﬂ:% Swib?+ 2 Syp f | for h=1.H-1
t=

h
k ey EMHL

Let g be such index that O(f.,,;f.,], 9=0,1,...,H-1. The solution to the
problem is as follows:

n, =N, dlah=1,...q

n, =clthh dlah=q+1,...H (3.25)
Ja
where:
fo +— ZWtbt
— t=q+1
c, =

iwtbt\/k_t

t=q+1

Particularly, if f. > f.,, then g=0.
Let us note that some other optimisation problemee considered
e.g. by Melaku (1987) or Mukerjee and Rao (1985).

3.2.4. Minimization of total risk
The function of the total risk is the sum of thestcfunction given

by the expression (3.13) and the risk function mheiteed by the equation
(3.15) and it is shown by the expressfon

f — d k g Nh _nh 2b2
M =2kn +>X—"—"wb (3.26)

h=1 h=t NNy

where the parameteloﬁ is defined by the expression (3.16). The problem
has the following solution fop,<n<Nw**:

18 balenius (1957). noted that this problem was fatiog Blythe (1945).
19 See Yvates (1960) and Wywiat (1992).
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n, = minimum{\:\l/“?bh .Nh}- (3.27)
h

The optimal sample size selected from an h-thwstracan be equal
to a stratum size or it is proportional to the pratdof the fraction of an h-th
stratum and to the,lwoefficient.

3.2.5. Optimization of sizes of samples selected from strata
under the fixed standard errors of estimators

Dalenius (1957) formed the problem how to detaemihe sizes
of simple samples selected without replacement strata in such a way that
the cost function takes the minimal value underftked levels of standard
errors of estimators of means. He solved this grolih the case of two strata
and two estimated population means. In generalthiersamples drawn with
replacement, the problem was solved by e.gnQi®963, 1966), Hartley
(1965), Huddleston, Claypool and Hocking (1970)galathan (1965,
1965a), Kokan (1963) and Yates (1960). Finallythi@ general case of sam-
pling without replacement, the problem was solvgd Kmkan and Khan
(1967). The problem described here can be definddli@ws:

k(n) = minimum
D*(Y,s) <€, i=1,...m (3.28)
1<n,<N,, h,..H

where: the cost function is defined by the (3.18) ahe variance f).)

by (3.6). In order to solve this problem the tramsfation x, =i,

nh
h=1,...,H, leads to the following form of the prefi:
z(x) = minimum
ux'<e;i=1,..m (3.29)

is X,<lh=1,..H
Nh
where:

X= [Xl"'XH]' z(x) = iﬁ- u; = [W12V*1 (Yi )---WﬁV*H (Yi )]

h=1 Xy,

1 H
e, =6 +=>wpvy(y)
=t
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Kokan and Khan (1967) proposed an appropriaterihgo leading
to a solution to their optimization problem. Betli#&989) proposed a simpli-
fied method of solving the problem (3.28). Chatter{1968) considered the
dual problem to given by the expression (3.28)sdme sense a particular
case of the problem (3.28) was formed by Ghosh&3)19

Skibicki and Wywiat (2002) considerd the proble®2g) in the case
when the cost of observation of all population alata is the same. In this

H
case the unit cost function is simplified to thenfo t(n,,...,n,)=>'n, .
h=1

They stated the following problem of stratifiacatiof a population. The pop-
ulation is partitioned into strata and at the sdime the sizes of samples
drawn from these strata are determined in such @ that the sum
t(n,,...,n,;) takes a minimal value under the fixed variancegsiimators
of mean values. The variances are the functiorebeérvations of variables
in strata and they depend on partition of a pomnainto strata. Hence,
the problem (3.28) is generalizing in such a waat #dditionally the optimal
partition of a population into strata is evaluatétlis problem can be consid-
ered in the situation when we have census datadrpopulation and we look
for optimal sampling design for future survey of fopulation.

3.2.6. Optimization of sample size on the basis of the spectral radius
of variance-covariance matrix of estimators

In the paragraph 1.5.1 the spectral radius ov#tr&ance-covariance
matrix V(Y,s,P,) was defined as a maximal eigenvalue of this matrét

us treat this spectral radius as the function ohm@a sizesn=[n;...n; ]
and denote by f(). Let us consider the following optimization praite

{f (n) = minimum (3.30)

k(n) <K, o, <n<Nw

where:w = [wy...Wy].
The purpose function rif can be obtained as maximal value
of characteristic polynomial of the matri¥(y,s.P,). This polynomial

can be written in the following way:

F(n.f) =20, (3.31)
i=0
where:

)
9 =29, g, =1 (3.32)

=1
A j-th principal minor of the (m-i) degree of theatrix V(y,s,P,)
is denoted byg
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Hence, the problem (3.30) is equivalent to lookimga conditional
minimum of the implicit function F(,f)=0. It is a rather complicated numeri-
cal problem.

Wywiat (1988a) proposed the following simplificatiof the prob-
lem (3.30). The well known basic properties of mxatiorm lead to the con-
clusion that the spectral radium¥(is not greater than the functionn)(
for eachn>o0, where:

&2 Ny =ny,
rn) =2 wj, ——"p(Cs) (3.33)
h=1 N,.n,

p(C,,) is the spectral radius of the matr®, which is the variance-

covariance matrix of variables under study in thth tstratum, h=1,...,H.
Our simplified problem is as follows:

{r(n) = minimum (3.38)

k(n) <K,o0, <n<Nw

The solution to this problem is determined by thkeression (3.19), if we
state that g=/p(C,) , for k=1,...,H.

The problem of determining the optimal samplesid&awn form the
strata is formed in such a way that the cost foncki(h) takes the minimum
value under a fixed level of the function r(n) dam solved similarly to the
problem defined by the expression (3.22).

Let us consider the following squared form of tmeatrix

\/(VMS'FM):
a(a,n) =aV(Y,s.P,)a’

where:a=[q;...0,] JR™-{ 0}. Hence:
f(a,n) = max{q(a, n)}
Let us simplify the set of admissible solutiongtie problem (3.30)
for the setB :{nh =1 H: hilnh =n, >0}, where g is the sum of sizes

of the simple samples drawn from the strata. Tlablpm (3.30) can be re-
written in the following way:

min maxq{(a, n)}
nOB oOA

B={n:Jn" =n_ >0} (3.35)
A={a:aa’ =1
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An iteration method of solving to the problem isistsucted in the following
way?

q(@., 7)) = maxmin{a(a, n)} (3.36)

Under the fixed, the function gf,n) takes the minimum value in the point
n(a) =[n,(a)..n,(a)], where:

n

nh(a)=a(a) W 4/a, (a) , h=1,..,H (3.37)
where:
q,(e)=aC 0", a(a) = w4, (@)

The Lagrange function is as follows:
F(a,n) = g(a,n)-A(aa’™ 1)

The necessary condition for the existence the mdreof the function
is as follows:

E:iq(a)ﬂ—}\uzoy (339)
Ja n, oa

oq _a

HA=-%6G@

Jda 2 (@)

where:

Ga)=Y— c,.

h=1,/q,, (1)

After multiplying the equation (3.39) from the righide bya', we have:

A= ni q(a)aG(a)a’

0
This and the expression (3.39) lead to the follgwin

a=aP(a) (3.40)

20 See Wywiat and Kiczak (1994) or Wywiat (1995).
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where:
Pa) =) _
aG(a)a

This leads to the construction of the followingatgon expression:
GHFGtP(Gt), t:1,2,... (341)

Next on the basis of the expressions (3.37) ar®Bj3the elements
of the vectorn, =[n,(a,)..n,(a,)] are determined. If a normMghe.||
will be lower than an admissible level, the elemeof the vectorn,
are treated as a sufficiently good approximationopfimal sample sizes
which should be selected from strata.

Skibicki (2003) proved thatifj is a convex function oh and pro-
posed the solution to the problem (3.30) based gnradient method.

3.2.7. Optimal allocation of strata in the case of testing a hypothesis about vector of
population means

The hypothesis concerning the vector of populatieans is considered.
It is tested on the basis of data observed in atifsdd sample in the case
of large sizes of samples as well as large sizetrata.

Let us consider the sequence of the popula{i,oh)}, v=12.. .
The size N increases whemw — . Let us assume that“®Uis divided
into non-empty and disjoint strataJ§°),...,U&’) of sizes N§”),...,N$;’),

respectively, and IetiNﬁ”):N(”). In each stratumuﬁ”), the array
h=1

y® =[y) | is observed, where i=1,N\"), j =1,....k, h=1,...,H. Each row

of the matrixy&’) is the observation of a k-dimensional variablet. Le

where J, is the column vector consisting of a-elementseglhal to one. So,
¥, is a row-vector consisting of the means in anrhtsin. A row-vector
of population means isy= hilwhyh where: w, :N_%:;' h=1....H
The variance-covariance matrix ir; the h-th stratsim

1

Cn = N,(qu) -1

D%;”) (y (hL,,i)D =Y )T (y (hl,)i)D =Y )

where: yﬁ:i)ﬂ is an i-th row of the matri>y§]“) .
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The simple samplsﬁ“) of the sizenﬁ”) is drawn without replace-
H
ment from the h-stratum, h = 1, .., H. LS(“):USQ’). The vector

of the stratified sample means is as follows:

MI

Yougo) = 2 WhY (o

=3
I,
iy

where:

_ 1 y
Yo = Wi%)ysm,i)m-

h

The variance-covariance matrix of the veciry, is as follows:

HoN©) =)
Nh—r)]WﬁCh.
h=

V(sz@ ): UG

>=| 3

The sample variance-covariance matrix in an hsindas as follows:
-1 (y(u) o )T(y(u) . )
n'(qu) _1%;) hio ~ Ygw hio ~ Ygw /-

The unbiased estimator of the matk'b(VWS(UJ ):

U) (v)
VS ( w,S( ) iN L

he Ny N(h“)

Let us assume thatNﬁ”) Ny nﬁ“) o0 and N-n - o

as v - o . Moreover, let the arraysﬁ”), h=1..,.H be modified in such
a way that the parametess,, Vv, and w are constant for eaah= 1, 2, ...

Under the introduced notation, the theorem of Themnp(1997, p. 60),
is as follows:
Theorem 3.2. Under the conditions:VS(hu) -V, in probability

asu- o and 3" (s) - 0 foranye >0, where:

8" = ) ) ||yh,iD_yh||

n
Ny

Nﬁ‘”) {

i:iDU(h”) ‘Hyh,l[_th>En(hU)[l_

——

and||| is the Euclidian norm, the distribution of the tercstatistic:
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) INM-nW
Zsﬁu):(ygw‘yh ThONE
ny’Ny

approaches the multidimensional normal distribub§®, V).

This theorem leads to the following.

Lemma 3.1. When for any h = 1, .., H the assumptions of tlemth
rem 3.2 are fuffilled, the distribution of the vecstatisticy, o) approaches

the multidimensional normal distributioN(V,V(VWS(UJ ).

Lemma 3.2. The matrix VS‘(%)(VWS(U)) approaches the matrix
V_l(yws(u)) whenu - oo.
Pr oof: VS‘(%) (szw) is a continuous function oi\/iu), h=1,...,H, which

approache¥,, respectively, a® - . This is derived in the following way.
Let c([‘ﬁl)s(i,j) be the sample covariance of the i-th and j-th aldes.

The sample variance-covariance matri)(iuﬁ[c([‘;)]s(i,j)] approaches
V= [cm(i, j)] asu - co when for any>0:

li[rzo P{h

ij=1

cls(i, 1) = caui, )| < s} =1 (3.42)

On the basis of the well known Bonferroni ineqya(gee e.g. Miller (1981))
we have:

iim P{ﬁjc&i{s(i, - cai,i] < s} 21- S lim ek, ) - couli | > )

)=
This and the Chebyshev inequality:

F’HC(D”l)]s(i. i) — i, j)| > s}< Dz(Lf('J))
€

lead to the following:

i,j=

K 2(~0) (i i
12 lim P{ ﬁlc(ﬁ)]s(i, i) —cuy(i, j)| 58}21— znmw_

V- iV -
The equation (3.42) is true if for any i,j=1,...,k

U0 €

(3.43)
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Hence, we have to prove the above expression. kesimplify
the notation of the population and sample covagaric the following way:

- 1 N v =V _:iN . _:iN )

Cny = N—lizl(x X)(yl y)’ X N;X" y N|Z=::Lyl
R JUNE £ VPN B

Cm]s—n_li;(x. Xs)(y. ys)ai’xs n;)ﬁauys néylal
where: a=lifildsanda=0ifiOs, E(a) %

_ n(n-1 _ n(n—-Y(n-2)
Haa, )= N(N-1) Haaa, )= N(N-(N-2)’

nn-H(n-2)(n-3)
N(N-D(N-2)(N-3)

éaa]'ahat): fort>h>j>i=1...N.

The generality of the following derivation does defpend on the assumption
thatx =y =0.

Blcus)=— ( XY, .-‘s‘s]=

ni=1

n N
=— —Zx Yi ——E 2% Yia +ZZ Xyaa ||=
n- i=1 i=1 j=1
J#i

: L3y
- V. X =
N = N(N Diam M

j#i

(Z ZyJ :leiyiD=

n ((N—l)(n‘1)+n‘1jc - nh-) (N-1+1)c,, =c
Nn 1 11 a1

nN - (n—1)Nn
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Hence, the statisticgs is the unbiased estimator of the covariangg. c
Now, we are going to determine the variance of stadistic ¢;;5 Firstly,
we are going to derive the second moment of thimakir G5

Elcis)= o 11) (2 ! .jz -(nf—nl)zE(YJ/sg& yiai]+

+(nL_1] Ex2y?). (3.44)

1 £ N 2 1 . N, N
va | = X’ vla. + X raa. | =
) e B Y Aan

n N n-1NN
C P — X2y2 + X V.X.V. | =
(n_l)ZN ; |yl N—lé% |y| Jy]

J#i

=(n_'l)zN( Y e o

:—n(N _zn)'C[zz + n(N_ ) C§11 zlcmz + Céll +1C?11 + O(N _1)+
(-1PN " (-HIN " n "
+dn*N?)+ofn2), (3.45)

(nfnl)z E(Ysysi%)q yiai] n( ) (Zx y'a, +

+ZZ>€yyaa +ZZ>§y2>saa +

i=1 j=1
J#i J¢|
N N N N N
XY XY xyaa+Y>xY Xy xyaaa |=
i=1j=1 i=1 j=1t=1

J#i J#i t#i
t#]
i%]
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NG _21)2 (N S . _1ng e+ N((nN_ ])1()?N 2)2)(22)(

Jh N V|2 -sNneaN )
;Xiyiéxi (;Xiyij J]_ (n—l)zN(N—Z) Crp2
L2ANZIN-n) o)+ o N+ ofn2), (3.46)

—C
(h-IN(N-2) ™ n E

(n-2)?
__ 1 1d 20 N 2(n Hu
“n(n-1p N;Xiyi+N(N 1).21 VNN 1).211,2#”'
n-Y(n-2) J NN -1 N
N(N-1)(N- 2).211_1121)(' X N(N 1)221 XY
J¢|§:J J#i
LA B3 4n-Dn-2) J N
TNIN- 1)§§1X'yy‘ N(N-1)(N - 2)222”” *
h-D(n-2) NNN
N(N-D(N-2) Z R Yt
j#it#

t#]
j#i

n=-D(n-2)(n-3) NJN
X: X =
N(N -1)(N = 2)(N - 3).;,21% hgﬂ' ¥
lahi i
jELj#I

_ 1 ([N Cnsee 80-D0-2) _ 4n-D(n- 2)(n_3)jcm .
n(n-1)°N N-2 (N=2)(N-3)
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+—(n ~D(N-D (N -2n+ 2—(n ~2)n-3) jCEQOCEDZ +
N-2 -
PZOOD gy, 0209 =)

This and the expressions (3.43)-(3.46) lead tdahewing:

E(Céas)zﬁ[(n(N—n)—z(Nz —3Nn+2N+2n2)+ N-6n+5

n-1°N N-2 n

,80-D(n-2) _4n-DH(n-2)(n-3 ]Cm .
n(N -2) n(N-2)(N-3)

n(N -2)

-DHN-D (N _on+2+ (172073 _3)jcmcmzj teh

+ N-n (N 2(N -)(N-n-1) ¢
N(n-1) N—2 n(in-1)(N-2)

1

=_( 22 CEM)"' Chy * O(N _l)+ O(n_lN_l)"' O(n_z)-

n

Hence:
2 _ (2 ) 2 _1( 2)
D?(cus) = Elchs =11 = \Cre2 ~ 1 +

+ O(N ‘1)+ O(n‘lN ‘1)+ O(n‘z).

This result leads to the expression (3.43).
Theorem 3.3. Under the assumption of the theorem 3.2, thestitati

Ugo =(y Y+A)V§ (wg))(yw -y +aJ, (3.47)

where:A is a constant row vector, approaches the nonalectii-square dis-
tribution xﬁ(K) with k-degree of freedom and the non-centralityapseter:

K=AV (7, o) AT (3.48)
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Proof. The lemma 3.2 leads to the conclusion that thisst Ugw
approaches the following Wald's statistic (see,. égeritt (1998)) when

U

Uy = (Vs(u) -y+ A)V * (Vs(u) )(Vs(u) -y+ A)T .

It is the square form of the vectt&?s(u) —V+A) which, on the basis of the

lemma 3.1, approaches the normal distributiod,N(), asu - . Hence,
the well known limit theorems, see e.g. Rao (19823d to the conclusion

that the Wald's statistitJ(,, approaches thxﬁ(K) distribution, as) — .

We assume that takes such a sufficiently large level that theista
tic Us has approximately(E(K) distribution. For the sake of simplification,
let us introduce the following notation:

n&’) =n,, Nﬁ”) =N,, forh=1...,.H and n®=n N0 =N, sV =g

Yoo = Vs Osm =05.
Let us consider the following hypothesis:
Ho:A=0, HAZO

If the hypothesis Hlis true, the statistic $Jhas approximately the
central x? distribution with the k-degree of freedom. In tbase when H

is true, the statistic {has the non—centra;l(ﬁ(K) distribution withk > 0.

The non-centrality parameter shown by the exprasd@ol8) can be rewritten
in the following way:

K=AATYV (YT (3.49)
where:
A
y= cyy' =1
AAT

If A is the maximal eigenvalue of the variance—cova:éamatrixv(ys), N

is the minimal eigenvalue of the matril('l(yws(u)). This and the expression
(3.49) lead to the following:

% = minimum{yv - (VWSM )yT} : (3.50)
=l
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AAT
K=K, = N

The power of the test increases when the parameigrarger and larger.
So, as the maximal eigenvaldebecomes shorter and shorter, the power
of the test becomes bigger and bigger. The max@igenvaluex of the ma-
trix V(szw) is the function of the sample sizes n, n,. Hence, we have the

optimization problem of determining such samplesifn} that the function
A(Ngy, ..., nyy} takes the minimal value under the limited sumtltése sizes
or the limited level of the following cost function

c(nl,..,nH)=ichnh . (3.51)

The unit cost of observation of variable valuesam h-stratum is denoted
by . More precisely, we have the following optimizipgpblem:

)\(nl,...,nH)=minimum

c(nl,...,nH)s Co (3.52)
1<n, <N, for h=1..,H

In some situations we expect that the power oftéisé under both
fixed hypotheses, should be not less tfanThis means thatk = Kg

T AAT
2 Ky So: A< =Ag. Then, we have the following
K
B

and Kk, =

optimization problem:

c(nl,...,nH)=minimum
Any,ny ) S A, (3.53)
1<n, <N, for h=1..,H

Now we determine such sample sizes that the casttiin should take
a minimal value under the assumed lefebf the power of the test of the hy-
potheses Hand H.

In order to handle both optimization problems thgpropriate
numerical methods should be applied, see the U263
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3.2.8. Optimization of sample sizes on the basis of Neyman's location

Neyman (1934) determined the optimal sizes of $asnpelected
from strata in the case when only one varianceiignmzed. These optimal
samples are the solution to the problem (3.17)hin ¢ase when only one
variance of the i-th variable is minimized, thatnken the purpose function

has become variance of an i-th variable. If theda&ad deviation,/vy, (V;)
substituted for p h=1,...,H, the optimal sample sizes are showrhieyex-
pressions (3.18)-(3.20). Let us denote %y (i=1,...,m) the vectors of the
optimal sample sizes determined in such a way. tButisg /v, (y,) , n®

for by, n, resperctively, in the expression (3.15) we obtagminimal value
of the variance of the i-th estimator which is dedoby % (n'’) under
the vectorn® _

On the basis of these Neyman's optimal sample isolsitn®
(i=1,...,m), compromise sample sizes can be foiiihis problem was consi-
dered e.g. by: Dalenius (1953, 1957), Geary (1988 (1963, 1964), Kish
(1961), Neyman (1934), Mahalanobis (1944), Srikan(tB963). Generally,
their results can be treated as solutions obtaometthe basis of goal optimiza-
tion. Almost all the authors considered the follogvproblem:

1 -
> — = minimum
i=1 € (3.54)

k(n)<K, J) <n<Nw
where eis the relative efficiency coefficient defined the expression

_ f,(0?)
l Dz(ywis)
The varianc®?(y s ,P, ) is determined by the equation (3.6). The optimal

solution to the problem (3.54) is determined by d¢logiations (3.18)-(3.20)
when b is defined by

b, = fl_l(ﬂ(i))évch (i)
Let us show the following problem considered bg31964):

H m .
N2, — ini
n.—-n K, =minimum
hzq zl( n D) K (3.55)

k(n) <K, o, <n<Nw
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When N, o for each h=1,...,H the compromise solution iscliews:

H
K‘Zktﬁt
n,=n, +—=%- 3.56
n, =n, ¥ (3.56)
where:
n=—>ny’, k=—>k, .
n, le h thzl h

Let us note that other problems involving Neymaspsimal sample
sizes can be formed and solved on the basis ofipurgibse optimization
methods.

3.2.9. Optimization of sample sizes on the basis of generalized
variance

The generalized variance is a measure of precisfoa vector
estimation based on the ellipsoid confidence sét \was noted in paragraph
1.5.1. The generalized variance is an increasimgtion of the volume
of such a confidence set. Hence, the sizes of plsafselected from strata)
should be determined in the such a way that theergéimed variance
of the vectory,,g takes the minimal value. This problem was fornedat

by Dalenius (1953) and can be rewritten as follows:

{f (n) = minimum (3.57)

k(n)<K, o, <n<Nw

where: the cost function is defined by the expms$8.13) and
f(n)=deV(V,s.Py ).

The iteration method was used to determine thetisalito this problem
by Ghosh (1958). Grfeand Kaniewska (1964) proved that Ghosh'’s solution
is convergent on the true solution but in the caden H=m=2 and
CovY wis: Y wxs Py ) =0. Arwanitis and Afonia (1971) adapted the gradient
method to solve the problem (3.57) for m<4 and H>2.

Lemat 3.3 [Wywiat (1989, 1992)]: If at least one intra-strat
variance-covariance matri2, (h=1,..,H) is positive definite, the generalized
variance ffl) is a strictly convex function in the sBt for sampling without
replacement or in the sBt, for sampling with replacement, where:

Dyp={n: oy < 2n < Nw}

D,={n: n>o4}
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Wywiat (1992) showed that the vector of optimaimpte sizes
is a solution to the following set of equations:

1 9f(n) _ 1 af(n)

h=1.H-1
k, on, k, on, (3.58)
k(n) =K
wheré" :
[ v v, Vig |
Vi A\ e Vo
2 h,i-11 h,i-1,2 h,i-1m
of () = —&idel Ch; C,. C, .
a 2 < h,il h,i,2 h,i,m
n, n, i=1
\Y h,i+11 \Y h,i+1,2 v h,i+1m
L Vm,l Vm,2 Vm,n i

where the elements of the matricegy,s,P,) andCy are denoted by;v

and ;= G, (v:.,y;), respectively.

Let us suppose that the admissible leyedffa generalized variance
f(n) is determined. Then, we can find such sizes ohpdas selected
from strata that the cost functionnk(takes a minimal value. This problem
can be written as follows:

{k(n) = minimum (3.59)

f(n)<f,, o,<n

Wywiat (1992) showed that the solution to the duling system
of equation

1 of(n) _ k,
mf, on, k(n)’

o

is the vector of optimal sample sizes.

L See e.g. Kubik and Krupowicz (1982), p. 445-446.
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3.3. Stratification of population on the basis
of auxiliary variables

The vector of stratified sample means is usualljn@e accurate
estimator of population averages than the vectosimiple sample means.
Precision of the vector of the stratified samptegaod when the intra-stratum
spread of variables is short. Hence, a populatimulsl be divided into such
strata that intra-stratum spread of variables urstigdly is short as possible.
In a one-dimensional case, the values of a variabtier study are divided
into such subsets (strata) that the intra-stratariamce takes the value as low
as possible. This approach was considered and afmatle.g. by: Cochran
(1961, 1963), Dalenius (1957), Dalenius and néwr(1951), Hess, Sethi
i Balakrishnan (1966), Jonin, Jonina and ZhurayE378), Serfling (1968).
Let us add that Kish (1965) presented practicabsruivhich should lead
to good stratification of a population. When divigia population into strata
is not possible or too expensive, so called sicatibn after selecting
a sample is considered.

3.3.1. Non-dominated partitions of population into strata

Let us consider the proportional location of thenple in strata. So,
n=nw, and N=Nw, for all h=1,...,H where jis the size of a simple sample
s, drawn without replacement from h stratum. Undeis thssumption
the vector of variances of the stratified samplamsds as follows:

d,(a)
d@=| .. (3.60)
d. (@
where:
d,(a) = D2(y, |8)= NN;” hi:lwh(a)v*“ (v, |a) , i=L,...m. (3.61)

a:{Ul,...,UH} is a partition of a population U into a set ofatdr Let us

assume that nw1 for each h=1,...,H. LeA be a set of admissible partitions
of a population. Our purpose is determining suclpaatition alJA that
d(@)=minimum. The set of non-dominated partitions, ated by AZA,

is a solution to this problem. PartitiomsbA if it is not true that di) > d(b)
and d@) < d{) and d&) < dc) and db) < d(c) for c 0 A-A. Usually, the set
A includes more than one partition. In order to cteflee only one reasonable
partitiona. from the sefA the additional optimization criterion should baeo

structed. For instance, the sudta) = idi (a) , alJA can be minimized.
h=1
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Let us remember that the variance covariance xnafrthe simple

sample (drawn without replacement) was denoted\ﬁ:(YS): N_nC*.
n

The variance-covariance matrix of the vector ofatffied sample mean
is denoted byV(VWS) and expressed by the form (3.11) in the case when

the samples are drawn without replacement fromtastemd their sizes

are proportional to the sizes of appropriate stifa can postulate that such
a partition of a population into strata should laleated that the stratified

sample vector is better than the vector of the Engample. It means that
we postulate that such a sét of partitions of a population into strata
is formed that the matrix

F@) =V(Vs)-V(V,s |a), foradG (3.62)

is positive definite. The variance-covariance matf the vector of means
drawn from the partitiona of a population into strata is denoted
by V(VWS |a). Now, we can look for the s&//G of non-dominated parti-

tions determined by the maximization of the follogicriterion function:

A (d)
A@)=| .. (3.63)
An(2)

whereA(a) is the vector of all eigenvalues of the maf{®) andA;=A, A,
Usually, the seG consists of more than one partition. In this dhgenew su-
per-criterion function should be constructed inesrth obtain the unique par-
tition. For instance, such functions can be deteechiby

M(@)= A (8) = tF (@), A (@) =1, ()

h=1

Determination of the set of all non-dominated itiarts is rather dif-
ficult even in the case of not too large populatidhat is why some cluster-
ing methods can be suggested in order to stratifgpulation. Some modifi-
cation of the well known k-means method presenteithé paragraph 3.7 can
be adapted for this purpose.

3.3.2. Stratification of population through minimization of the spec-
tral radius of the variance-covariance matrix of auxiliary variables

Let us consider the regression superpopulation Mmakddined
in the unit 1.2 by the probability distribution dhe random vector
Y=[Y1...YN], where Y is attached to the k-th element of a population

Q={1,...,N}. It has the following properties:
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Y =BotBxy T+ 24 k=1,....N (3.64)

where:x=[xk1..-Xml is the vector of the values of the fixed auxyiaaria-

bles observed on the k-th population element. Tégtor of regression pa-
rameters is denoted I~[B1... Byl. The operators of the expected value,

variance and covariance calculated on the bastheoflistribution function
which defines a superpopulation model are denotedhb symbolsk(.).

D2(.), Co\.). Let us introduce the following assumptions:
E(Y,) =y =B, +BX,
E(z,) D%(Y,)=D2(z,)=0? (3.65)
co{Y,,Y,)=CoV{z,,Z,)=0
where: EI=1,...,N.

Let us assume that the populati@nis partitioned into non-empty
and disjoint strateQy,, h=1,...H.

~ — N
The predictorY s of a value of the population mea}n=iZYk

N iz
is as follows:
~ H J—
Yos = ZWhYSh (3.66)
h=1
where:
Ys =L vy,
n, s,

The strategy(\?ws,Pp) is p<£ unbiased predictor of the meah. Anderson,
Kish and Cornell (1980) derived:

E(v.,)=BC.,p" +02 (3.67)
where:

1 SN o 1
V*th -1 2 =YY, =N_ 2Y,

h I<DQh h I<DQh

This and the expression (3.11) lead to the follgwone:
N —_

N [BC,B" + 07 (3.68)

EDZ(\?WS,Pp)z

H
where: C, => w,C, is an intra-stratum variance-covariance matrixhef t
h=1

auxiliary variables. Lep,, be the maximal eigenvalue (the spectral radius)
of the matrixC,,. Then:
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Pw= max'mum{a CWaT}, where: o =—P
uaT =1 BBT
EDZ(?ws)S NN_ "[BB pu + 0%1=M(p) (3.69)
n

Hence, the parameter, can be the criterion function of the cluster metho
used to stratify the populatidd into strata of the same size. The strata were
determined in such a way that the maximal eigemvafithe intra-stratum
variance-covariance matrix of auxiliary variablexkés a minimal value.
The clustering algorithm can be an adaptation efwill-known Ward meth-
od. That is why this clustering algorithm will belled the modified Ward
method. Let us note that the order method of Weadl$ to such strata that
the trace of the intra-stratum variance-covarianegrix of auxiliary variables
takes a minimal value.

Anderson, Kish and Cornell (1980) compared Qr_ré(?ws,pp) with

the mean square prediction errors of the m&anfrom a simple sample
of size n. They stratified the population througlntpion values of each auxil-
iary variable into the class boundaries by the -“ketwn rule

of Dalenius and Hodges (1959) and then they exgltv@w the efficiency
of stratification depended on the correlation doafhts between
the auxiliary variables and the main variable.

Let the matrixC,=C,(X) be the intra-stratum variance-covariance
matrix for the partition of a population into thiada Q,, ..., Qy represented
by the block matrixX = [Xy, ..., Xy] of the auxiliary variables observations.
The sub-matrix X of dimension mN, consists of the N observations
of the m-dimensional auxiliary variable. Lgt=p,,(X) be the spectral radius
of the matrixC,,(X) for the partitionX.

On the basis of the expression (3.69) we infer thigp,(X))
is minimal if the functiorp,,(X) is minimal. Then it leads to the following op-
timization problem:

pu (X) = minimum {p,,(X)} (3.70)

where: ] is the set of block matrices of typeand each of them represents
the admissible partition of a population into sirat

Hence, the optimal stratification is equivalenttie determination
of such a partition of the population representgthle block matrixX, which
minimizes the spectral radiyg,(X) of the intra-stratum matrix of variance-
-covarianceC,(X) in the set ] .

Let us note that the partition is optimal in the case when a vector
of means of variables under study is estimated \ambles are described
by the regression models dependent on the sanof aexiliary variables.
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It is difficult to find the solution of the optiméion problem directly
through minimization op,,(X) because the size of the admissible solution set
[ is very large. That is why the well-known aggloat@n clustering meth-
od of Ward was adapted in order to form the pari#tiof a population into
strata. When the number of the algorithm stageems®s, the quantity
of groups (strata) decreases. At each stage @lgfogithm, groups are joined
in such a way that the spectral radius of the istratum matrix of variance-
covariance achieves a minimum value. Before prdogedith the clustering
algorithm a population is treated as a collectidnone-element groups.
At each stage of the algorithm there are three wéysrming a new cluster.
Two elements of a population can be clustered ém® group. A population
element can be joined to a multi-element groufs ftossible to join two mul-
ti-element groups.

Let us suppose that the following block matrix egEnts
a collection of groups resulting from the t-th gtay the algorithm:

X(t) ={x, (t):hOn(®)} t=0,1,..,N-1 (3.71)

where:mn(t) = {h: 1< h< N} is the set of (N —t) indices of the clustefsize
Ni(t) = 1 represented by the submatriceg(tX of dimension mx Ng(t)
of auxiliary variables data. The block mati{t) consists of (N —t) subma-
trices.

Let X (t+1) be a submatrix representing a new group fdratethe
(t+1)-th stage of the algorithm, thefi(t+1) = [Xi(t) O X;(t)] for k = min
{i, j}. Then n(+1) = n() — max{i,j}. Denoting by X,(t+1) = Xu(t)
the remaining submatrices for B n(t)-i-j, we obtain the admissible set
of groups for the (t+1)-th stage represented bydhewing block matrix:

X(t+1) = {Xn(t+1) : HIn(t+1)}.

Let O (t+1) be the set of all admissible matrices of typg+1). For all
X(t+1) O O (t+1) the increment of the spectral radius willdemoted by:

d(X(t+1) =pw(X(t+1)) —pu(X(1)). (3.72)

Finally, we select an optimal partition of the ptation represented by such
a matrixX(t+1) that:

d(X(t +1)) = minimum {d(X (t+1))}. (3.73)

X (t+1)00(t+1)

The algorithm will be completed at the stage nunmilzeN — 1 when
due to the agglomeration process only one clugjealeto the population
is left.

It can be proved almost immediately that if m=then
the expression (3.72) can be reduced to the form:



91
I1II. Stratified sampling

dX(t+2) =N, N (N, +N ) -% T (- %)

where: X;,X; are the vectors of means of variables of the jginups repre-

sented by the submatricis, X;, respectively. Hence, ¥(t+1)) becomes the
well-known clustering criterion proposed by Ward®§B8). Therefore, the
Ward’'s choice rule of optimal population partitiorcan also
be applied in this case. The partition represeriigdX(g) and obtained
at the g-th stage of the algorithm is optimal ifufils the following expres-
sion:

d(X (g+1) = maximum{d(x (t+1))}

Then the partition represented by the block maX{g) is chosen
as an optimal one if the increment of the criterimction reaches
the maximal value at the next stage of the algarith

Let us note that the problem of the optimal sticaifon has been
formulated by Dalenius (1950). A given populatienpiartitioned into strata
on the basis of clustering outcomes of a multidisi@mal auxiliary variable.
The problem has been developed by many statisticlamong others, Singh
(1971), Anderson, Kish, Cornell (1980), Wywial (1%9 1995a), Skibicki
and Wywiat. (2001) have used an auxiliary variafile the stratification.
Schneaberger and Pollot (1985) have obtained amalpdivision of values
of a two-dimensional normal random variable. Bra¢t@91) has presented
the survey of stratifying methods and their modifiens while Thomsen
(1976) has compared several methods of stratificati

Wywial (1998) considered an example of stratifimatof a popula-
tion by means of the three methods defined abovata Dconsist
of Swedish municipalities. They were published tarrelal, Swensson and
Wretman (1992). We consider two auxiliary variabless - the size of the
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Figure 3.5. The mod. meth. of Ward. Figure 3.6 Mod. meth. of Ward.

population in 1975 (in thousands), ME84 - numbemahicipal employees in
1984 and the variable under study: RMT85 - reveffigas the 1985 munici-
pal taxation (in millions of kronor). The numberdsdta is 284. After studying
the distribution of the data, three non-typical ebations of the variables
were found. Their values were too large. They erdhe first stratum and
they all have to be sampled. The rest of the data wiustered into three stra-
ta by means of the three mentioned. Firstly, thatastwere determined ac-
cording to the geographical regions of Sweden. Niwdse strata were ob-
tained by means of the clustering method of Wardherbasis of the auxilia-
ry variables. The third stratification was develdpeby means
of the modified method of Ward. The scatters oftthe auxiliary variables in
the strata obtained by means of these three metlaoesrepresented
by figures 3.1, 3.3 and 3.5 respectively. The itistions in the particular
strata of the variable (under study) RMT85 are@sented by the figures 3.2,
3.4 and 3.6 according to the methods of stratificatThe analysis of the fig-
ures leads to the conclusion that the sets ofastwdiich have resulted
from the two Ward methods are better than geogcaptstratification be-
cause the strata means obtained by the Ward me#iredsot homogenous
and the intra-strata distribution are not spreadnoich.
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Table 3.1

The accuracy comparisons

The optimal The op- The ratio of the variances
location . to the variance in the cage
timal val- i
The method of the samples Les of the stratification:
of stratification )
of the the modi-
[ | 1| varianceg the geograph. fied Ward
1 2 3 4 5 6 7
The geographical 10 12 8 1085 - -
The —order methofl o | 15| & | 104 0.114 0.544
of Ward
The modified method 10 18 5 | 228 0210 i
of Ward

The optimal location of a sample of size 30 wassatered on the
basis of the standardized auxiliary variables. Elm of a sample drawn
from a stratum was proportionate to the productthef stratum fraction
and the square root of the trace of the stratunmameg-covariance matrix
of the standardized auxiliary variables. Next, ttagiance of the stratified
sample mean of the RMT85 variable was computed each location
of a sample, separately. The results are showhertable 3.1. The optimal
location of the samples in the strata obtained l®ams of Ward methods
leads to a shorter variance of the estimator tHan d@ptimal location
in the geographical strata. Moreover, in this sehseorder method of Ward
leads to a better estimation accuracy of the pdipulanean of the RMT85
variable than the modified method of Ward.

3.3.3. On stratification of population in order to optimize the sample
sizes in the case of estimation of mean vector

Let Q={1,...,N} be a fixed and identifiable populatioft.is parti-

H
tioned into H strataQy, where: UQ, =Q andQ,nQ, =0 for k# h =
h=1

H
1,...,H. The size of an h-th stratum is denoted\yand N=3"N, . Let s,
h=1
be a simple sample of size, ®rawn without replacement from an h-th
H
stratum and lets=|Js, . The considered population parameters are as

h=1
follows:
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v —i V :i = 1 -y, f
Y = N Zyik ' Yin N Zyik + iy N, _1k§(yik yih) :

h kogy,

kOQ

As it is well-known, the unbiased estimator of theeragey,

(i=1,...,m) is the following statistic:

H
Vis = hZWhyish (3.74)
=1
where:
N, _ 1
Wy, :Whi Yis, :n_h M%;.hyik
Its variance is as follows:
(3.75)

H N, —n
2 Ny =Ny,
h Vin
h=

DiZ:Dz(Vish):zW N.n
h''h

1

The problem is how to determine the sizgshn= 1, ..., H, in such
H
a way that the sumn=>n, takes the minimal value if variances

h=1
of stratified sample means are fixed. This is exgld by the following ex-

pression:
H

(3.76)

Let us assume that,, :i, for h = 1, ..., H. This leads to the following

h
equivalent problem (see e.g. Kokan and Khan (1967))

a1
,xH)= 2. — =minimum

h=1Xh

f(xl,...

ia X,<b, i=L..m (3.77)
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where:

Howlv,
a, WiV, b =¢€ +h % (3.78)
=1 h

Wywiat (2000a) noted that the conditions, defingdtihe inequalities in the
expression (3.77), determine the simplex R comgjstif the admissible solu-
tions to the problem. The purpose function, f(x, %) is strictly convex and
decreasing in the simplex R. Hence, the solution the problem

is determined by the co-ordinates of the pointdymn one of the walls
of the simplex.

The shape of the simplex R depends on the fractipmg
and variances {}. So, it depends on a partition of a populatiotoistrata.
Let R, Rs1 be simplexes and let, g+ be their volumes. The simplexes
are determined by two different partitions of thapplation into the strata.
These partitions are indexed by t and t+1. Moreoegr; and f., be optimal
values of the purpose function of the problem (B.T7R; O R, both sim-
plexes have the same point A which is the origimipof the edges of the
simplexes. These edges are parallel to the axihefco-ordinate system.
Hence, if RO Ry then g< g1 and f = fi.4. In this situation Wywiat (2000a)
concluded that the strata should be determineddéh a way that the volume
g of the simplex Rshould be as large as possible.

Let us note that it is possible, ¥ g.;, even if RO R.;. In this case
the inequality £ fi.; can be true but not necessarily.

Let u be the matrix of dimension>#t andA be the column vector
of dimension k1. Let R be the simplex spanned on the points whose
co-ordinates are elements of the vedoand the columns of the matnx
The number of all these vertexes is denoted bfk>H, the simplex Rcan
be decomposed (triangularised) into such disjoimipkexes that their sum
is equal to the simplex;RLet R, (A,uh ) be the simplex spanned on the

points whose co-ordinates are elements of the wektand the columns
of the matrixu; . . This matrix consists of the columns of the matriden-

Ja-e-in
tified by the indexesgj...,jy. Let us assume that{j..,j4} is such a set
of all H-element combinations of the column indeg&the matrixu that:

Rt(A,uhij )m Rt(A,u oo, )= O for (jymn ) % (€1, 84)

(3.79)

{i UI:\}’t (A’uh-.-iH ): R.(Au) =R,
Jroeenrdn

where: nzH and k=Carc({j1,..,jH})s(r:J. The volume of the simplex

R, (A,ujmj ) is determined by the expression (see e.g. Bork2&9)):
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q 1 J
“la Ui, i,

where each element of the row veclas equal to one. Hence:

9 (Avuil...JH )=

9= % }gt(A. u, ;) (3.80)
IR

..... i

In the case when H=2 and>th the columns of the matrix can

, u, | . m
be rewritten as followsu, ={u” } j=1..ks ( 2). Let the columns of the
2
matrix u be ordered in such a way thgt> u,, if and only if u; = Uy j
and y; < Wy, and at least one of these two inequalities is pshar
Let A =R(A, u, ,uj) be a triangle spanned on three poi{As ui,uj}.

The triangularisation of the simplex®& (1) is as follows:

Ay ynd,=0forj=2.k-1

k-1
U4, ju =R(A,U)
P

In order to maximize the determinant the well-known clustering
method of Hartigan (1975), called the k-means ehisy method, can
be adopted. The starting point of the clusterimgpddhm is an arbitrary parti-
tion of the population into strata. At the t-thgateof the clustering iteration,
each element of the population is moved from oneaten
to another and the values of the determinaatre evaluated. The new parti-
tion, obtained in this way is optimal if the detémant takes a maximal value
and if g>g.;. Let us notice that during the (t+1)-th iteraticguch
a possible partition is admissible if for which themplex includes
the previous optimal simplex (determined in thé tteration). The iteration
process is continued until the T-th iteration, whkere is no new partition
that leads to a greater value of the simplex voltime g. The next stop rule
is assigning the admissible number of the iteration

The problem considered above can be consider@daittice when
the census data are available. In this case, ipdssible to stratify
a population through the maximization of the simpleolume. Next,
the optimal sample sizes can be evaluated. Théneltpartition of the popu-
lation into strata as well as the optimal sampleesi can be useful
to make up projects of sample surveys of the poipuldoefore the next cen-
sus.

Let us note that Skibicki (2002) considered thebprm (3.76)
in more general case when costs of observatiomataf @e not the same.
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3.4. Two-phase sampling for stratification

Wywiat (1996¢) considered the following problem. tho-phase
sample is drawn from a superpopulation. In the pfsase the simple sample
is selected without replacement. Next, it is diedi by means
of an appropriate cluster method. The stratificais based on auxiliary
variables. In the second phase the simple lie@mpre selected without
replacement from the just created strata.

In the first phase a simple sample s' of the sias drawn without
replacement from a fixed populatio®. Values of auxiliary variables
are observed in the sample s'. The sample s' steckd into strata denoted

by s, , h=1,..,H, of the sizes 'nrespectively. The sample can be stratified
by means of a well-known cluster method like Wards k-means
on the basis of auxiliary variable observations.

Let S={S,...§,} be the sequence of samples, whefdsSa simple
sample of the size , mrawn form the strat&,. The value of the population
meany is estimated on the basis of the following statist

H
Yus :hZ_IW'thh (3.81)
where:
_ 1 n ., d
Vs, =— > Y » wy =, n'=>n.
N, ws, n h=1

Sarndall, Swenson and Wretman (1992), p. 353, prdbhat the statistic
Yws IS an unbiased estimator of the mean and thewetrthe following

formula for its variance:

2, +_ N-IN H o2 M~y
D (yws)_ NQ' V*(y)+ES'[hZ=:1(Wh) n.n, V*S'h WlS)J (3-82)
where:
—L 5 —-v)? 4= 1 -V 2
DA S L A

where Eg(.) is the operator of the expected value calculatedhe basis
of the probability distribution of the simple raond sample S'.
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[

Let us assume than, :nﬁ and that nh=% for h=1,...,H.

for h=1,...,H. Hence, the variance given by theregpion (3.82) takes
the following form:

N N 1 n-n H .
D (§s) =" v+ T [hzzlv[sh (yls))- (383)
Let s be the simple sample of size n drawn witmeptacement from
a finite and fixed population. The sample meaneisaded byY =l DYy -
N ks

Its variance is as follows:

2 — N-n
D*(Yg) = ——v(¥).
Nn
The sample variance
= bi-vsf. vs=-
Vs =—— 2.k Vs ) Vs == 2 Yk
n"-1cs Nics
can be decomposed in the following way:
1 n' H )%
Vs =—— ——1Zv yIs=s)+3 s -vsf |-
n' - H\5
(3.84)
Then:
14 - n HL  _ YV
— S=s)= -— -V -
v bls=9 = v ) s S )

The obtained result and the expression (3.83) tiedide following formula:

p(AWS) {H -1n'-n, N-n

D2
y n'—-H n'n Nn

o[£, 70 ).
(3.85)

n'-n
}vm(y) " nH(nN'—H)

This result allow us to calculate the followingfdience:

2(c \_n2(c )= n-n _ H-1 n-n
D?(Ys) =D} (Vus) O (hzl(ysn ys)) [n - nn} 5(¥)
(3.86)
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or
1-1 } (H —D(l—,j
0°(7)- D3Fue) = M B[ £ ~96)° - w9
nH(l—W) h=t [1—n,) n'n

This result leads us to the following conclusiofi: N - and nb o
and N-n">0, then

(3.87)

Dz(vs)—D§(9ws)=n—1HEs(hi:l(vsh —vs)zj. (3.88)

Hence, if the sample size n is fixed and the sarsigle n' and the population
size N are sufficiently large, the estimatyy is not less accurate then
the sample meay.

Let us consider an example of stratification om Ilasis of the varia-
ble under research. A population consists of egaments (N=8). The fol-

lowing values of a variablg are observed: 1,2,3,4,10,11,12,13. The value
of the population mean isy=70 and the value of the variance

N
VD(y):ﬁz(yi -y)? =24.5714. The sample s' whose size is six ele-
—li=1

ments, is drawn without replacement from the pdpata Then, the number

8
of different samples i%G] =28. Each sample has been divided into two stra-

ta of the same size. The two strata are optim#heafwihin-strata variance

takes the minimal value. After some calculations weceive:
2

¥ v, (Ms)=3288322 and

sOs h=1 "

D2(y,.)= 5'8;20+ 0.0451

p

where n=ptn, and n=n,. In our case £h<6. Moreover:
D2(9,,) = 29811, for n=2, D?(9,,)=15131, for n=4.

The variance of the simple sample means takesalev

D%(ys)= 245714_30714.

Hence:
D%(y,)=9.2142, for n=2, D?(ys)=3.0715, for n=4
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. D*(y . - -
Let the ratioe = # be a relative efficiency coefficient:

D(Y,)
e=0.324 for n=2; e=0.493 for n=4.

The variance of the stratified sample mean is thas the variance of the
simple sample mean. This result was obtained wherfitst phase sample
was stratified on the basis of the researched biaridn practice, the stratifi-
cation of the sample should be based on auxiliarjables. Some accuracy
analysis of the estimatoy,, based on simulation method was considered

by Wywiat (2002b). From the other point of view theoblem is considered
in the next paragraph:

3.5. Estimation of population average on the basis of strata
formed by means of discrimination functions

Let Q={ey,...,q} be a fixed population of size N. The observations
of a k-dimensional variable under study are denbteg = [yi; ... W], i = 1,
... N. Letx; = [Xi1 ... %a], i = 1, ..., N, be an i-th observation of an adtimen-
sional auxiliary variable. We assume that the \deis under study and auxil-
iary variables are highly dependent on each otlersimple sample s
of size m is drawn without replacement from the ydafion Q. The sample s
is clustered into mutually disjoint and nonemptpsets § S, ..., $. Hence

H
s, =s. The set g h=1, .., H, is of the size mand 1I<m,< m-H
h=1

H
andm=>Y m, . The sets$s, ..., & are obtained on the basis of the obser-
h=1

vation of the variables under study by means ofappropriate clustering
method. Particularly, we can propose the well knoslustering method
by Ward or the k-means method. They provide a simbracluster spread
of observations of a multidimensional variable.

Let x :[xih] be the matrix of dimensionsymx a. The rowx;

of the matrix X, is the outcome of an a-dimensional auxiliary vagabb-

served in the setysso j,0s. The populationQ will be partitioned into
nonempty and mutually disjoint strata (subpopul&)dq,, h = 1,...,H, and
H

UQ,=Q. The row x; of the matrix x, is the outcome of an
h=1

a-dimensional auxiliary variable observed in theatsim Q,, so j O Q.
The matricesx,_ ,...,X;, can be a base of construction of a discrimination

Sh

function which divides the populatid®d into nonempty and mutually disjoint
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strata. Particularly, the well known linear discnation functions can
be obtained when the auxiliary variables have apprately normal multi-
dimensional distributions with the same covariamsatrices in the sub-
populations, see e.g. Rao (1973). These quitegesumptions are not nec-
essary in other discrimination methods.

Let d; be the Euclidean distance between the vecipg&lX, where
X is the matrix of auxiliary variable observed ip@pulationQ. Hence:

d; :d(Xi 'Xj):\/(xi _Xj)(xi _XJ)T (3.89)

wherex; andx; are observations of auxiliary variables attaclwethé popula-
tion elements i and j respectively, wher¥) and [1Q.

Let us assume that 8 Q,, for all h = 1, ..., H. The distance between
a vectorxX and a set of vectorX, will be denoted byp(xi,XSl).

For example:
1
plx, X ) == Xd, (3.90)
mj s,
p(xi , Xs.) = minpijrsrllum{dip} (3.92)
p(xi,XSi) = ma>éi]rST1um{dip} (3.92)

The criterion function is defined in the followingvay. We assume
that p(xi,XSh )=O, if i O s, The i-th element of the population is attached

to the t-th stratum if and only ifliQ,-s and

p(xi X )— mw;mgm{p(xi X, )} (3.93)
This discrimination method can be named the comui k-means method.
Its algorithm is as follows. Firstly a populatiéhis arbitrarily divided into
such subpopulation®®, h = 1, ..., H, that,§ Q® for all h = 1, ..., H.

Next, the well known algorithm of the k-means melhs implemented but
under the condition that the subsgissthe constant object in the subpopula-

tion Q" for each h = 1,...,H and for each iteration intkX 1,2,....

Let Q, ..., Qy be the strata (subpopulations) provided by thedieon
tional k-means method or some other method of idiscation. Hence, sC]
Qy and the size of the stratu®, is equal to N=m, forallh =1, ..., H and

H
> N, =N. We can expect that the spread of observatiotiseofmultidimen-
h=1

sional auxiliary variable as well as the spread observations
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of the multidimensional variable under study to lmsv in the strata
Qi, ..., Qy. More specifically, we can expect that intrastnatvariances
of the auxiliary variables and the intra-stratunmiasaces of the variables un-
der the study should be small. This suggests dcawime samples
from the stratdl, ..., Qu.

Let z be a simple random sample of the sizgadrmawn without re-
placement from the se®-s, h=1, ..., H. The sum of these samples

H
will be denoted byz=1|]Jz, . Moreover, let g = (s, z). Hence the sample s

can be treated as a pilot sample which lets usdéithe populatiorQ
into the strata. Next, the stratified sample zeékeaed. In another situation,
the sample s can be drawn on one occasion anémhg@es z on another occa-
sion of statistical research.

In order to simplify our study, let us assume that estimation
of the average of only one variable under stuayissidered. It does not limit
the generality of the following results: the popida mean is defined
by the expression:

1
V=Va TR

The sample treated as a random set will be dermtexdcapital let-
ter, e.g. S. The outcome of the sample S will heoted by a small letter s.
The simple sample mean is as follows:

Ve =— 2y Ya,-s, = Yi
S m,, is, v 205 N, mhIDQhShI,
- _ 1

yQ_S_N—miDQ—syi, nh mzzhyl

The estimator of population mean is as follows:

Jo =ays +L-a)Y W,y (3.94)

>
I,
iy

where:

O<a<lw, = N
-m
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The conditional expected value of the statistjg is as follows:

~ — H p—
EZ/S(yG)= ays + (1_ G)hzlehygh_sh .

EZ/S(ye):ays +(1_O()VQ—S (3.95)
or
_ Nl-a)_ Na-m_
E,s(Vs)= ,\E_rz)w Vs (3.96)
Particularly
EZ/S(g\/G):y’ ifa :%, (3.97)

On the basis of the expressions (3.95) or (3.96)imfer that the un-
conditional expected value of the estimator is:

E(Ve)=EEs(Ve)=V. (3.98)
The variance of the estimator is derived accortlindpe expression:

D2(6)=D2(E.s(7 )+ Es(D2is(9 ). (3.99)
Wywial (1998a) derived the following formula:

2 (A =2(N0(—m)2 _ 2\ H zNh_mh_nh
D ( G) (N—m)NmVD+(1 (X) Es hZleh—(Nh _mh)nh Vo,-s, |-

(3.100)

This expression can be rewritten in the followinayw

<\ _ 2(Na-m) Ho,N,-m,-n, N, -1
D2 - 1-a)E 2 Ny h h h
(YG) (N—m)NmVD+( O‘) s(hZ:lWh (N, -m)n, N, -m, _1thJ+

H m, -1
-1-a)E|SwWi—Ir = v _ |+
by Swig ™t

—(1—cx)2Es(iwﬁ Mo, )(vgh Ve )ZJ (3.101)
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where:

1 — L 1
v L , =— -
= =N _1% (y. th) Yo, N, i%hy

1 =
v[Sn-mh_liDZSJn(yi Ve J

Particularly, on the basis of the expression (3)1@®have:

o (n =(N—m)2 , N,-m, -n, Lo_m
D (ys) TNE Es[mw"—(Nh—mh)nh th—shJ if a N

(3.102)

The unbiased estimator of the variance of themestr §¢

is as follows:
D2 (9 ):MV +(1—u)2iwzwv (3 103)
eYe (N-m)Nm ® " (N, -my)n, '

where:

1 _ 1 _
(Yi _YS)Z Vig, = VZ(yi ~ Yz, )2'
n, —lioz,

Let us assume the proportional allocation of stmaes in the strata.

H
If np=nw, for all h=1,..H, thenn=3n, and the expression (3.100)
h=1

can be simplified to the form:

(3.104)

When N is large and m is small (that is when-No and% - 0),

(3.105)

then

2 2
2( @) |_a“vg (1—(1) H
D (VG )‘ ot Es hélWthh-Sn
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Moreover, if N - o and a :% - 0, then

N 1 H
Dz(yép))zﬁES(hZWhvmn-Snj' (3.106)

We are going to compare the variance of the sisplaple mean
and the variance of the estimatgr, in an asymptotic situation under

the proportional allocation of the samples to thiata and under

the assumption thatt :%. Let § be a simple random sample of the size

m+n drawn without replacement from a population Hénce, the simple
sample mean takes the form:

_ 1
= . 3.107
Vs, m+n i%]yl ( )

It is the unbiased estimator of a population and

o Y_N-m-n
D2(y )_mvD (3.108)

Wywiat (1998a) derived the following expression:
2fg@)=t
D2(y¢ )_F(vD -¥) (3.109)
where:
— —\2 H [ _ 2
r:ES(yQ—S _y) -l-ES(hZWh(yuh—s1 _yu_s) j . (3110)
=1

This result and the expression (3.108) under tlsaimagtions that N- oo,

m . )
a :ﬁ - 0 lead to the following expression:

m

Dz(yso)—Dz(yg”):% e (3.111)

If we additionally assume that the size m is venyals in comparison
to the sample size n and the variangenve have
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DZ(VSO)—DZ(%P))':%ZO. (3.112)

Hence, under the stated assumptions, the estimgforis not less precise
than the simple sample megq .

The construction of the estimator, is strictly connected with

the process of dividing a population into stratantgans of a discrimination
function. That is why the estimatdr, can be named a discrimination esti-

mator of a population average.
Let us note that the statistidNy, is the unbiased estimator

of a population total.

3.6. Stratification of population after sample selection

In survey sampling, conditional methods are uguatinnected with
post-stratification estimators for domains and witference on the basis
of regression models or contingency tables. Thesblgms were considered
e.g. by Rao (1985), Tillé (1998, 1999), Williams96R). The problem
of stratification of a population, on the basisob&ervations of a variable un-
der study in a sample, was considered by e.g. Rel¢h957).

Wywial (2001) deals with the problem of an apprafidivision
of a simple sample into subsamples. This partitieads to clustering
a population into subpopulations. Each of theseaepblations includes one
and only one previously created subsample. Theatdineombinations
of statistics from the subsamples are used forestignation of a population
mean. The subsample means and the regressiiomators from the
subsamples are considered to be these statistiescdefficients of this linear
combination are proportionate to the sizesthefsubpopulations. The
construction of the estimators depends on thehaaist of clustering the
sample into subsamples and the population intpuldations. Bias and
variances of a certain estimator have been detwtdhe precision of others
should be studied by means of some simulation ndsthn example of such
a simulation study is presented. Moreover, somemgdizations of proposed
estimators have been suggested.

3.6.1 Basic notation

Let us assume that the values of an auxiliary bgiare known
in a fixed and finite population of size N. A k-thlue of the auxiliary varia-
ble is denoted by x k=1,...N. The simple sample s of the size n
is drawn without replacement from a population W.iAh value of a variable
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under study is denoted by, yi=1,...,N. Moreover, let us assume that the
elements of the population U={1,...,N} are ordeigdsuch a way that;xx;
for each i<j and i=1,...,N and j=1,...,N.

Let us divide each sample si{i.,im,im+1,...,in}, Where j <y, into two
following subsamples&)={i 1,...,int and $(K)={i n+1,...,i}, Where k=j, and
k=1,2,...,H<N. The integer kgiis a function of observationéql,...,xin}

of the auxiliary variable in the sample s. Hencgk)s sy (k)=O and
s(k)Osy(k)=s. The sizes of the subsample&)sand s(k) are denoted by
ny(K) and n(k), respectively. LetU,(k) ={i: x; < x} and U, (k) ={i: x; >X},
k=1,..., H. HencelU, (k) n U, (k) =0 and U, (k)0 U,(k)=U, k=1, ..., H.
The sizes of the subpopulationi$, (k) and U, (k) are denoted byN, (k)
and N,(k), respectively. Similarly, the fractions of the ralnts in these

Nl g W = Nzl\fk) .

subpopulations are denoted hyy , =

Wywiat (2001) considered the following conditionaistimator
of the population meaiy :

Ysik =W Y, k) T Ws, k) Ys, ) (3.113)

where:

Yoo = ., h=1,2.
ys"(k) nh(k) iD%k))/|

(3.114)

Let s, g(k) and g(k) be outcomes of random samples $KP
and $(K), respectively. Let the sampling design of tlaenple s be denoted
by P(S=s) or simply by P(s) for(3S, whereS is the sampling space.
The sampling design P(s) can be rewritten as fallow

P(s)=P(s(k), s(k), K=k)=P(s(k), $:(K)| K=k)P(K=k)=P(s| K=k)P(K=k).

This enables us to write the expected value ofe#itanator in the following
way:

E(VS/ K ) = % Esi ()_/S/k )P(K = k)

k=1

(3.115)

where:

Esik (B_/S/k ) =Eg (W s(9Ys (k) )+ = (W g(k)ysz(k)) : (3.116)
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The conditional expected valug,&.) and the conditional variancBé,K(.)

are determined on the basis of the conditional §ammlesign P(s|K=k).
The variance is as follows:

DZ(VS/K)Z Di (ESIK (yS/K ))+ Ex (DélK (ySIK ))
(3.117)

If Eg (Vs )=Y for each k=1,...,H the conditional statisfi,,
is the unbiased estimator of the population avefagad

DX (ES/K (VS/K )): 0.
(3.118)

We are going to show some particular forms ofekématorys,, .

Each of them can be obtained through determinifughetion which provides
the value k (of the random variable K) which castis the border between
the subsamples;(®) and s(k). This function may depend on the auxiliary
variable.

3.6.2. Randomly divided sample

Let us assume that all values of an auxiliaryalalg are distinct, so:
X1<X<...Xy. Let m = 1, ..., n-1 be a number of observatiohthe auxiliary
variable which are less than or equal to the vaduén sample s. Then,
m=ny(k) is the size of the sub-samplgk3. The size p(k) of the sub-sample
s(K) is equal to n—m. Let us introduce the followmgtation:

Y=iZN:x,, X () = L X, h=1,2
N 0.0 21

Vy =ﬁ%(x. =X), Vi = nh(i)—li%k)(x' ‘Ysh(k))2 '
)7=%|§Zy.y Vs k) = nhl(k) ID%S)/. ,

vy =ﬁ%(y. -y)%, Vi (k) = nh(lt)—lmgk)(y' —ysh(k))2 :
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The non-decreasing sequer(txgl x,) is observed in the particular

simple sample s. Let the valug e chosen randomly from the elements
of the sequence(xil,...,xin_l). Hence, the probability of selecting the k-th

value of an auxiliary variable from the sequenbel,...,xinil) is equal

to i. Hence, the number of the divisions of each sample

of the size n into two subsamplggk¥ and s(k) is equal to n—1. The number
of all possible divisions of all possible simplergdes s of the size n is equal

to (n —1)( :j =c™.

The number of all such samples s of the size nstlras(k) O sy(k)

k-1)N-k
and s(k) is of the fixed sizem is equal t{ ][ J Under
m-1An-m

the conditions: N-lk2 n-m, kiN—-n+1<N- n + m the number of all the samples
sQ that s=gk) O s(k) is equal to

1 k1) N-k
m0=8[ 150

(3.119)
Hence, if #R1<k<N-n+1, then
P, (K =k)=cA, (k).
(3.120)
Let us note that
k-1)N-k
{10
m-1An-m
(3.121)
1
P(s(k),5(K),K=k,M=m)=———=c,

=0
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“kM=m) =L 3.122
P (K)s,(K) | K =k,M =m) TVN-K ( )
m-1\n-m
PGS, (K)| K =k, M = m) = —~
I
m-1
. (3.123)
P (1K =k, M =m) ==
()
So,
P (k),s,(K)|[K=k,M =m) =
= Pls,(K) | K =k, M = m)PE,(K) [ K = k,M = m). (3.124)

Using the well known Cauchy’'s formula (see e.g.ch&meyer
(1977) or Lipski and Marek (1986)) we have:

o
Pk=k)= — " |1-(N-k) 2

N(n-1) N-1) |
(o)

Similarly, we can derive that if4 k < n-2, then

P (K =k) =cA, (k)

(3.125)
where:
k(k=-1)N-k
A, (k)= qu(m_J(n ~ m], (3.126)
k-1 N-k
or Az(k)=§( . ][n—l—r]'

fFN-n+2<ks<N-1,

P, (K =k) =cA;(k)
(3.127)
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where:

AL(K) = "f[k_lj['\'_k) (3.128)

m2lM=-1\n-m

Finally, the expressions (3.120), (3.125) and (3)12ad to the following
one:

cA, (k) for l<k<n-2
P,(K=k)=4cA,(k) for n-1<k<N-n+l (3.129)
CA (k) for N-n+2<ks<N-1

Particularly, if n = 2,

P(K=k)=(N —k)(';j_ _2N "k), k=1..,N-1. (3.130)

On the basis of the expression (3.113) the caditi estimator
v9, takes the following particular form:

- K_ K\
® - -
Ysik = N Ys,x) +(1 Njysz(K)- (3.120)
The expressions (3.113) — (3.118) and (3.123) 2. let us derive

E(yél/)K )= ’:ilES/k (yéll)k )Pl (K = k) =

=1

N-1  min{k,n-1} ~
=2 Ecrmy 78 P (K =k M =m) (3.132)

k=: m=1

iy

where R(K=k,M=m) is given by the expression (3.121).
Let us introduce the following notation:

1

WY = 0 h=12. 3.133
Yoo =N k) i) (3.133)

Hence:

ESlm,k (yéll)k):%ESl(k)/m,k (Vsl(k))-'-N—_k

Es to/mk (Vsz(k))= V.
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This and the result of the derivation (3.132) leathe following expression:
Earme (78)=7 . Ea78)=7 .
EFS)=EcEan )= (3.134)
This means that the statistil), is a conditionally as well as unconditionally

unbiased estimator of the meg&n
The variance is as follows:

D[4, )=

N-1min{k,n -1} k 2 a N - k 2 a
= > [(Nj Dé/m,k(ysl(k))"'(Tj Dé/m,k(ysz(k))jpl(K =k,M = m) =

k=1 m=1
N-1 min%n—l} kK 2 k=m
= R— - V +
k1 mm ( N ] km U

+[N—k]2 N—k—n+m]P1(K:k’M:m) (3.135)

N U N Ky - m)
where:
1 — 2
v = o= ,h=12.
U0 = T T o (y, yuh(k>) 1

(3.136)

The parametey, (, is defined by the expression (3.133).
The result (3.135) can be rewritten in the follogvimay:

- N-10 k 2 min{ k,n-1} 1 1
Dz(yél/)K)zz N Vul(k) z — T Pl(K =k,M =m)+
k=i\ N m=1 m k

N-1 Kk 2 ming k,n-1} 1 1
+ 1-— | v -———— P K =k,M=m). 3.137
k:l[ Nj V=09 mZ=:1 (n—m N—k] 1( ) ( )
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It is easy to prove that the unbiased estimatdh@fonditional vari-
anceD%,,, ('yél,)k) is as follows:

SIK Si(k)

6, 5o )zi(k(k—rmv  (N=K)(N-k-n+m) ssz-

N m n-m
2 ( )
(3.138)
where:
_ 2 _ 1
\V = - , = .
S.(0) m—lims§k)(yl ya(k)) Ysia0 miDS%le
(3.139)
1 _ 2 _ 1
Ve =—=— -y P, =—— > Yy . (3140
S, (k) n_m_lﬂgk)(y&(k) y|) Ys, k) n_miDSZsz))ll ( )

3.6.3. Conditional weighed mean from the sample divided
by median into sub-samples

Let us assume that the simple sample s is drawoutitreplacement
and it is of the size n<N. Moreover, let s5{i.., i} and Xi, <Xj,

and j<i. if and only if j <e. The sample s is divided irttwo subsamples
s (k) ={iy, ..., K} and s(k) = s— (k). Let us assume that kFif n=2m
and k=j.; if n=2m+1. Hence, xis a value of the sample median
of the auxiliary variable. The number k identifig® position of the sample
median in the population.

Wilks (1962), p. 243, considered the distributidritee order statis-
tic in the simple sample drawn without replacenfenn a finite population.
The  probability distribution of the random  variableK
is a particular case of this distribution. Ifnl and n = 2m < N:

P,(K=k) = N ., k=m,...N-m,
)
(3.141)
E(K) = m(N +1) ’ D2(K) = m(N +1L)(N — 2m)(m+1) '

2m+1 2(2m+1)* (m+1)
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Ifm=1and n=2m+1 < N:

(k—lj(N —k]
m m
A2 k=m+1.,N-m, (3.142)

P(K =k) ==
[2m+1j
E(K)=N+1, Dz(K)z(N+1)(N—2m+1) .
2 8m+12

Particularly if m=1 and n=2, the distribution isdteeed to one determined
by the equation (3.130). If m=1 and n=3, then

B(k ~1)(N —k)

(N-2(N-DN' 2..,N-1.

P,(K =k) =
The sampling design of the sample s can be shawttifollowing way:

PE) :(':j = P, (K) | K = KPS, (K) [K =K)P,(K =k)  (3.143)

k-1)"
where: Ps, (k)| K =k) = (m—l} in the case when n=2m,
k-1)" _
PG, (k)| K =k) = m in the case when n=2m+1,

Pis, (k)] K =k)=(Nr;kJ_ |

Let us consider the following conditional estimaddithe population
averagey:

- K-1_ 1 K\
yé%)K =Tysl(|<_1) +NyK +[1_Njysz(K) (3144)
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where: gK - 1) = g(K) - {K},

_ 1
Ys (k-1 =_m . 2&}1.
0 ESED (3.145)
y -1 2
S0 "y iESz(K)I

where: m=m — 1 if n = 2m and pFm if n =2m+1.
The expected value of this statistic is derivethafollowing way:

EG2.)=E. [Eq (704 ))=

=Eg [% Es/k (ysl(K—l))-'-%yK +[1_%jES/K (VSZ(K) )j =

K-1_ 1 K \_ \
=Eg [Tyul(K—l) +N Yk +(1_N]yUZ(K)] = Ey (Y) =y.

where: Y(K - 1) = U(K) - {K}.
Hence:

{ES/k(yée)k):y (3.146)

E(yg)K ) =y
In conclusion, the statistig(?, is a conditionally and unconditionally

unbiased estimator of a population mean.
The property (3.143) enables us prove that

Covg, (VS(K—l) Ys, ) )= 0.

This and the expressions (3.117) and (3.128d to the following
expression;

D272, )=
__ ((K-D(K-m-1) (N=K)(N-K -m)
= EK( NZm Vi, k- F NZm Vu, )
or:
- 1
Dz(yg/)K): WEK ((K _1XK -m _1)Vul(;<—1) +

+(N=K)(N=K =m)v,, 4 ). (3.147)
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The unbiased estimator of the varian@z(yéz,’k) is showed
by the equation:

- 1
4259, )= W(k(k “M-DVg oy H(N-K)(N-K-M)vg )  (3.148)

where:
_ 1 - 2
Vsky = — 7 (yi ‘yw—l))
My =Los iy (3.149)
— 2
Ve gy =——— -
s,(k) m_lmgék) (y yszm)

where: mFm—1ifn=2mand AF mif n = 2m+1.

3.6.4. Conditional weighed regression estimators from the sample di-
vided by median into sub-samples

Let us keep all the assumptions leading to theilligton B, derived
in the previous paragraph. Instead of the estimajdf, we define
the following one

-~ K-1_ 1 K\
ik =Ty(s'f<)K-1) UK +[1—Njyg:(),<) (3.150)
where:
ygf()K-l) =731(K-1) +bsl(K—1) (XUI(K—l) _YSI(K_l)), (3.151)
Vg:()K) :Vsz(K) + bSZ(K)(iUZ(K) _XSZ(K)), (3.152)
C C
_ S (K-D) _ xYS,(K)
bs, (k-1 YN bs, k) = v ) (3.153)
xS, (K-1) xS, (K)
1

> (Xi _ish(L))(Yi _Vsh(L))a

Cuysa) =
WSn(L) my—1iss )

\' = X, —X .
XSn(L) mg —1iEth(:L) l SnlL)
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L=K-1 if h=1 or L=K if h=2. my=m-1if n=2m and h=1 orgmm
if n=2m and h=2 or sFrm if n = 2m+1. Similarly to the previous paragraph
we can derive the following approximate expression the variance

of the statisticyS), .

D? (yg)K ): N:l-m Ex ((K _1)(K -m _1)VU1(K—1) (1_ rjl(K—l) )+

+(N=K)(N=K =M)vy (1— rSZ(K))) (3.154)

where:

— _ 1 ( = )2
Vyu, ) =V, T N Yi =Yu,w/ -

v, ~Lindrw)

Cou,L) = N ! (Yi _Vuh(L))(Xi _Yuh(L))1

U (L) =Liodyw)

Coyu, (L)

Iy L)y — .
h
\}Vyuh(L) Vth(L)

To estimate the variance of the statisgif, we can use the follow-
ing statistic:

— 1
dg) (yS/k ) = W (k(k -m _1)Vsl(k—1) (l_ rsi(k—l) )+

#(N=K)N =k =m)vg 4o =12 ) (3.155)
where:

CX
Y5 (L) . (3.156)

Sh(L) ’
V)(Sh(l-) Vysh(l-)

3.6.5. Conditional weighed sample mean obtained through stratifying
the sample on the basis of an auxiliary variable

Similarly like in the previous paragraph, we assuh@ the sample
s ={iy,...,int and x, <x; <..<Xx; . The sub-samples arej(l9={iy,...,in}

and s(K)={i m+1, ..., b}, Where |, = k. Additionally, we assume that n > 4.
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Let us define the two following criteria of dividjn samples
into sub-samples:

o, (M, K) = (M=Dvg ) +(N-m-Dvg , (3.157)

kk - N-K)(N-k-n+
(k=m), ¢ )((n_m)n m)

d, (m k) = Vs o - (3.158)

The function g is proportionate to the intra-subsample spreaiti®f/ariable
under study. The xm, k) criterion, considered by Wywiat (2000b),
is proportional to the estimator of the variancesttified sample me&n
Let m and k=4 be such parameters that(m, k) = minimum and

s=5(K) O s(k). Similarly, Ietqz(rh, IA<) = minimum ands:sl(lz) O sz(lz) .
On the basis of such a partition of the sample, caa define
the following estimators:

= K_ K\
Yol =1 Vst +(1_ﬁ]ysz(}<)- (3.159)
- K _ KL
® - _
Ysik _ﬁysl(k) +[1 NJYSZ(R)- (3.160)

Without any additional assumption we cannot stdtedhése estimators
are unbiased or consistent. We can expect thatntéhod of dividing

the sample s into sub-samples should lead to smefin square errors
of the estimators. This problem will be studiedrnbgans of simulation meth-
ods.

3.6.6. Example of simulation study of the estimation efficiency

The distribution of 30 observations (x;y) of a tdimrensional varia-
ble is shown by the figure 3.1. The basic parametdrthese variables
in the population consisting of 30 elements arefadews: the average
of auxiliary variable X=68.6824, the mean of the variable under study
y =93.6536, the variances of auxiliary variable amel variable under study

v,=(89.10943, vy:(17.6015§, respectively and finally the correlation coeffi-
cient between these variables r=0.9940.

22 See the idea of minimization of the sample estimaf variance considered e.g. by Lehman
(1991).
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Figure 3.1. The scatter plot for variables x arnd the population

Let the population average be estimated by meatiseoéstimators
Y&« and y&. defined in the paragraphs 3.6.3 and 3.6.5, reispéct

The simple sample drawn without replacement hakefments. On the basis
of all these possible samples, the conditional aedinconditional) expected
values and variances of both estimators have beaitulated.

The variance of the simple sample mearDi%(ys):51.6356. The statistic
y&  is the unbiased estimator of the population meant b
E(YY.)=960761#y = 936536. The absolute value of the bias is 2.59% of
the population meany. The variances of the estimators are:
D2(y&, )=42.9823 andD? (7%, )=36.4320.
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Figure 3.2. The probability distribution of the idle K in the case
of the estimatoi &,
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Figure 3.3. The probability distribution of the iadile K in the case
of the estimatofy®,
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Figure 3.4. The conditional expected values ofel:t;tdmatoryg)'Z
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Figure 3.5. The conditional variances of the estimg®,
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Figure 3.6. The conditional variances of the estim;,és/)k

The relative efficiency is defined by the expressio
e, = 100%6)D2(y¢) )/ D?(Vs). In our case: £83.24% and &70.56%.

Hence, the precision of conditional estimatdy§) and y©. is better

than the precision of the simple sample mean.

As it was defined, the outcome k of the random al@e K
is the number of the population element dividithe sample into two
subsamples. The probability distribution of thedam variable K in the case

of the estimators/$) and y&. are presented by the figures 3.2 and 3.3,

respectively.
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The conditional values of the estimatpf’, are showed by the fig-
ure 3.4. The conditional variances of the estinsatgi), and ¥,

are represented by the figures 3.5 and 3.6, raspBct

3.6.7. Some generalizations

The above considered conditional method of estonatcan
be generalized in several directions. Wywiat (20BQ02) considered more
than two subsamples.

Similarly to the previous paragraphs let us asstiraethe elements
of the population U={1, ..., N} are ordered inchua way that x< X
foreachi<j=1, .., N. The simple sample st size n is drawn without
replacement from a fixed and finite population &t lus divide each sample
s={i1,..,in}, where j <, if i < h, into H following sub-samples of sizg..:
si(k)=fipni fo sp(ky)={i, iy f, where  h=1,. Hl<N,

Sy ={ir,,arinf and k=i, . Hence, gky)ns(k)=0 for each Wt=1,...,.H
and LHJsh =s. Let Ul={i X, sxrl}, Uh={i X, <X sx,h}, h=1,...,H-1
and h_Llle{i:xi >x,H_1}. Hence UpnU,=0 for each #&t=1,..H,
and CJUh =U.

h=1

Let Ky,...,Kq.1 be g-th,...,51-th order statistics, respectively, in the
simple sample drawn without replacement from a tdinpopulation.
The K1:i,h is a possible value of thgth order statistic K h=1,...,H-1. Wilks

(1962), p. 252, showed that:

P(K; =k Ky =Kyy) =
(kl_lj(kl_kz_lj [kH_Z—kH_l—lJ(N—kH_lj
_\n-1rp-n-1 a1 n-r (3.161)
N .
n
where: kk;<ks...kq.1<N-1 or
(N_kH_ler_'l[kh ~Kpng _]j
n-r A\ M~ —1
P(Ky =Ky Ky =Ky ) = AL

)

where k=0, k;=N and g=0.
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Let us note (see Fisz (1963, 1967)) that tké order statistic K
is the sample quantile of ord&f1(0;1), if r, = [n)\i]+1.

We can show that the unbiased estimator of the lptpn mean
is the following statistic:

_ K, -K,,-1)L 142 Ko )
= _— — 3.162
Ysik hZ:l( N )YS,h(Kh) N hZ: ( N Vs, ( )

where K=[K...Kyq] and S, (K,)=S,(K,)-{K,}, for h=1,...,.H-1

= 1
Ys.. (k) :ﬁ DSZKY. , h=1...H
h FSalfn) (3.163)
Ve, =— 2
*on-rg s
The expected value of this statistic is as follows
{Esik (ys/k)_:y (3.164)
E(ysm )= y
The variance is as follows:
2
Dz(y )=E S Kh_Kh—l_lJ Kn =Kpa =l + 1oy
S/K ‘ hzzl N (Kh -K h—l)(rh o) o
2
+(1— KH-lj AlS7E Sulih A= RV (3.165)
N (N -K H—l)(n - rH—l)
where:
1 — 2
v, =—M—— = h=1.. H-1
o TR -Kh_l-Zim%h (y yuﬁh)
1

> (i-v0,f

"N -K 4 —1igo,

— 1
=—— vy, h= LH-1
Yo, K, -K; -l hyl Lo

Yu, =2 KMID%HV.
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The unbiased estimator of the variand?éz('ys,k) is shown
by the equation:

_ wa(k -k, -1\° Kk, —K., —r +r_
dg(ys/k)zz( h h-1 J( h h-1  'h h1 +

h=1 N kh - kh—l)(rh _rh—l _1) Sen(kp)
2
+(l—kH'1j N-Kyy—n+ry, v (3.166)
S, .
N (N _kH—l)(n+rH—1)
where:
__ 1 v
Vst T = -2 sl )(yi ‘Ys,,hm)) ,h=1.H-1
-1 LS (Kp
1 _
Vs, = Z(y| Vs, )2

n—=ry, -1 i0S,

The statistic, determined by the expression (3.,162% defined by Wywiat

(2000c) in the case when-r.=constance for all h-1,...,H. Particularly,
if H=2, the statistic K can be determined as the sample quantile of drder
and r, :[n)\] +1. Moreover, if H=2 and;rm, where n=2m or n=2m+1, the

statistic K is the sample median while the estimator deterchime the ex-
pression (3.162) is reduced to the statistic ddfinethe expression (3.144).
The next possible generalizations are as followghé case of two
auxiliary variables, their sample medians let usde the population into
four non-empty and disjoint subpopulations. Thists us generalize
straightforwardly the estimator considered in tlagraph 3.6.3 and 3.6.4.
Secondly, instead of a one-dimensional auxiliarsiakde and a variable
under study, the multidimensional ones can be densd because, usually,
the vector of population means is estimatedl dne vector of auxiliary
variables can be a vailable. In this case tmep&a s can be divided into
subsamples through minimization of a criterion fiot dependent
on auxiliary variables or a variable undestudy. Next, the disjoint
subpopulations are selected according to the imnitéanction in such a way
that each subpopulation includes one and onfy subsample obtained
previously. Hence, we have the two-stage procesdustering. At the first
stage we obtain the subsamples and at the secagel sthe subpopulations.
The second stage of the clustering procedure eanamed a conditional
procedure because it provides subpopulationsluding appropriate
subsamples (see Wywial (1998a, 2000b, 2001, 200®).criterion function
can be defined as the sum of the intra-subkalinutra-subpopulation)
variances of all auxiliary variables or the spdcwadius® of the intra-

2 See: Rao and Scott (1981).
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subsample (intra-subpopulation) matrix of variaand covariance of auxiliary
variables. Next we construct coefficients (depehaensubpopulation sizes)
of linear combination of estimators (the subsanmmpéans or appropriate re-
gression or ratio estimators from the subsamples).

3.7. Classification estimator of population mean
3.7.1. Introduction

The problem of estimation of a mean value in &dixand finite
population is considered. We assume that the vaitiasxiliary variables are
known in the population. The simple sample is gekbevithout replacement
from the population. The sample is partitioned intanogenous sub-samples
using observations of a variable under stadahyd the auxiliary variables.
On the basis of this partition the whole populatienclustered into strata
in such a way that each strata includes one ahdame sub-sample. The
estimator of the population mean is the weighedane of the sub-sample
means. The weights are equal to the sizeseoftitata. The strata can be
determined by means of a discrimination functiohisTfunction is evaluated
on the basis of observations of the auxiliary J@da in the sub-samples.
Several criteria of clustering the sample or potiteare presented. The well
known bootstrap or jackknife methods are suggetstexbtimate the variance
of the estimator. The estimator can be useful wiierhave a census data.
In this case it is possible to cluster a populationorder to evaluate
the weights of the estimator. The outlined probleas been considered
in a similar sense by Bethlehem (1988), Huisma®Q2@&nd Wywiat (1999,
2001).

Let U={1,...,N} be a fixed population of size N. &mon-negative
i-th observation of a k-dimensional auxiliary védia is denoted by

X+ =[Xi1 Xi2 ... Xi], 1 =1, ..., N. The matrix of observations okthuxiliary
X
variables is denoted by =| ... |. This matrix is of dimension %k.
Xy
Y1

The vector of observations of a variable underystsadienoted by =

Yn
The sample s of size n is drawn without replacerfrem the population U.
The space of the samples is denotedSbyrhe sampling design is denoted
by P(s0 where 8IS. The vector of observations of the variable urstady
in a sample s and the matrix of observations ofatlndliary variables in the
sample s are denoted hyandx,, respectively. The vector is of the dimen-
sions x1. The matrixxs is of the dimensions xk. Let a sample [3S
be partitioned into the following set of non-emmyb-samples: a(s)={s
h=1,...,H(s)}, where H(s) is the number of the salbaples and it can depend
on s. The sub-samplgis of size K(s).
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Let b=Db@)= b(a(s)):{Uh U, 0Us, 00U, s, Da} be such
a set of mutually disjoint and non-empty sub-popofs (strata)

H(s)
thats, DU, () ands, O U, (s for tzh=1,.. H(s)andJU, (5) =U. Let
h=1

Ny(s) be the size of the stratum\(k). The set of all possible sequences
of type a(s) generated on the basis of a particséanple s is denoted
by A=A(s)={a(s)}. Similarly, the set of all possiblsystems of type b(a(s))
generated on the basis of a sample s and the pimould is denoted
by B(a)=B(a(s))={b(a(s))}. Let B(A)=B(A(s)) be theet of the all sets of type
B(a) generated for all[@A(s). And finally, let B=B(A(S)) be the space
of all possible sequences b(a(s)) whdrdgs) andS is the sample space.

The sets a(s) and b(a) are determined on the diaisriterion func-
tion f(ys, X), which will be defined later. Usually, the crimm leads
to simultaneous determination of the systems a(d)lda). We postulate that
the systems a(s) and b(a) should lead to such af stata b(a)={\} that
intra-stratum spread of observations of auxiliagyiables and the variable
under study is as small as possible. Moreoverintina-sub-samples spread of
these variables should be as small as possible, too

In order to simplify the following consideratiores lus assume that
is the simple sample drawn without replacement fritn@ population U.
The following notation will be useful:

_ _ 1 _ 1
y=—2XV, Vo ="V, Ve@m=" 2V
iou n, ios,

N, io,

Z||—\

The population averagéy can be estimated by means of the

statistic:
HE)

Y by = hZ:Wh(Uh)Vsn (3.167)
=

H(s)
where w(Uy) > 0 for each h = 1, ..., H(s) andSand Y w, =1. The next
h=1

two estimators are functions of the ratio or thgression estimators. The first
of them is as follows:

HE)

Y b = hZ:Wh(Uh)g’.sh (3.168)
=

where the ratio estimator is:

<|
n

ylsh = YUN

XI|

Sh

(3.169)
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The next estimator is:

Hes)

y Rb@®S) — hz_:lWh (Uh)yqu (3.170)
where
9Rsﬂ =ysn +Bsh (Yuh _ish)y (3.171)
_%(Xi —Ysh )Yi
Bs, =- (3.172)
> Z(Xi _ysh )2
s,

The statisticy rs, IS the regression estimator.

Let H be the fixed number of strata and ,{Nh=1,...,H}
be the sequence of stratum sizes and the sequéttee foactions is denoted

by {Wh =%} . For a fixed partition b={{} h=1,...,H} let

H
S, ={s:s=Ush =s where s, 0U,,s,z0 for h=1...,H}.

h=1

It is obvious that:S§S. Let M=Card{S} and M,=Card{S,}, Hence,

the conditional sampling designF(s|sDSb):Mi P@E), for sOS,.
b

The conditional sampling design can be implemebtethe simple rejective
sampling scheme. Hence, we select the sample sddiegdo sampling design
P(s). If §1S,, then it is the conditional sample. IflS,, the next sample is
drawn according to sampling design P(s). The prilibab

. " i . M
of selecting the conditional sample s for the fidaw is p=vb,

for the second selection p(1-p), for the third séde p(1-pf and so on.
Under the conditional sampling design the estimalg =V .,
takes the following particular form:

H
Ys=2 W hYs, -
h=1

In this particular case, the conditional estimatmia population
mean is equivalent to the well known problem ofiregtion on the basis
of sample stratified after its selection, see eBgacha (1996), p. 124
or Séarndal, Swenson i Wretman (1992), p. 267. HerEéS/Slb)=37
which means that the statistigs is conditionally unbiased estimator §f

and its conditional variance is as follows:
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N-nH N-n

y

D*(¥s |b)= Y + 1-w, v +0|n~?

(3 1) == Zwyvy, )+ 3 (-w v, () +0n )
(3.173)

where
1 _ _ 1
v, === ¥ by -3, f Vo, = Sy, (3474)
N, —1lido, N, i,

The approximately conditionally unbiased estimatof the variance
D?(¥s |b) is the statistic:

~\_N-nd& N-n & _
DE(ys) =t Sw v (D=5 3 (L-w, vy () +0fn ) (8.475)
n ha1 Nn< h=1
where
1

Ve =3l -V F. Ve =3y (3176)
Ny, is,

N, -15%

It can be shown that in the considered particidaedhe sub-sample sizgis
approximately proportionate to the stratum sizefdd each h=1,...,H.

In the general case, the systems of sub-sampé¢saad strata b(a)
depend on a sample s. That is why it is difficalderive the basic moments
of the statisticyba((s)), given by the expression (3.167). The variancéhisf

estimator can be estimated by means of the wellvhrfmoostrap or jackknife
techniques. The properties of these methods arsidered e.g. by Efron and
Tibshirani (1993). In our case the bootstrap metlaas follows. The simple
samples £(t=1,...,m) are drawn with replacement from thegke s. Usually,
the size of each samplg 8 equal to the size of the sample s. Next, each
sample £ is partitioned into the system of sub-samples thhoby

a, (zl):{zu,...,zt,H(Z‘)} and the population U is partitioned into the syste

of strata denoted bjol(zt)={U tl,...,Utmz‘)}. These partitions are obtained

by means of the same method as used to deterngin@agues of the estimator
yba«s)). Next, on the basis of the expression (3.167) fallewing statistics

are evaluated:

H(Z,)

Y bz = thWh(Ut,h Yz, - (3.177)
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The estimators of the variance of the statigtig, are as follows:

D? (9 h(a(s))) = mi_l thl(Y/ oalz,) 7Y b(a(s)))2 (3.178)
or
(yn(a(s))) i( Yifa(z,) 7Y 2)2’ y —%i Yolalz,) (3.179)

The suggested jacknife method can lead not onthacestimator of the
variance of the statisti§ ., as well as to a determination of an almost un-

biased estimator of a population mean

3.7.2. Classification functions

In order to determine the weights of the estimaiqy, Ssizes

of strata should be evaluated. We are going to skeweral methods
of stratification of the sample and population.

Wywiat (2001b, 2001c) proposed a construction g@fueestimators
of the population mean in situation when non-resgorare present.
The weights are functions of sizes of the sub-patpais of non-responses
and responses and they are determined on the dfamixiliary variables ob-
served in the whole population and by means oésstfication function. This
idea can be applied to evaluate of the weighthefestimatory ba((©) - 1he

sample s is partitioned into system a(s) on théshisa variable under study
and auxiliary variables. This partition can be defi by means of e.g. the k-
means method or the method of Ward (1963). Theerasit function
of the clustering method is as follows:

H(s)
folyx, @) = X (v m+v, 0, -1). (3.180)

The sample s is partitioned into homogenous  sulpkeam
a? () :{sf’), s(ﬁzs)} on the basis of the daify ., x.) . This partition leads
to determining the classification function but iwkiated only on the basis

of the matrix xs in the following way (see e.g. Kr&o (2000), p. 255
or 266):

lq +S'h
27 n

e, (X)=- (3.181)

wherey; is the i-th row of the matriX, and



130
SOME CONTRIBUTIONS TO MULTIVARIATE METHODS...

a, (x,)= (xi X, )V_1 (xi X, )T :

where X, is the row vector of the auxiliary variables’ aages from the sam-

ple s. The matrix of the sample variances and covarmotauxiliary varia-
bles is denoted by . Hence, the size of the samplenshas to be at least

equal to number k of the auxiliary variables. Thassification function di-
vides the population U into the set of strat&’ @ (s)) ={U{°’ ,...,U%} on
the basis of the observatioxg of the auxiliary variables. The i-th population

element is classified into the stratud]” if

e, (x,)= max {e, (x,)}. (3.182)

£1..H(@S)

. N© . A
The weightsw © @© () :Th of the estimatory ., are evaluated

on the basis of the sizes of the strad® @ () ={N§°),...,fozs)}. Let
us note that the elements of the subsampteusnot necessarily be classified
to the stratumU . In this case we can correct the set of the suplemm
a® @) ={s{°’,...,s(§zs)} to such a se® (g) :{sf’ ,...,s(;)(s)}, that s’ OUY
for each h=1,...,H.

3.7.3. Stratification on the basis of vector criterion function

Previously, we suggested finding such a partitiba population U
into a set of homogenous strata b(a(s))=8)} and homogenous sub-samples
a(s)={s(s)} that the criterion function ¥, xy,_b(a(s)), _a(s)) takes
a minimal value. Under this condition and the agstion that_g(s)0Ux(s)
for h=1,...,H, we can postulate that a distancesvdrn g(s) and_LU(s),
h=1,...,H should be as small as possible. MoreigeBc we look for such set
of sub-samples a=f{sand the set of strata b={{ythat are solution to the fol-
lowing optimization problem:

f(ys,xU ,b(a),a(s))=min
d(x, ,b@),a(s)) = min
b@ [ B@), a@s) =A@
(3.183)

where d(...) is the distance function between setfs,} and b={Uy}.
A more general optimization problem is expressethkyfollowing system:
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f(ys,xy ,b@),.als)=min
dix, ,b@).als))=min
b@ [ B@), ai) =A@
n, =nw, (b@), h=1...,HE (3.184)

H(s)
>w, (b@)X, -%/<d
h=1

Particularly, the criterion function f(...) can peoportionate to the variance
D§(§/S) shown by the expression (3.173). Here, we simglifg function
to the following form:

H(s)
IY. b@.20)= % w(b@)v, (). (3.185)

Let us note that the function depends on observations of the auxiliary vari-
ables through the patrtition b of the populatiow istrata.
Let us consider the following ratio estimator ofe tlvariance

vy, (V)
v, (¥)
Vg, (X)

Vi, (¥) = vy, (X). (3.186)

After substituting v, (y) for v (y)in the expression (3.185) we obtain
the following modification of the criterion:f

H(s)
f(yexy D@EE) =2 wb@)V, (¥). (3.187)

The criterion function can be defined independerfigm a partition
of the population into strata in the following way:

HE)

{ Y. .b@.aE) =Y (n, -1y, . (3.188)

h=1

In the case of the estimatdr ., , formulated by the expressions

(3.168) and (3.169), the criterion function is lwhsen the estimator
of its variance in the following way:

falysiXy 'b(a),a(S))=:ZjV\'(b(a) Vs, (Y)-ZXS" Vsh(X,Y){;/S“J Vs, ()

X s

Sh

(3.189)
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where

v, (xy) = 2 x -% v -, )- (3.190)

iOsy,

Finally, in the case of the estimatierb(a(S)) , given by the expression
(3.170)-(3.172), the criterion can be the followifumction of the estimator
of varianceD? ()7 RbEE) ) ;

f,(yor Xy bi@).a@) = :zjm(b@)(vsh w-B2)  (@191)

where 3, id determined by the form (3.172).
The particular similarity functions are as follows.

H(s)

d,(x, ,ba)= >w, @)X, %, . (3.192)
H(s)

d,(x, .ba)=3 (x, —xj)2 : (3.193)
h=1 Os, Uy, j# i

The third row of the system (3.184) defines theafetll possible sets of sub-
samples and strata. This set is limited by the mhewrt conditions defined
in the next two rows. In the fourth row, it is as®d that the size of each sub-
ample has to be proportionate to the size of thprapiate stratum. This as-
sumption is a result of the expression (3.175) twtébowed the variance
of the estimator in the case when strata are fikedhis case the expected
value of each sub-sample is approximately propoalido the size of the ap-
propriate stratum. Finally, the last row of the teys (3.184) shows
the calibration postulate. It is formulated on Haesis of the general definition
of calibrated estimators proposed by Devill and n8ar (1992).
Our calibration condition becomes classical whefl. Let C be the set of the
admissible solutions. It is defined by the threst taws of the system (3.184).
Our problem is determining such sets a and bthtigatector function

[ty .b@.a@)
g(b,a) = [d(xu ,b(@),as))

in particular cases, the problem (3.184) has oreh su solution (b,&)C
that g(b,a3g(b,a) for each (b,&)C. Usually, we have to look for such a set
of the non dominated solutions C, that (bi@)and (k,a)0C and (b',aliIC-C

if and only if it is not true that g(bay(b.a) or g(b,a)>g(ba)
and g(b,a3g(b',a") and g(ha)<g(b',a").

When the set C consists of at least two elememsynique solution
to the problem (3.184) can be determined throughimitation of an addi-
tional criterion function denoted by G(b,a) in tlet C. Particularly,
the following function can be considered:

} takes a minimal value in the set C. Only
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G (ba) =f(y.,x, ,b@,ae)), (3.194)
G, (ba) =d(x, ,b@).a@), (3.195)
G, (ba) =af(y, ,b@),a®)+(1-a)d(x, ,b@).aE), a 0(0;1). (3.196)

When a=1, G; isreducedto G If a=0, G isreducedto &

3.7.4. Criterions based on the depth functions

Properties of the depth functions are considergdbs. Liu (1990),
Donoho an Gasko (1992), Rousseeuw and Ruts (1986Yyyf and
Rousseeuw (1999), Wagner and Kohska (2000). For the sake
of simplicity, we consider a two dimensional awili variable. Let
A(xi*,xj*,xt*) where ¥j=1,...,N, be the triangle whose vertexes have

the coordinates determined by the vectors, -, X+}. The number of the
triangles whose vertexes are determined by the ofwise matrixx, is equal

3

a point@® in R? is the number ) of the triangles including the poift
The normalized variant of the triangle measuresifolows

N
to [ j :%N(N -1D(N -2). The measure of the triangle (simplicial) depth of

z(e):(';lj_ll(e)D(O;l). (3.197)

The value of #) is close to one if the poir@ is situated near the center
of the considered set of points whose coordinates determined
by observations of the auxiliary variables.

In our case we consider the depth of an i-th eléroEa population
U among the remaining elements of this populatioith wrespect
to observations of the auxiliary variables représgrby the elements of the
matrix X. The i-th rowx;« of the matrixx is attached to the i-th element of the
population U and vice-versa. So, equivalently wa cansider the depth
of a point with coordinates;- among the remaining points, j=1,...,N
and #j. Hence, the normal measure of the depth of dnpepulation ele-
ment with regard to the auxiliary variables is adlofvs (see, Wagner
and Kobyliska (2000), p. 205):

z(xi*)=(’\l3_1J_ll(xi ), z(x.)0(0;2). (3.198)
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The mean measure of the triangular (simplicial)tdel a sample s
in the population U (with regard to auxiliary vaias) is defined as follows:

z(xs):lzz(xi*)mo,l). (3.199)

N ios

Rousseeuw and Ruts (1996), Wagner and Kabké (2000) showed meth-
ods of checking, if a point» was included in a triangla(xi* ,x[*,xb*) or
not.

We say that a mean depth of a sample s in the atipulU with re-
gard to auxiliary variables is high when the vatdie(xs) is close to one. Par-

ticularly, z(xu):%Zz(xi*) determines the mean measure of depth of U in
iouv

U. Hence, the mean depth of a sample s in U cacobgared with mean
depth U in U in the following way:

6(xs) =z(x,) - z(xs) (3.200)

Whend(xs) is negative, the mean depth of s in U is bighgantU in U. In this
case, the set of points{: i(Is} is situated close to the center of all points
from the set %i: i0U-s}. Whend(xs) > 0, the sample s has a small mean
depth in U. In this case, we can expect that thietpdrom the setX.: ilJs}
should be far from the center of the populationFuhally, if 3(xs)=0(x), we
can expect that the points from the set:{ils} are "uniformly" distributed
(spread) among the remaining points from the seti{1U-s}.

We can treat a sample s as representative wittrdetp auxiliary
variables if 8(xg)<0. Especially, it is reasonable when auxiliary &bhes
and the variable under study are highly dependeneaxh others and our
purpose is an estimation of the average or medi#imeovariable under study.

The definitions introduced above lead to the follgy criterion
function of clustering a sample into the set odistib(a(s)):

fs(X, ,ba) = _ZH_: Z, (Xsh )
i (3.201)

where z, (xsh) is the mean measure of the depth of a subsampldlse stra-

tum U, with regard to auxiliary variables. Minimizatiorf the function §
leads to such partitions a(s) and b(a) that thentpoivhose coordinates
are rows of the matrix are close to the center of the points whose ceordi

nates are rows of the matrix, _,
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Let us consider the following similarity function:

d, (x, ba) = 382 xs ) (3.202)
h=1
where
6h(xsh)=z(xuh)—z(xsh). (3.203)

Minimization of the function ¢lleads to such sets of sub-samples a(s) and
to the strata b(a) that the spreads of observatibasixiliary variables in the
sub-samplersand the appropriate strata are similar, h=1,...H.

We can expect that such stratifications should leadiecreasing
the mean-square error of the estimatﬁoga((s)), given by the expression

(3.167).

The considered problems can be straightforwardhersized in the
case when an auxiliary variable has more than twedsions. When
this dimension is denoted by k, the number of allirkensional simplexes

N-1
including a point; is equal to(k +1j . Hence, the number of these simplex-
es increases very quickly even in the case whendkMare not too large.
This limits the applications of the considered retin practice.

3.7.5. Clustering algorithm

We are going to present a clustering algorithm tvlicsome sense
can be treated as a generalization of the well knknmeans clustering algo-
rithm. Let a fixed and finite population U be ptated into the starting set of

strata denoted bybo={U§°),...,U£‘f’}. Let the set of such samples

H
a, :{s{") ,..s(H"’} that s® #@ and s® OU® ,h=1...H and |Js?
h=1

be arbitrarily determined. Next, the value of a teeccriterion function

© © (50} 50
g? (ba) = f . Ys:b . @ o )2 . © is evaluated. The size of the sub-
d@ Xy ,b( ) (a( ) )’a( ) (S)

samples® is denoted byn® . Let N be the size oJ S for starting t=0:
Let us note that the considered variables shouldsthadardized if they
are observed in several scales.

We say that the partition {Ja) is dominated by (b,a«) if and only
if g(b+,a)=g(b«,a«). If this inequality as well as g(fa)<g(b«,a+) are not
true, the vectors g{la) and g(b-,a+) do not dominate each other and we say
that the partitions g¢ha) and g(b-,a+) do not dominate each other. It is ob-
vious that the solution to our problem is such lasstiof admissible partitions
of the population that vectors of values of thaecion function attached to
them appropriately are non dominated. In order txplan
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this problem more precisely let us denote the $etom-dominated values
of the wvector criterion function obtained duringetht-th iteration
by L={g®b®,a"}. Let P={(b® &)} be the set of the non-dominated parti-
tions obtained at the end of the t-th iterationriby the t-th iteration, ele-
ments of the population are moved from one stratuamother. This leads to
new partitions of the population and values of @ecf criterion function de-
noted as follows:

FOfy_p® (a(t) a®
) (Lo (30 ) 20 = s - _
o (bkl (akt )'akt )_L(‘) gxu ,bzt) (akff) ,akff) k=1,...N (3.204)

where: 1) if the elemerfk}Os®” and nl” <2, the partition is not admis-
sible,
2) when{k} s and nl® >2, then

al ={s9 h=1..H hzz hzr sO-{k;s®O{k}}  (3.205)

Here, other conditions of partition admissibilitgrcbe added, e.g. those de-
fined by thew expression (3.184).

3)if{k}0s® and {k}OU® -s and N >nl >2 then
b® ={U® h=1...H; hzz hzr UY Kk}, UYHk}}  (3.206)

Next,

1) when for each dba)0dL, the inequality g“)(b(k" ,a(k")> db,a)
is fulfilled, the partition (b(k“ ,a(k“) is dominated by the set

of the partitons P and (b(k“ ,a(k“) is rejected as the solution
to our problem,

2) if for each db,a)0L, the inequalityg™™® (b(k" ,a(k")< db,a) is true,
the partition (bff) ,aff)) dominates each partition belonging to the set P

and we state thatP{b” ,a’ )

3) when it is not true that for eachfb,a)dL, g® (b(k" ,a(k")> db,a)
and g (b‘kt) ,a(kt))< db,a), the partition (b(k" ,a(k”) does not dominate
any partition from the set,Rnd none of the partitions from the set P
dominates the partition(b(k“ ,a(k“). Hence, the partition(b(k” ,a(k”)
is added to the set.P

The (t+1)-th iteration of the clustering algorittgrterminated when k=N.
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Let us underline that at the end of a t-th iterati®_, 0P,

or the one element set of non-dominated partiticas be obtained,
so P_, #P,. In this case the next iteration can be startéeé. dlustering algo-

rithm is terminated at the t-th iteration#,, = P,. The iteration process can

be stopped when t=T where T is an admissible nurab&erations, usually
determined by the efficiency and speed of compaystems.

The presented algorithm leads to the set of pan&itR: optimal only
in the local sense. Moreover, the obtained setsmot necessarily the set
of non-dominated partitions. It can be only thealbcan optimal set.

The set of non-dominated solutiong dan include more than one
partition but in practice we need only one of thémorder to find the unique
partition, the next criterion should be definednf&times such a criterion
function is called the super-criterion. For ins@nminimization of the func-
tion f or d in the set P leads to the unique partition. Of course,
the clustering algorithm is simplified when insteaflthe vector criterion
function a scalar function is considered.

Let us suppose that one of the variants of theeptted clustering al-
gorithm leads to the following partition of a pogtibn into the set of strata

P (5) :{Uf,...,Uf‘} and the partition of a sample s into the system
of subsamplesa’ (s) :{S1 S‘,j} The estimatory ., defined by the ex-
pression (3.167) takes the form

- H _ N}
Yoo =L Wam Yoo W "N (3.207)
h=1 h

where: N7 is the size of the straturtd” .
The variance of the statistifcb# @ can be estimated e.g. by means

of the methods of bootstrap or jackknife as we imeed earlier.

The proposed estimator can be useful in the casenwalues
of auxiliary variables are known in all populati®uch data can derived from
administrative registers or a census. Moreover gtegnators can be applied
in the second phase of two-phase survey samplirgnvih the first phase
sample values of auxiliary variables are observAdsimilar situation
is in the case of some rotation sampling desigrervelurveys are represented
on at least two occasions.

Let us note that some other methods of dlugfea population
can be applied in order to make up reasonabletipadiof a sample as well
as of the population.



IV. CLUSTER SAMPLING

4.1. Basic definitions and notation

A fixed population of the size N is denoted 0y{1,2,...,N}. Let
us assume that the populati@nis divided into G such mutually disjoint clus-

G
ters Q, (p=1,...,G) thatJQ, =Q. If each cluster is of the same size
p=1

denoted by M, the populatidd is of the size N = GM. Let S be the cluster
sample of the size g. The random sample S is demearding to the follow-

ing design:
G -1
TENE

A k-th outcome of an i-th variable is denoted ky Yhe sum of observations
of an i-th variable in a p-th cluster is as follows

Zp = 2 Vi -

The mean value of an i-th variable in a p-th cluste

The variance-covariance matrix is denoted by:=(c- (y; ,y;)], where:

C*(yi’yj)zﬁg ggl(yik _yi)(yjk _71)'
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The variance-covariance matrix of cluster sums isnoted by:
C«(2 =[c-(z,2)], where:

1 80 B
(Z"ZJ) G- 1;1(2 —zi)(sz—zj).
The estimator of the vectory =[y,...y,] is defined as the vector
gs = [yxgsn-ymgsj, where:

VigS =

1
K =27 4.1
% 2.V gM %:sz 1)

kOQ,

1
gM

The vectory g is the unbiased estimator of the mean vegtor
A covariance of the estimatosg,s,Y s (i#j=1,...,m) can be derived
similarly to a variance of the statistig,s (i=1,...,my*:

Cov(yigs’ngs):%(; (Zi 'Zj) (4.2)

The variance-covariance matrix of tygg can be written down in
the following way:

v(ygs,Pg)=%c* 6 (4.3)
where:C«(2)=[ c(z ,3)].

The unbiased estimator of the covariance is obdaitterough
substitution of the following statistic for the pameter «z ,z):

cs(a.2,)=

e Z
g-1i%" "

4.2. The matrix of coefficients of within-cluster correlation

The covariance-€z ,z ) can be decomposed in the following Way

G(Z,Z-)=(N3—:i v (v vy, [ru +(M —1)rij(W)] (4.4)

2 See e.g. Cochran (1963), Konijn (1973).
% See e.g. Cochran (1963), Konijn (1973), m£1972).



141
1V. Cluster sampling

where:
C (yi Y )

c) (yi i )

(w) =
' ,/viyl ivtyjj

i

(4.5)

(w) 2 3 _ _g
c (yiayj) (N-D)(M - 1)p2_1 k;Z]]:QZ( )( yj) (4.6)

The parameterrii(w) is the coefficient of the within-cluster corretai

of the i-th variable. Similarly, the paramemé?’) can be named the coefficient
of the within-cluster correlation of the i-th anthjvariables.

The coefficientrii(w) takes values from the inter%l<—ﬁ >

On the basis of the expressions (4.4) and (4.2have:

_ N-2)(G
Cofigspe) = HC-D Lol -] @)
(G-1)M“°Gg
LetR™ [r ] be the matrix of the coefficients of within-clustmrrelation

and letR = [rij] be the matrix of the correlation coefficients. Tdiagonal

matrix of the variances of the variables i®+diagcC; Hence,
the expression (4.7) leads to the following covaréa matrix of the vector

ygS:

- (N-)(G-9) DX W)\~ %
V({yeP, )= Gmicy® (R+(M-1)R™)D% . (4.8)

If N and G are large, then:

V([P )= MigD% (R +(M -2)R™)p* (4.9)

where: D =MD* .
N

2 5ee e.g. Cochran (1963), Konijn (1973).
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The standardized value of the outcomaésyas follows:

h, =Y (4.10)

Jv.(y)

Hence, on the basis of the expressions (4.5) ang),(4he coefficient
of within-cluster correlation can be rewritten retfollowing way:

(w) = 2 3 h, h. 411
C Ty (T PR @

Let h=[h;] be an Nm matrix of data, wherehis an i-th observation
of a j-th variable. The first M rows of the mattixconsist of observations
of the standardized variables in the first clustéie next M rows
of this matrix consist of observations of variabiesthe second cluster
and so on. Let), be the column %l vector, consisting of b elements,
all equal to one. The Kronecker matrices' prodaatienoted byl. Hence,
the expressions (4.10) and (4.11) lead to theviafig formula:

R = 1 (g7 4.12
(N-1(M -1 ( N)1 (4.12)
where:
h=AyD™, (4.13)
1. .. .
A=l =3, B=1,0J].

Let P be such an orthogonal matrix theFPTR(W)P=DR, where Dg

is the diagonal matrix which consists of the eigdues of the matrixR™.
They are denoted bygd(i=1,...,m). Hence, on the basis of the expression
(4.12), we have:

1 T(pT
Dg =————=u \B'B-I 4.14
R (N-1)(m-2) ( “)u (4.14)
whereu = hP. The expression (4.13) leads to the following one:
u=AyD7P. (4.15)

Hence, the diagonal elemeny; df the matrixDy is the coefficient of within-
cluster correlation of an i-th variable. Their ohsdions create the i-th
column of the matrixu. The matrixu is the linear transformation (expressed
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by the formula (4.15)) of the data matnyx The well known properties
of the coefficient of within-cluster correlationegs e.g. Konijn (1973)) lead
to the conclusion:

—Ml_lsdRi <1 i=1..m (4.16)

where:
dy =1-Yw (“i), (4.17)

V(Ui)
18 e _ 18
v(y;) —Nz Z(uik _ui) , u; —Nz Ui » (4.18)
p=1 kDQp p=1 koQ,

AR T A DU S RS v (4.9)

The within-cluster variance is denoted hy(w). Hence, the coefficientzd

is the ratio of the within-cluster variance and treler variance. Similarly
to the one-dimensional case (see e.g. Konijn (197.3325-227), the follow-
ing properties can be derived:

RO = D%(cm -ﬁcwjo-% (4.20)
or:

R™ =p7*(c-c, )0 (4.21)
or.

R = i_lD'% (Mc, -c)p* (4.22)

where C=MC* and Cm:[cm(yi,yj) is the between-cluster matrix

of the covariances, where:

el )= 200 5.0, -3,): (4.23)

p=1

The within-cluster matrix of the covariances is ated by C,, =|c,, (v;.y; )|,
where:

(y.,yj) G(M 1),,2_1 kDZQl( Y.p)( -Vjp)-
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The well known properties of the matrix determinantd the expressions
(4.21), (4.22), (4.14) let us prove the followitngbrem:

Theorem 4.1: Let the matrice€ andC,, be positive semi-definite.
Hence, a) if the matriR" is positive semi-definite, then @de(C,, and
dri20, for i=1,...,m; b) iR™ is negative semi-definite, then GetdetC,, and
dri<O for i=1,...m. These inequalities become sharph# matrix R™
in the case a) is positive definite and in the dgse negative definite.

We can say that the within-cluster spread of otserms of a multi-
dimensional variable is less than their populatpnead if the matribR®"”
is positive definite. WheR™ is negative definite, then we say that the popu-
lation spread of values of a multidimensional Valgas less than their within-
cluster spread.

4.3. Homogeneity coefficient of a multidimensional variable

Similarly to the one-dimensional c&5ethe variance-covariance ma-
trix C. can be decomposed in the following way:

(N-1)C-=GCy+(N-G)C. (4.24)

The matrixC-(2) can be rewritten as follows:

MG
C.9=—C,,. 4.25
(=57 Cn (4.25)
This expression and the equation (4.24) lead tdalf@ving result:
C*(z)=£ (NDC.-(N-G)C,, ).
G1
Provided the matrix is nonsingular, we have:
N-G
C.9=MC,|I+ A 4.26
@ [ = ] (4.26)
where:
A=l -C'C,. (4.27)

In the case of a one-dimensional variablewhenC. is reduced
to the variance v an&,, is the within-cluster variance,ythe matrixA
is reduced to the homogeneity coefficfént

27 See e.g. Cochran (1963), p. 240.
28 5ee @rndal, Swenson, Wretman (1992), p. 130.
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6(yi):1_ N, Sa(Yi)sj- (4.28)

where:
1 & _ _ 18
V. (yi)=—2 Z(yik _yi)zv Yi=—2 2V« (4.29)
N-1p1 «o, Np i,
1 G _ % _ 1
\V B e — . —VY. s 0 - K - 4.30
w (y|) G(M _1) pZ:;L k%p(ylk y|p) yp M k%yk ( )

Then, the matriXA can be treated as a generalization of the homo-
geneity coefficien®. That is why the matribA can be named homogeneity
matrix of a multidimensional variable.

Theorem 4.2.: If the variance-covariance matr is non-singular,
the eigenvalues; (i=1,...,m) of the matri fulfill the following inequalities:

- <A <1, for each i=1,...,m (4.31)

Proof: The characteristic equation for the matfixcan be trans-
formed as follows:

A-A1|=0, (4.32)
I-C:Cy-Al|=0,
|IC,1C,kl|=0 (4.33)

wherek=(1-A). Since the matrixC;*C,, is positive semi-definite, its eigen-
values k;=20 for each i=1,...,m. Hence, the eigenvalues of iierix A
are:A\<1 for each i=1,...,m.

Since the matrixC,, is positive semi-definite, the equation (4.24)
leads to the matrix

A=(N-1)C.~(N-G)C,

which is positive semi-definite, too. Because thatrin C. is positive
definite the following matrix is positive semi-deifie:

A2=—¥L—CﬂAl=Jiill—cﬂcW.
N-G N-G
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After several simple algebraic transformations \aeeh

G-1

A, =4+ I 4.34
Sl Sarvr (4.34)
Let us do the following transformations:
|A-Al[=0,
A+ 87 -Gl s
N-G N-G
A2-cl|=0 (4.35)
where:
G-1
= +A. 4.36
TG (4.36)
Since the matrixA, is positive semi-definite, the eigenvalge0 for each
i=1,...,m. Hence, on the basis of the expressidgdtjdve havei, = - I\?_é

for i=1,...,m. This completes the proof.

We can say that the within-cluster spread of olst@ns
of a multidimensional variable is less than theiopplation spread
if the matrixA is positive definite. Whed is negative definite, then we say
that the population spread of values of a multidisienal variable is less
than the within-cluster spread.

4.4. Accuracy of cluster sample mean vector in relation
to simple sample mean vector

Let ygbe the vector of the mean from the simple randomp$a

of the size n, selected without replacement frorpapulation of the size N.
Its variance-covariance matrix is of the followifogm:

V(VS,P3)= N-I”IC* = N-n

D/*RD/? (4.37)
Nn Nn

where R is defined by the expression (1.28).
If the number of cluster$s — » and ngM, then, on the basis

of the expression (4.9), we have:
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V(VgS’Pg)_V(yS*Ps):%D%R(‘N)D%- (4.38)

This result leads to the following property.
Theorem 4.3: Let a fixed population be divided into mutuallisd
joint clusters and let each cluster be of the saime. Hence, ifG - « |,

N - o, E=const and the matriR"™ is negative semi-definite (positive

semi-definite), the strategy(ygS,Pg) is not worse (not better) than
the strateg)(ys ,P3) .

This theorem as well as the expressions (4.38) @n8) lead
to the following conclusions:

Dz(ygSi ’Pg) (w) i
€ =——— = vil+(M -1); "], i=1,...,m, 4.39
oy ) (439
_detV(§,.R,) _ defR +(M -2)R™) (4.40)
& GtV P,) detR ’ '
@ *(sP) _ Wa -
== oy o uhiog =T (4.41)
’ qz(ys*Ps) ';

where:

A Ygs P
e, = l(y_g_s 9)_ (4.42)
Al(yS’P?,)
where A(.,.) is the maximal eigenvalue of a variance-c@arae matrix
of a strategy. Hence, on the basis of the theore3n we conclude that
if the matrixR™ is positive definite (negative definite), the sbgy (Vgs,Pg)
is less (more) accurate than the strateﬁ?s,Pa) in the sense
of the above defined coefficients of relative efficy. Particularly, ifR™
is negative definite, then<l for k=1,2,3 and g1 for i=1,...,m and g<1

for at least one index j=1,...m. The strate@;gs,Pg) can be better than

the strategy(yS,P3) if it is possible to cluster a population in sughvay
that the within-cluster spread of values of thetidirthensional variable (un-

der research) is bigger than the population spre&dobservations
of these variables.
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Let ysbe the vector of the mean from the simple randompéa

of the size n, selected without replacement frgmopulation of the size N. Its
covariance matrix is of the following form:

_ N -
V(yS,P3)=N—nnC*.

On the basis of the equations (4.3) and (4.26)aveh

_ G- N-G
V(ygS'Pg)= Gg,\iC*(l + G-1 Aj' (4.43)

Under the assumption that GM=N and gM=n:

V([,ep,) =N _nC*(I + _GAJ.

Nn G-1
Hence:
V(7sR)- Vil R )= -T2
or
V(s P)- V(TP )= —%'\é—__f(a _c.)

This leads to the following theorem:
Theorem 4.4. If the matrix C+-C,,) is negative semi-definite (posi-
tive semi-definite) then the strategy(ygS,Pg) is not worse (better) than the

strategy V(VS,P3). Particularly, if the matrix C. is nonsingular

and theA is negative semi-definite (positive semi-definitbgn the strategy
V(Vgs,Pg) is not worse (better) than the stratégws ,P3).

Hence, the strategW(VQS,Pg) is not worse than the strategy

V(VS,P3), if the within-cluster spread of a multidimensibrariable repre-

sented by the matri€,, is larger than its population spread represenyetido
matrix C.
The relative efficiency coefficients are as follows

— Dz(ygSi 'Pg)

€i (3 £ 3(y,), i=1,...,m. (4.44)

=1+ N-G
G-1

whered(y;) expresses the formulas (4.28)-(4.30).

el :w:de(l +EA] (445)
detv(ys,P,) G-1
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_tWlsR)_,  N-G-

e, = th(Vs,Pg) =1+ = d. (4.46)
where:
Szia(yi)ai’ ai:M'
i=1 ;LV* (Y.)
}‘l(ygS’Pg)
e, =_2vosr o/ 4.47
SN @40

Hence, on the basis of the theorem 4.4 and thekmellvn matrix properties,
we conclude that if if the matriXC. is nonsingular and the matri&
is negative definite, then<l for k=1,2,3 and g1 for i=1,...,m and g<1
for at least one index j=1,...,m.

On the basis of the expression (1.57) we evalbateeff-coefficient:

deff(ygs 'Pg ) = V(Vgs 'Pg)v_l(ys 'Pl)

deﬁ(VgS,Pg)=p(H(l +%AD (4.48)

Hence, thedeﬁ(Vgs,Pg) is equal to the maximal eigenvalue of the matrix

':_z(l +N—_G j The eigenvalues of this matrix are evaluated
in the following way:

IN=nf ,N=G ) _|=g

IN-1  G-1

This equation is equivalent to the following

IA-1A]=0
where:
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This and the theorem 4.2 lead to the following iraijies: 0< Kk < 2_1
Hence:
0< deff(y,6.P, ) < g—_i (4.49)

The strategy (Vgs,Pg) can be better than the stratedﬂs,&)

if it is possible to cluster a population in suclvay that the matrix@.-C,,) is
negative definite. It means that the within-clustpread of values of the mul-
tidimensional variable (under research) should ipgdy than the population
spread of observations of those variables. Henéejt iis possible
a population should be clustered into such clugteas intra-cluster spread
of variables under study is large as possible. dlhstering algorithm pro-
posed by Wywiat (2002a) can lead to realisatiothis postulate.

4.5. Prediction of population average under the regression
superpopulation model

Let us consider the regression superpopulation malddined
by the equations (1.19)-(1.21). In the case of edimensional variable un-
der study this model is defined by the vectUr;[Yl...YN], where Y,

is attached to the k-th element of a populatidr{1,...,N}. The probability
distribution of the vectoY has the following properties :

Y =B +x B+U,, k=1,...N (4.50)

where: xi=[xy1..-Xkml iS @ vector of observations of auxiliary variable
It is attached to the k-th element of a populatidmet BT:[B]_...Bm]
be the vector of regression parameters. Let usrasthat:

2 2 2
D (Yk):D (Uk)zo , Cov(Yk,YI):Cov(Uk,Ul)zo
where: kl=1,...,N.
The problem is the prediction of the population me#efined

by the following expression:

Y. .

Mz

v=1
N

i=1

It is predicted by means of the strate(ngéS ,Pg), where:
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Yes=——22, (4.51)

where:
zZ,= DY, .

kOQ,

Wywial (1993) proved that(VgS,Pg) is p<€ unbiased predictor

of the meanY and

EE(Y,-V) = Gg 9( B'C (a)B+ o2 ) (4.52)
where:
c@=lc@a). ca@ a)=GilkZ_l( a )y -a),
Ay :tDZQ:an , a zﬁkia'

E(.) is the expected value evaluated on the basgratfability distribution
determining the superpopulation model and E(.)dtenined by sampling
design.

__B v _vp-6-9 BBT 2
If e= rt EE(YV,s-Y) = gN( e'C (@e+ o? ).

This and the property:

i)

N=€lC. (e, = maxe'C(a)e}

lead to the following inequality:

EE(V, - V) < &= g(B By +o? j (4.53)

gN

Let us consider the regression model for h-varghleder study.
It is described by the expression (1.20)-(1.21)pfe@. Let us additionally as-

sume thatCov(U;,Uy)=0 for #t=1,..,N and jk=1,...,h andDZ(Ui,-):cj2
for i=1,...,N. Our purpose is prediction of the mge vectoerlVl...Vm]
|, where Yys: =100,

is determined by the expression (4.51) for the j#miable under study.
The strateg)(VQS,Pg) is p<€ unbiased for the vector and

by means of the vectorV [Yhs Ymgs
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EE(YJgs_Yj) "N (MB;CD(a)Bq’f o] ) (4.54)
and
< _vk . G-g[BiB; 2
EE(Y, -V < N [ A 0] (4.55)

for j=1,...,h. Hence a population should be cliedeinto G clusters (each
of the size M) in such a way that the maximal eigdwme of the variance-
covariance matrixC.(a) is minimal. Let us note that Wywiat (1991) consid
ered the problem of the prediction in the particulease when

an auxiliary variable is one-dimensional.

4.6. Clustering algorithm

Let W={Q,} be a set of such G disjoint clusters of a fixagpplation
G
that UQp =Q . Each cluster consists of the same number M ofiefhes. Our

p=1
purpose is to find such a set W where a criteriamction f(W)=minimum.
Particularly:

f,(W)=trCq (), f(W)=deCq (2) or f(W)=A(Cd2)) (4.56)

whereCp (2) is expressed by the beginning of the paragrafphléis easy
to demonstrate that if(W)=minimum, the relative efficiency coefficient
e=minimum, i=1,2,3, too. To determine the set W, w@&n construct
the following iterative algorithm. Let ¥¢{Q;q,...Qcso} be an arbitrary start of
divisions of the population. Let W{Q,,,... Q¢ be the set of clusters result-
ing from the t-th iteration of the clustering algom. Let h-th and k-th popu-
lation elements belong to the clust&gs andQ;;, respectively. So,HQ;; and
kOQ;. Cluster created during the (t+1)-th iteration demoted byQ; .1(h,K)
andQ;1(k,h). They are obtained in the following way:

Qi +1(h,K)= Qi -{h} O{k}, Qjra(k,h)= Q¢ -{k} O{h}. (4.57)

Hence, the h-th population element is moved frone ttluster Q;;
to the clustelQ;; and the k-th (kh) element is moved from the clust@y;
to the clustef);;. Let us introduce the following set:

Wiea(h K)={W; -Qi ¢ -Qjt, Qira(h,K), Qja(h,K)}. (4.58)

Hence, at the end of the (t+1)-th iteration, theimal set of clusters
is obtained through the minimization of the criberifunction in the following
way:
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Wier= Wiea(1.K): f(Wia(h K))=minimumminimumff, (W... (h.k))}
(4.59)

where the criterion functior, £an be chosen according to one of the functions
defined in the expression (4.56). The iterativesigting algorithm should
be continued until the time when any two elementsaopopulation
are not moved from one cluster to another or thebar of the iterations
reaches the admissible level which is usually assigrbitrarily.

Sarndal, Swenson and Wretman (1992) consideregdbelation
which consists of 284 municipalities in Sweden. yltensidered the data
on three variables observed in this populationeneres from the 1985 munic-
ipal taxation (in millions of kronor), number of mgipal employees
in 1984, real estate values according to 1984 sissed (in millions
of kronor). We denote them by, y», ys, respectively.

The mean value of these variables can be estimattethe basis
of the vector of a simple sample mean or the veaitthhe simple cluster sam-
ple. Both samples are drawn without replacement. ‘afe going
to compare the accuracy of these strategies opatsis of the above results.

The population means of the variabley;, VY, Vs
arey=[y, V, V,|=[245.3415 1774.1585 3073.6585]. The correteti

matrix of these variables is as follows:

1.0000 .9988 .9356
R= .9988 1.0000 .9395
.9356 .9395 1.0000

The population was divided into 71 clusters. Eadhster consists
of 4 elements. Let us consider two divisions o$ thopulation into clusters.
The first division is quite arbitrary because thesters consist of elements
which are usually neighbours (see: Sarndal at 8BZ)). This division
is denoted by W The second division will be called an optimal dreeause
it was obtained in the following way: the populatis divided according
to the criterion expressed by the equation (4.5%ere f=f; is given
by the expression (4.56). Hence, clusters are teglem such a way
that the maximal eigenvalue of the variance-covaeamatrix C(z2) ap-
proaches the minimum. The optimal division of tlepplation is denoted by
W. The table 4.1 represents the results of thenaitn of the mean value on
the basis of the strategie@s,&) and (Vgs,Pg). The second strategy

is considered for two divisions of the populatiatoi clusters. They have been
denoted by W and W, respectively. In the last two columns
of the table 1 there are values of the relativecieficy coefficients defined
by the expressions (4.44)-(4.47) in the cases efdikiisions W and W, re-
spectively. The simple sample strategy without aepinent (VS,PS)

is considered for the sample size n=40. The slya@e&,Pg) is studied under
the sample size g=10 and the size of clusters Mhdn n=Mg.
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Table 4.1
S;(r::::t);r TVl | T=Ves P Wo | T=Yos Foo W e(Wo) | e(Ww)
D(T,) 87.4 91.8 76.7 90.6 1290
D(T,) 623.5 654.7 544.1 90.7 131(3
D(T») 695.8 766.4 533.9 82.4 169(8
q(v(T)) 938.3 1012.2 766.1 921 1225
det(V(T)) | 3.83E+11 6.072E+11 2.522E+1] 63[1  15p.0
A (V(T) 854056.8 992954 .4 563846.8 86.p 1515

The analysis of accuracy of estimation resultspréed in the table
4.1, leads to the following conclusions. In the ecaxf the division W
of the population, the stratedy/TS,Ps) is better than the stratedng,Pg).

In the case of the optimal division W, the stratdWS,Pg) is better than

the strategy(yS,Ps). Then, the special clustering method, introduceckh

leads to an increase in the relative efficiencyhef simple cluster sampling
strategy.

4.7. Two phase sampling for clustering

A simple sample w of the size n is selected withmplacement
from a populationQ of size N. In this sample, auxiliary variables ate
served. The space of these samples is denot¥d. Iyn the basis of the aux-
iliary variables, the sample w is divided into Gsters:Q,(w), h=1,...,G. The
clusters are disjoint and each of them is of thmesaize m. The problem
of a clustering criterion will be considered lat&text, the simple cluster
sample s of the size g is selected from the setusters n(w), h=1,...,G}
Finally, values of the variable under study areeobsd in the sample s.
Let us note that s,w are outcomes of random sangpéasl W, respectively.

N
The population meafy =%Zyi is estimated by means of the sta-
i=1

tistic:
Jo=——% Yy, =3z, (4.60)
gMs koo, (w)  9Mgs
where:
Z, = 2 Yk

KIQ, (w)
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The sample mean is denoted by:
-1
Yo == 2 Vi - (4.61)

N kow

The expected value of the statistig is derived as follows:

E(Vs): EWES/W(VS): EW(VW):V . (4.62)

Hence, the statistig/ is a p-unbiased estimator of the averggelts mean
square error is derived in the following way:

E(ys _7)2 =Ey ES/W[(VS _7)"' (VW _Y)]2 =
= EWDglw(yS |W)+ D\zfv(yw) . (4.63)

The conditional variance and its expected value dmn expressed
as follows®.

~ ~ G-
D3, (s W)= D4, (5 IW =w) =" v, 2l w)

(4.64)
where:
1 v - 1
VD(Z|W)—_Z(Zk_Zs) ) Zs=-22,, (4.65)
g-1lics gics
2 (3 NY® G-g
EuDin (3 IW)=| | G Z VW) (4.66)

It is well known that the variance of the simplengde mean is as follows:

N-n
Nn

D2 (Vw)= Ve(y) (4.67)

where:

Vi) === Sy -Yf,  v=

. 4.68
N-1% %}ﬂ ( )

ZlH

Then on the basis of the expression (4.63), we:have

Dz(vs)=%Ew(vD<z|w))+ N=ny ). (4.69)

Nn

Y see e.g. &ndal, Swenson, Wretman (1992).
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The following statistic is an unbiased estimatdrtloe variance
D*(¥s):

2o (~ G-g¢ N-n
D? = W) + W 4.70
(7s) =Ggm Vo @I W) + vy W) (4.70)
where:
1 =
VoV IW) === Sy =V (471)
—LkOw

Let us denote a simple sample of the size mg byh&. sample mean is as

follows:

1
VvV, =—— . 4.72
Ya gk%;ﬂ ( )

Its variance expressed by the following formula:

AR A @73)

Then, the expressions (4.69), (4.73) and the assmmghat N=mH lead

to the result:

D*()-D*(7,) = o2, (v, (2| w)) -

\ 3
Ggm mHmg o)

DZ(?S)—DZ(VA):%Kl—%]EW(vD(ﬂw))—[l—%]vm(y)}. (4.74)

Hence, the estimatdygis more precise than the estimaigy if

w=(1-9)(1-2
EW(VD(zlw))<KvD(y),where.K—(l Gj (1 Hj>1'

In conclusion, each sample w should be divided $otch clusters of the same
size m thatv,(z|w) takes a minimal value.

The well known regression superpopulation moddddésg consid-
ered. This model is defined by the expression§41bis determined as vec-
tor Y=[Yq..YN], where Y is attached to the k-th element

of a populatioQ={1,...,N}.
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— N
The problem is the prediction of the populatiorrageY =3V,
i=1

by means of the statistic:

~ 1 1
Y .=— Y =—>Z . 4.75
o gmzpjs u% K gmg‘s P ( )

The expected value of the statisi?gS is derived as follows:
E(Y4s)=EWES/MW Yos)=EW( Yo )=Y
~ — 1N
EE (Vo) =E(Y )= 2b = (4.76)
=1

whereE(.) is the expected value evaluated on the bagisadfability distribu-
tion determining the superpopulation. Hence, theatisdic Y

is a p-unbiased and$unbiased predictor of the averaye. Its mean square
error is derived on the basis of the expression$0§4 and (4.63)
in the following way:

EE(Ygs- Y 2= EE,Equd( Vs Yo )+(Yoy - Y )2

EE(Y,6- Y )?=EEy D2 (Y, dW)+ED2, (¥,,)=ED?*(7s), 4.77)
2~\_G-g N-n
ED (ys)—@ EEy (vo(ZIW)+ == E(V(¥). (4.78)

The expected value of the conditional variangg|w) (computed
on the basis of the superpopulation distributiorgn cbe expressed
in the following way":

E(v(z1w)=—B"C.@wp +o? (@79

where a is an m-dimensional auxiliary variable whose & kabservation
is as follows:

E (v/(Y))=BTC(X)B+0? (4.80)

30 See Wywiat (1993).
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The variance-covariance matrix of the variabde in the sample w
is as follows:

Cyo@lw)=[c @a [w)]

where:

¢@alw=—, -a,)a, -a,),
g-1is

— 1
Bui = =28 -
Qs

The population variance-covariance matrix of aaxylivariables is defined
by the expression:

Cu(X) =[c(x;x ])]
where:

CD(X ) ( X )(X|p i)' yi =

_1pDQ

The formulas (4.63)-(4.69), (4.79) and (4.80) le¢adthe following mean
square prediction error:

EE(\?QS-VY:(':] ZBK(W)B+(G:‘ N- ”]az (4.81)

wOW Nn

where:

K (w ) G- gc S@w )+ C.(X). (4.82)

Hence:

- N -
EE(Y,e-Y )= [ j BB T eK(w)e’ +(Ggr‘i+ ”joz

WOW Nn

where:

Let kq(w) be the spectral radius (the maximal eigenvaloefhe matrix
K(W). Hence, the well known properties of matrix eigdnes lead
to the following inequality:
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s o N
EE(YgS'Y)2<[ j B'B Z Kl(W)+[Ggr?] Nnnjcz (4.83)

The conclusion is: the sample w should be clusteredich a way thakl(w)
takes the minimal value. In the previous paragrapb considered
the clustering algorithm which, in our case, canitmplemented to find

the optimal division of the sample w into disjoarid of the same size clus-
ters.

4.8. Conditional intra-cluster coefficient of correlation

In the paragraph 4.2, the matrix of coefficientsvahin-cluster cor-
relation of a multidimensional variab¥=[x;...x] is considered. In our case,
when auxiliary variables are observed in the sampleit is denoted
by: R™ (X |w) = [r‘W) (X |W)] where the coefficient of within-cluster corre-
lation between variableg ande- (i,j=1,...,m) is defined by the following ex-
pression:

(w)
C; (X |w
rij(W) (X |W) = I ( | ) (484)
d; (X [w)dg (X [w)

where the within-cluster covariance of the variable the sample w
has the form:

¢ (X ) = mgmux‘” X JXp %) (4.85)

The variance of the variabig is defined by the expression:

dé (X | W) Z (le iw

pDW

Let D (X |w) = [dé (X |W)] be the diagonal matrix of variances of auxiliary
variables from the sample w and MX|W)=[rij (X|w)] be the correlation ma-
trix of these variables, where:

= dy (X |W)

bod X w)dy (X [w)

DJ(X|W)=L1§( Ywi)(xjp—iwj), di =d,,.
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Under the assumption (see the paragraph 4.2) that

_ X = Xy
M = d., (X |w)’

(4.86)

we have:

. 1
RO (X |w) :th(BBT -1, b, (4.87)
where:
h=[h,]= AxD;¥2 (X |w), (4.88)
A=|n—%JnJ;, B=1,0J7.

Let P be such an orthogonal matrix that
PTR™ (X [w)P = D™ (X |w)

where D™ (X |w) is the diagonal matrix which consists of the eigénes
of the matrixR™(X|w). They are denoted by (X |w) (i=1,...,m). Hence,

on the basis of the expression (4.87), we have:

D™ (X [w) = t"(8'B-1,)

1
(n-1(m-1)

(4.89)
where:

t=AxDP. (4.90)

Hence, the diagonal elemerd™ (X |w) of the matrix D™ (X |w)
is the coefficient of within-cluster correlation ain i-th variable, whose ob-
servations create the i-th column of the matrik Then,
d™ (X |w) =r™ (X |w). The matrixt is the linear transformation (ex-

pressed by the formula (4.90)) of the data matriXhe well known proper-
ties of the coefficient of within-cluster corretat (see. e.g. Konijn (1973))
lead to the conclusion:

(4.91)
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where:

e :1_"\/w(_t(fi)), (4.92)

ORI SO
- 1
Vw(ti)_ 1)p2_1 kZ(m - |p) ; to :Ek%tik .

The within-cluster variance is denoted by(t). The coefficient d

is the function of the within-cluster variance atite ordinary variance.
Hence, it assesses the degree of within-clusterogeneity of observation
in the sample w.

Similarly to the one-dimensional case (see e.gnijKo(1973),
p. 225-227), the following properties can be dative

RM™ (X |w) =D (X |w)(cm(x |w) —ﬁcw (X |w)jD% (X |w)

(4.93)
or.
RM (X |w) =D (X |w)(C(X |w) = C,, (X [w))D 7 (X | w)
(4.94)
or.
RI (X [w) = == D (X [W)(MC, (X [ W) ~COX W)™ (X | w)
(4.95)

where C(Xw)=""tc.(x(w), DX |w)=""1p.(x|w) and
n n

C,(X|w)= [cm(xi X |W) is the between-cluster matrix of the covariances,

where:
G

Cm(’ﬁ X |W):é§(iip _Yi)(iip _ij)- Xy :12 2 X -

Np=1 ko, (w)

The within-cluster matrix of the covariances is aked by
C,X|w)= I_CW (xi X |W)], where:

Cw(&’xj) G(m- 1)% K%( ik —Yip)(xjk "Yjp)-
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The well known properties of the matrix determinamd the expression
(4.94) allow us to derive the following conclusidret the matrice<(X|w)
and C,(X|w) be nonnegative definite. Hence, if the matfR¢"(X|w)
is nonnegative definite, thelC(X|w) -C,(X|w) is nonnegative definite

and d™ (X |w)=0, for i=1,..,m. If RW(X|w) is nonpositive definite,
then C(X|w) -C,(X|w) is nonpositive andd™ (X |w)<0 for i=1,...,m.
If the matrix R™(X|w) is positive (negative) definite, thea{"’ (X |w) =0
(d™ (X |w) < 0) for all i=1,...,m and there exists at least amgex k=1,...,m
that d™ (X |w) >0 (d™ (X |w) <0).

We can say that the within-cluster spread of olzems
of a multidimensional variable is less than thgiread in the sample w
if the matrix R™)(X|w) is positive definite. WheR™(X|w) is negative defi-
nite, we say that the spread of values of a mufigdisional variable

in the sample w is less than their within-clusiaresd.
The following expressions can be derited

C,@lw) =g_::;-_[cm(x) +(m-1Cf (X IW)], (4.96)
CE” (@w) =D (X [W)R™ (X [w)DE* (X |w), (4.97)

C,(alw) =g—‘11D;’2(x IW)R (X |w) + (M-DR™ (X [w)]D¥2(X |w).

(4.98)
This result and the expressions (4.81) and (482 to the following
formula:
n-1G-g + N-n
G-1Ggm* Nn

EE(VQS-V)Z{ jBTcD(X)rH

_ _ _ N

N-mg
ngg| °
Hence, each sample w has to be clustered in sweaiyahat the quadratic
form B'C™ (X |w)B is negative definite and its value is as short
as possible. It is similar to dividing the samplénto such clusters that all
eigenvalues of the matrixC™ (X |w) are negative and they take values
as short as possible.

+ (4.99)

31 See Wywial (1992, 1995).
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Let u be a simple random sample selected witheptacement
from a fixed population. The statistic

v, =L

Y 4.100
mg%a K (4.100)

is a p-unbiased and§unbiased predictor of the averaye and
— N -mg
ED%(Y,)=———=(B"C(X)B+0? 4.101
(¥.)= e B'C0B+0D (4.101)
This formula and expressions (4.97) and (4.99) teatie following:

G-1Ggm G g

EE(Y,-Y) -ED2(Y,)= i( n-16-g, 1 1
m

JBTCD(X)W

, (-D(Mm-1G-g)

(4.102)

where:

E(Céw’ (X IW))= (':] S DY2(X [wW)R™ (X |w)D 2 (X |w).

wiw

If n and G are sufficiently Iarge,g—_llzg. Under this assumption,

we have:

EE(Y,-Y) -D*(Y, )= %g(ri"g) BTE(C™ (X |w))B. (4.103)

Hence, ifn—_1 2% and the expected value of the matrix of withinstdu

covariances is negative definite, then the predi(;tgg is more precise than

the predictorY,. Then, each sample should be divided into suchtels

of the same size that all eigenvalues of the ma@f&(X|w) are as short
as possible.



V. TWO-STAGE SAMPLING

5.1. Basic properties

A fixed population of the size N is denoted @y{1,2,...,N}. Let
us assume that the populati@nis divided into G such mutually disjoint clus-

G
tersQy (p=1....,G) that JQ, = Q. Let N, be the size of the clustéX,. The
h=1

— G
mean size of the clusters is denoted Ny;éz N, .
h=1

Let S be the two-stage sample. At the first stggeysters are drawn
without replacement with a constant probability in€lusion of the first
and second degrees. Next, the simple sampleofSsize R is drawn
from a selected clusté€l,, where US. The sampling design is as follows:

c\le (N
o= fln)

Let us consider the strate@QS,Pd), wherey ;s =[Y gs--Y gms]

- 1 _
Ygs = g_ﬁ %:SN nYs, (5.1)
where:
_ 1
Ys, = 2 Vi -
Ny «os,

It is well known that the strategﬂy/'gs,Pd) is unbiased for the popu-
lation vector of averageg. The variance-covariance matrix is as follows:

- - S N (N -
V(ygS'Pd):E C*(z) +iZM
Gg 9G, n

c (5.2)

*h
h

where the elements of the matri€«(2) =[c (z,2)], are determined
on the page 138 and the elements of the variancadamce matrix
Cm = [c(Yi, ¥;)] are defined by the expression:
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C*h(yi ’yj): > (yik ~Yi )(yjk _yjh)’ Vi =1 2 Ya (5.3)

N, _1kDQh N, koQ,
The estimator of the matri):((ygS ,P,) is as follows:

G- 1 &EN (N, -n)
Vs(ygs'Pd)z Ggg CES+_Z S :

C 5.4
Gg=  n sh (5.4)

h

where the elements of the matrids = [Cs(z, 7)] and Cins = [Cns(Vir Vi)
are defined by the expressions:

Lt 3o ) et
C[B(Zi’zj)= _ 2 N.Vis Vi Nnij ~Yis) yiS:_ZNhyiS J
9-1,, " " Oh=1 "

C[hs(Yi ; Yj): nhl—lké (yik ~Yis, Xij Vs, )

Let the two-stage sample S be automatically bakn8&o, it means
that for each h=1,...,G:

m = fNq (5.5)
where 0<f<1
The estimator of the population mean vector is thector

Ygs =Y gs-- Y gms] Where:

Yos == 2 2 Y« (5.6)

Let the sampling design of the two-stage balanesdpte be denoted byyP’
The expressions (5.2) and (5.5) lead to the folhgvane:

~ ~_G-g 1-f —
\% (ygS’P ) —G—g CD(Z) +? NCD.N (5.7)
where:
G N
Cu =2wW,Cph, W, =—". (5.8)
h=1 N

The matrixCp, will be named the intra-cluster variance-covaranatrix.



167
V. Two-stage sampling

Let us introduce the following notationF[yiu:. Ymsd IS the matrix

of dimensions Mm of variable observations, whergzi##=[y;l...y;e}

is the column vector of dimensions<xN of observations of an i-th variable

in the population, where the vectoy ,,, :[yilh...yiNhh]T is the sub-vector

of dimensions x1 of observations of an i-th variable in an h-thstér. Let
J. be a unit vector of dimensiongl The sum of the observations of an i-th

variable in an h-th cluster will be denoted by =y /,,J N, - LetZ=[Zu1.. Zun]

be the matrix of dimensions>@), where: z;, :[zli ..zGi]. Finally, let D;
be the following matrix of dimensions®:

J, 0 0 .. 0

0 J, 0 .. O
D, = Ne . (5.9)

Hence:
z=Dyy. (5.10)

The vector Z=[z..Z.,] is defined as the following function
of the matrix z:

__ 1.7
z=—Jgz. 511
c G (5.11)
This leads to the following expression

-1 (223 2)(2-0.2
CD(Z)_G—l(Z JGZ) (z JGZ). (5.12)

On the basis of (5.10) and (5.11), we have:

z-J,Z=A Dy (5.13)
where:
AG:IG—éJGJg, AZ=A.. (5.14)

The matrixAg is idempotent. This and the expressions (5.12),3{5lead
to the following one:

C.(2)=y'Ay (5.15)
where:
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The covariances defined by (5.3) can be express#te following

way:
Crn (Yi yj)zﬁ(yi#h Iy, Yin )T(yj#h _JNhyjh)
where:
Yin =NiJTNth#h-

h

This leads to the following expression:

Yie ~In,Yin =BrYim
where:

thlNh—ﬁ%JNth, B2=B,. (5.17)
h

This derivation can simplify the expression (518jhe following way:

1
Cmn (yjyj): N _1yiTﬂthyj#h (5.18)
h

This lets us rewrite an element of the varianceadawce mairix shown
by the expression (5.8) in the following way:

1 N
CD(yi yj):ﬁhle h_lyr#hBhme . (5.19)
=1 Ny,

Let us define the following matrix:

B, 0 0 .. 0

0 9B, 0 .. O
B=ﬁ- 9252 (5.20)

where:

a, = N, -1 .
This lets us rewrite the expression (5.19) as vaito

CD(yi yj)ZYiT##By o
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Hence, the matrixCy, defined by (5.8) can be determined by the follgvin
expression:

Cay =Y By. (5.21)

This and (5.15) and (5.7) let us derive the follagvexpression

V(7,s Py)=ay" Ay + by"By (5.22)
where:
Bl (5.23)
Gg f

Let the matrixCH2) be positive definite. LeH be such an ortho-
gonal matrix of degree m theit'H = I, and

H'CH2) H=Dp,. (5.24)

where:D,, is the diagonal matrix of degree m and consisthefigenvalues
dni>0 (i=1,...,m) of the matrixC{2). Let F be such an orthogonal matrix
of degree m that'F =1, and:
12 R _
F'DY*HC_HD”F=D, (5.25)

where:D,=[d] is the diagonal matrix of degree m consistingeigfenvalues
of the matrixD¥’HC_, HDY?. Let

G =HDY?F. (5.26)

This and the equations (5.24), (5.25) lead to kwmimn that [see e.g. Rao
(1982)]:

G'C(9G=1, G'C,G=D,,. (5.27)
This leads to the following expression:
C.(9)= (GT)lG'l, C. =(6")"'D,G. (5.28)
This result lets us rewrite the expression (5. thefollowing way:
V{§.eP)=(c") @, +6D, )6 (5.29)

where a and b are defined by the expression (5.23).
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Let us transform the data matgxinto the matrixu of dimensions
Nxm in the following way:

u=yG. (5.30)

The columns of the matriy can be treated as outcomes of new variables.
This and the expressions (5.15), (5.21), (5.2730klead to the equations:
Im=u'Au, D,, = u'Bu. This lets us rewrite the expression (5.29) infile
lowing way:

V(e P)=(67) (" Au + buBU)G . (5.31)

The diagonal matrixD,, =u'Bu is the intra-cluster variance-covariance
matrix of the variables. Then the diagonal eleméntf the matrix D,,
is the intra-cluster variance of the i-th variableose outcomes are elements
of the i-the column of the matrix

WhenC42) is non-singular, it is possible to make such eod®osi-

tion of the matrix V(f/wS,P['j that the matrix C(2) is transformed

into a diagonal matrix and the matf@y, into the unit one.
The well known properties of the matrix determinand the ex-
pressions (5.23), (5.28), (5.29) lead to the follmnexpressions:

detv(yWS,P;): detC (2) ﬁ (a+bd),

i=1

+

g of G

1-Nd.  Nd, 1J (5.32)

detV (yws ,P[;): detCD(z)ﬁ [

Let us assume that elements of the diagonal mdgxfulfill

L

the inequalities:0<d, < N Letv{z) and w,(y;) be the diagonal elements

of C{2 and G, respectively. Then, the expression (5.7) leads
to the following one:

qz(sz,Pf;)=trV(VWst;)=?ivu(;)+$N§vm(x)- (5.33)

h=1 g h=1



171
V. Two-stage sampling

Let us introduce the following notation:

g, = Ya) (5.34)

“Tvfz)

If CH2) is positive definite, then

qZ(yWS,P(;):ltrCD(Z) 1+Nud#j_itrcm(z) (535)
g f G
where:
5 -Sud )
d,=>wd,, wi = —21 5.36
# ;L i i | trCD(Z) ( )

Hence, we can say that; determines the mean degree of intra-cluster spread
of an m-dimensional variable. This spread is laayat larger when the value
of the coefficientd, increases. Moreover, the mean radius of the gyate

(sz ,P(;) is the increasing function of the coefficiet_m;.

5.2. Minimization of the expected costs under fixed accuracy
of estimation

Let k, be the unit cost of preparing the first stage demgmesign.
The unit cost of observations of variables in tleeomd stage sample

is denoted by X In the case of the automatically balanced twgesi@esign,
the expected total cost function is as follows @&e Konijn (1973), p. 322):

k(g.f)=k,g+k,Ngf . (5.37)

5.2.1. Fixed level of risk function

Let the risk function be the following linear coimation
of the variances of the elements of the vectonmestr y s :

h(g’ f ) = iaiDz(yigS):G—gia'IVD(zi )+1g;ffNi Vo, (yi) (5-38)
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orif vg(y) >0 for each i=1,...,m:

h(g,f)= qm{%(ulf;fﬁaj —é} (5.39)

where:
9, =2av.(z), (5.40)
d=Ydw, w-= avgla) (5.41)

The coefficient ¢ is explained by the expression (5.34).

The problem is such a determination_of g (the sizthe first stage
simple sample) and of the fraction f that the expa@caost function takes
the minimal value under the fixed risk function. So

k(g,f)z minimum
h(g,f)<h, (5.42)
0<f<l1  1<gsG

It is easy to prove the following lemmas.

Lemma 5.1 [Wywiat (1992)]: The cost function k(g,f) explaite
by the expression (5.37) has the positive derieativthe direction of each
vector attached to the point (g=1,f=0) and haviregend point (§f° ), where
g°>1andf>0.

Lemma 52 [Wywiat (1992)]: If d<N™, the function h(g,f)
is strictly convex for f >0 and g>0.

Proof: Let Q(t,z) be the quadratic form of the slas of the function
h(g,f). After some transformation we have:

Q(t,Z)zlqm{Z(l_ZNd ﬁ_,_@[(lj +(Ej ]+M(l+£j }>0
g g f g f flg f

for t20 and z0

Hence, ifd <N and f>0 and g>0, the function h(g,f) is strictgnwex.
Let us introduce the following notation:

g. =q—m{1—N6+N kfL-df } (5.43)

hd 1
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g.. = thal , (5.44)
fo= K d (5.45)
k, 1-Nd
fo=—Nd__ (5.46)
Ggl+Nd-1
fo=—Nd__ (5.47)
gl+Nd-1

The optimal solution to the problem is denoteddpf) (
Whend <% and

a) if go< G and f< 1, then (g,f) = (gf),
b) if f>1 and g<G, then (g.f) = (g1),
¢) if g>G and f<1, then (g,f) = (Gf),
d) if go<1 and £ <1, then (g.f) = (1:f).

5.2.2. Fixed level of the generalized variance

Let us assume that the sample size G is so laegette quantity G
can be neglected in the expression (5.32). Indh&e the generalized vari-
ance of the vectoy  is as follows:

u(g,f)= imdetcu(z) ﬁ (1—Ndi +%Ndij (5.48)
g

i=1

where dis the diagonal element of the matby, defined by the expressions
(5.25)-(5.27).

The problem is such a determination of g and f the expected to-
tal cost takes the minimal value under the fixagtlef the generalized vari-
ance. The m-th root of the generalized varianes ifollows:

u,(o.f)=gdetv(y,e) =%c0d:(bi +f1j (5.49)
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where:

c, ={/detC (2), (5.50)
b =——-1. (5.51)

The solution to the problem does not change whea thth root
of the generalized variance is substituted forgeeralized variance. Hence,
the problem can be specified as follows:

k(g,f)= minimum
u#(g,f)s Uy (5.52)
g1, 0<f<1

Lemma 5.3 [Wywiat (1992)]: The function udefined by the expres-
sion (5.49) is strictly convex for® and #0.

Proof: The quadratic form of the Hessian of thacfion y(g.,f)
is as follows:

crmsnfoilis 58 (3]

for t20 and ¥0 where =bf>+f>0 because f>0 and3®. Hence, the function
ug(g,f) is strictly convex for g0 and £0.
Let f;be the root of the following equation:

1 1m 1
-— =0 5.53
ko +f mfébifﬂ ( )

where:
k

k,==2, 5.54
=N (5.54)

C, |X 1
, == b —— 1. 5.55
g 0 ﬂl( f*j (5.55)

Let f be the root of the equationy(iLf)=uy and let g' be the root
of the equation 4(g,1)=w.
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Under the asumption:

a>k—2_
k, +NK,

= im
d= /médi . (5.57)

the lemma 5.3 leads to the following optimal salnti(g,f) to the problem
(5.52):
a) if f{1(0,1> and ¢>1, (9.)=(a:fD),
b) if f>1, (9.)=(g',1),
c) if g<1, (9.H)=(1,7).

The root f of the equation (5.53) should be obtained by meéatise
appropriate method of solving a nonlinear equation.

(5.56)

where:

5.3. Maximization of estimation accuracy under fixed ex-
pected total costs

5.3.1. Minimization of squared risk function
Our problem is determining such a size g of chsstend such
a fraction f that the risk function defined by tegpression (5.39) takes

the minimal value under the fixed expected valuehef total costs defined
by the expression (5.37). Hence:

h(g,f)z minimum
k(g,f)<K (5.58)
fy<f<l 1<9g<G

The following transformation is considered:
x=gf, g=0. (5.59)
This lets us form the following problem equivalémthe problem (5.58):

h$(g,x)= minimum
ke(g,x)< K (5.60)
0<x=<g=<G, g=21
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where:
1
— 5.61
» G (5.61)
Ke(9,X) = kyg +k,Nx . (5.62)

Lemma 5.4: If dN <1, the function R is strictly convex for x>0

and g>0.
Let us introduce the following notation:

. 1K

—x' =1 5.63

g k, +k,NT, (5.63)

g = KK (5.64)
ky

=K kG (5.65)
Nk,

/1—NE / d
. =€ , X. =€,[— 5.66
g K, K, (5.66)

o~{iak +wid)

On the basis of the lemma 5.4 and under the as&mapthat:
dN <1 and G>g', the following solution (g,f) can be derived:

where:

a) if P,0AC, (g,£)=[gm,§],
b) if gn<g’, (9.)=(9',1),
0)if G<g" and g. >G, @,f):(@%),

where the coordinates of the ends of the segm?htare as follows A(g'.g")
and B(G,x").



177
V. Two-stage sampling

5.3.2. Minimization of generalized variance

Let us assume that the number of cluster. @. The problem
is to determine such a size of the selected ckigieand such a fraction f

that the generalized variance of the stratef{:b\é,P['j) takes the minimal value

under the fixed expected total costs of observatfgmopulation elements se-
lected to the sample. This problem is equivalenth® following problem
of minimization of the root of the m-th degree loé tgeneralized variance:

u#(g,f =minimum
k(@,f)<K (5.67)
> <

)
<
1 f,<f<1

d

where the functions w4 and k are defined by the expressions (5.49)
and (5.37), respectively. Let us introduce the tiata

K

95 K+ Nk (5.68)
When f,>1, then f=1 and the above equation leads todh@wing:
K
= 5.69
g K, +NK, (5.69)

When k,+k,N<K and the inequality (5.56) is fulfilled,

the optimal solution (g,f) to the problem (5.67aisfollows:
a) if fr=l, (9.5)=(a: ),
b) it f>1, (9.)=(9,1).
The root f of the equation (5.53) should be obtained by means
of an appropriate numerical method.



VI. VECTOR OF REGRESSION ESTIMATORS

6.1. Basic properties

In the one-dimensional case, properties of regresgstimator
are considered e.g. by: Bracha (1978, 1982, 19887)1 Cochran (1963),
Gren (1969, 1970), Konijn (1962, 1973), Murthy (1973grndal, Swensson,
Wretman (1992), Tripathi (1973) and Wywiat (19929%9% We are going
to generalize their results on a multidimensioredec

Let A be a real matrix of dimensionsra, where: m is the number
of estimated population averageg:=[y,..y,]. The number of elements

of the vector of auxiliary meanX =[X,..X,] is denoted by z. Let S

be the simple sample drawn without replacement. vidwdors of the sample
means of variables under study and auxiliary véemhre denoted by and

X, respectively. The vector of difference estimaisrgefined by the equa-
tion:

ths =Vs T (Xs —X)A. (6.1)
The strategy ths,Ps) is the unbiased estimator of the mean vedioand
its variance-covariance matrix is as follows:

VG%RQ=D%;{QW+CWA+ATAWHUCWA) (6.2)

where C.y, Co and C.y = Csy are the covariance matrices of the vector
of variables.

Let us substitute the following matrix for the miatA in the equa-
tions (6.1) and (6.2):

B=-C,C,  detCy)>0. (6.3)
This determines the vector of regression estimators

tes=Ys +(Xs —X)B (6.4)
and the variance-covariance matrix:

N;”@w—cwc;cw) (6.5)

V(tgs,Ps) =

The vector {gs,Ps) is the unbiased estimator of the mean vegtor
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Let A be the set of vectors of difference estimatdis
whereAOR™? Hence:

Theorem 6.1 [Wywiat (1988)]: If S is a simple sample drawn fwit
out replacementtgs is the effective estimator of the mean vectpr

in the clasdA.
Proof: The matrix

V(tas,Pa)-V(tes,Pa)= (A-B)'C.,(A-B)

N-n
n
is the Gramma matrix. Hence, it is non-negativenitef

The relative efficiency index of the estimattys to the simple
sampleyis as follows:

L det(C,, -C, CC, )
- 1 - %4 yX I xx I xy
ew(tBS/yS)_detv(tBS’P3)detV (ysPs)‘ det(C,) :

(6.6)

Let 1y, i=1,...,p=min(m,z), be the coefficients of thenonaical
correlation. They measure the linear dependencevelet the vector
of the variables under study[y:...ym] and the vector of auxiliary variables

X=[X1..X;]. The coefficient r; <1 (i=1,...,p) is obtained as the eigenvalue

of the matrixCC,,C;C,, [see e.g. Anderson (1958) or C.R.Rao (1982)].
This leads to the following equations:

deV(tasPy) = detCny) ﬁ a-r2).

e, (tos/Vs) = r| a-r2). 6.7)

The precision of the vector of regression estimsatgs is high
in relation to the simple sample medn when the variables under study

are highly correlated with the auxiliary variabliesthe sense of canonical
correlation.
The theorems 1.7 and 6.1 lead to the inequalities:

A(tesP)=<a(ys.P;) andp(tasPy) < p(Ys .Ps).
Let w r? (i=1,..,m) be the i-th diagonal element of the nmat

X

nyc;lcxy where &r<1 is the well known multiple correlation coefficten
between the i-th variablg under study and auxiliary variables[x;..X,].
The parameten? is named a determination coefficient. This and e
pression (6.5) lead to the following results:
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Atgs) =a(yIVL-T7? (6.8)

where:

7= Zm:gi r?, (6.9)
i=1

-1
g :Vi(zvj] ,i=1,...,m.
=

The mean determination coefficient will be denoted f* and G°<1.
The inequality q(tss,Ps)<q(Ys.Ps) and the expression (6.9) lead
to the following conclusion. The mean radius of dstimatortgs decreases
when the mean determination coefficient increases.

On the basis of the expressions (1.57) and (6.8) ewaluate
the deff-coefficient:

defite, £)= oV 0 2V 25, 2))

deff(t s ,P3)=H o(-c,ciic, ci)
or
N —_
deff(t o ,P3)=N—_r1‘(1— i2) (6.10)

where rqu is the lowest coefficient of canonical correlatlmetween the auxiliary

variables and variables under study. More precistig coefficient rqu

is equal to the lowest eigenvalue of the matx=C.,C. C. C. .
The expression (6.10) is derived on the basisefdhowing expressions:

I -Q-Al|=0,
which is equivalent to the following:
Q-v|=0

where y=1-A and eigenvaluesl>rZ >rZ, >..2r7 =20 of the matrix Q

are the coefficients of canonical correlation.
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Let us assume that the vector of auxiliary vagabX is known.
The matrix of the regression paramet&san be estimatedn the basis
of the simple sample drawn without replacement leams of the following
matrix:

Bs = —CixsCiys (6.11)
where: C., s =[C:s(%.Y)] and C.,s =[Cs(xiX)], k=1,...m; i,j=1,...,z:
1 - = - _1
C[S(Xi’yu)___Z(Xik _Xis)(yuk _yuS)' Xig =— 2 Xy
n-1ics N ias
_ 1 - < _—
C[S(Xi’xj)__ (Xik_xis)(xjk_xjs)’ Vs = 2 Yk -
n-1ics KIS
Substituting the matriB ¢ for B in the expression (6.4), we have:
tgs =Ys + (Xs —X)Bs. (6.12)

The statistictgg is an asymptotically unbiased estimator of thetaec
of population meang and its variance covariance matrix is approxinyatel
determined by the expression (6.5). The estimdttri® matrix is as follows:

N-n _
. (C.ys ~CopsCeCrns)- (6.13)

V(tgs Ps)=

Let us note that the problems of estimation onlthsis of a vector
of ratio or product estimators are considered byg.John (1969), Lynch
(1978), Olkin (1958), Tripathi (1976) and Wywialod2).

6.2. Vector of regression estimators from double sample

Usually the matrixB as well as the vectox are not known. In this
situation, the two-phase simple sample S={S;} can be selected from
a population in order to determine those paramefgrs simple sample;S
is drawn without replacement from a population. this sample, values
of auxiliary variables are observed. The simple @amS is selected
from the outcome of the sample. &dditionally, in this sample the values
of variables under study y are observed. The sanfland $ are of sizesn
and n, respectively and ;> n. The sampling design of the double
sample is as follows:
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The matricesC C,. are estimated by the following unbiased estimators

Oy
Em :[(':D(yi X )] ED(X = [(“:D(xi X )] respectively, where:

_ _ _ _ 1

CD(Xi 'Xu)z n, _1%(Xik ~ Xis, )(Xuk ‘Xusz)' Xis, =n_2M§S:2Xik '
¢ - _y _% V. = * Ty
CD(yi ’Xu)_ n, _1%2 (yik Yis, )(Xuk Xu%)' Yis, n, kDZSZylk .

Under the assumption thaIEL(ED(X)> 0, the estimator of the matrix
B is as follows:

B=-C5Cy, (6.14)

Let X, =[Xs - Xys |, Xg =[Ks Ko |, Vs, = [Jiss .5 | where:
1 1 1
Yisz = zxik , Yisl = zxik ) yis2 = zyik :

n
2 kos, 1 kOS, 1 KOS,

Substituting the matrix B and the vectors Xs , s , X, for B

and X, y, Xg, respectively, in the expression (6.4) we havefttiewing
estimator of the vectoy :

tos = Vs, *+(Xs, ~Xs JB. (6.15)

The parameters of the vectbgg are as follows (see Wywiat (1988
and 1992)):

Effes Ps )=+ 0(n1‘1)+0(n;1), (6.16)

V(tssapad)z

o C*Xy)+

*XX

N-n; n,—n
c., +——=Ic.,, -C.,,C
an yy nlnz ( yy X

+ 007" 7 O(ry? )+ 0(n;'nyt) . (6.17)
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This and the definition of the mean radius of ateeestimator lead
to following expression:

52 Y
0 (fss Poy) = 1V (Bos Py = tf(C*W{r— el —iJ (6.18)

n, n2N

whereT is defined by the expression (6.9).

6.3. Optimization of sample sizes
Let k be the per observation cost of auxiliary varialdesl let k
be the per observation cost of variables undelysflide admissible total cost
will be denoted by K. Usually, the following lineacost function
is considered:
k(nl,nz) = kln]_ + k2n2. (619)

This function is involved in all optimization prahs formed below.

6.3.1. Minimization of square risk function

The variance of the i-th element of the vectgs can be obtained
on the basis of the expression (6.17) and it elémwvs:

- r2 1-r2 1) .
D%t 5o Py J= VLY, )| — + L —— |, i=1,...,m. 6.20
(as Px) (y.)[nl - N] (6.20)

Let us consider the following risk function:

U(nunp) = Zmlaioz(f% P) (6.21)

wherea = [a,...a,] O R™ - {0,}. This and the expression (6.20) let us rewrite
the risk function in the following way:

Uy(ne.ny) = qz[F— Tl —iJ (6.22)

n, n, N
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where:

a” =2 avu(y), (6.23)

= i rwi, W = Gave(y). (6.24)

The parametef? is the weighed mean of the squared multiple caticz
coefficients r (i=1,...,m). The coefficient measures a linear dependence be-
tween the i-th variable under stuglyand auxiliary variableg. The determi-

nation coefficientsr’ is equal to the i-th diagonal element of the matri
CB/XCEiX Cny. The inequalities f7 <1 result from the fact that<@<l

and &wg<l for each i=1,..m. Let us note that the paramefé
can be treated as the weighed mean of the deterarineoefficients r?
(i=1,...,m).

Let us determine such optimal sizes of samplar@ S that the risk
function takes a minimal value under a fixed taast of variable observa-
tion:

{ u, (n,,n,) =minimum (6.25)

k(n,,n,)<K, 2<n,<n, <N

Wywiat (1992) showed that if 3k2k<K and T>r, = " K :

1 + k2

the optimal solution is as follows:

n, = minimum{ N,n;,ng (6.26)

n, = maximum{ n, .2,n5 '
where:

. K=2k, , _ K—=Nk; , K
nl = y n2 = ] n = )
kl k2 kl + k2
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The vector of the regression estimatogg from the double simple
sample is not less precise than the vector of mgangom a simple sample
drawn without replacement if;

u(n,.n,)<u, ()= (kK - N2 (6.27)
This inequality is true

a) for the pair(n,,n,) = (nf,nE), if:

VKK
T2r=2Y12>¢ (6.28)
k, +k,
k
where r, = . +1k
1 2

b) for the pair(n,,n,)=(N,n}), if:

_ kiko
2 =N b 6.29
r2rm JK[N(k1+k2)—K]>rO (6.29)
c) for the pair(gl,gz)=( r.2), if
F2rp= K-2k, >r, (6.30)
K(K-2k1-% )

The necessary condition forDZ(fBS)sDz(VS) is that k>k
and r<r,, where g is determined by (6.28).

Let us note that if all the elements of the veetda; ...a, ] are equal
to one, the risk function is equal to the trac¢hefvariance-covariance matrix

of the estimatorty. Moreover, ifa, = yi—z (i =1... ,m), the risk function

is equal to the sum of variation coefficients af tlements of the vectady, .
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6.3.2. Minimization of generalized variance

Let us denote the generalized variance of themasr t,g
as a function of the sample sizes in the followivay u(ny,n)=detV (fBS)
where the matriy/ (EBS, Psd) is defined by the equation (6.17). Our problem

is to determine such sample sizes that the gepedaliariance of the estimator

tys takes the minimal value under fixed total costs afservation
of variables. More precisely this problem is expéal by the equation

u5(nl,n2):minimum (6.31)
nl,nz)sK, 2sn,<n <N '

where the cost function k{im,) is defined by the expression (6.19).

Let us assume that the covariance maiy, is positively definite
The well known theorems of linear algebra, see Rap (1982), let us find
such a matrixQ of degree m thaQ'Q=Cy, and Q'RqQ=C,,C,Cp, .
where Rq is the diagonal matrix with diagonal elements dedo

by r&, i=1...,m. The determinant s(n;,ny)=det/ (fBS) can be written
as follows:
1 1 1
us(nl,nz):det{QT[n—lRQ+n—2(lm—RQ)—NIm]Q}.

The well known properties of the matrix determinktus rewrite the deter-
minant in the following way:

u5(nl,n2)=de(CEw|E|fD) (6.32)
1=1
where:
2. 1- 2.
foef -t f=la,2Tlo (6.33)
N n, n,

The diagonal elements of the matRg can be determined as the solution
to the following equation, see e.g. Rao (1982):

det(Csx Co C

*XX T RXY

2 —
-15C.,) =0.
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The parameters()sréi <1(i=1,..,m) are the squared coefficients

of canonical correlation. They measure the degredinear dependence
between the vectogsandx.

Lemma 6.1 [Wywiat (1992)]: The function 4fn;,ny) is strictly
convex in the field={(ny,n,):0<n<n;<N}.

w

Proof: Let a(w,z)=[w zH (nl,nz)[z} be the quadratic form,
whereH (ny,n,) is the hessian of the functiog. Wfter appropriate operations
we have:

m m a 2 q rzl 2 m 1_r2v
a(w,z) =2y Zf fJ +22_3. &+2W_32 a
ij =il n; '=1fD n; i=1 fD

where:
_ rarg g (1 —13 ) w
q; _[WZ][réi (1_r(§j) (1_r(§i Xl_réi) |:Z:| |

The function g(w,z) is convex irD becausex0 for all z,W1R-{0}.
Let us introduce the following notation:

n; = min{K_k—Zkz, N}

1

k, (6.34)
n K
n =
k, +k,
Let (ni,n*z) be the solution to the following system of two atjons:
1 m I’éi 1 m 1—I’(-‘2)i
=C,|— —_—, n, =Cc,[— R 635
K, zlf 2k, zl f., (6:35)
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1 1 m g, m 1-rg
222 kS -2+ [k
c k{\/ %fﬂ \/ =t

Wywial (1992, 1995) showed that the solution to theblem (6.31)
is as follows:

where:

n, = min{n,,n; (6.36)
n, = maxn,,n,

The solution(nz,n*z) of the set of two nonlinear equations, given by
the expression (6.35), can be obtained only appratély by means of an ap-
propriate numerical method like Newton, gradient itaration method.
We are using the last one but under some additessglmptions.

If N - o, 4 - f for i=1,...,m, where the functions; fand f
are defined by the expression (6.33). Next, in fitet equation of the set
(6.35), the transformation, wwn; is implemented. After dividing the second
equation of the set by the first one we have:

w = p(w) (6.37)

where:

, (6.38)

h =wrg +1-r2 i=1,...m. (6.39)

Theil (1979) proposed the average of squared oiefiis of canonical corre-
lation to asses the degree of linear dependenceebst two vectors
of variables. In our case we have:

_ 1 1
r2=—>%r2=—tr(C.,C.,C. 6.40
Q mr; Qi m, ( yX XX xy) ( )



190
SOME CONTRIBUTIONS TO MULTIVARIATE METHODS...

where: m' = min{m,z}. Hence,<r2<1 and we say that the degree of linear
dependence between the vector of variables unddy gtand the auxiliary
vectorx increases when the value of the coeffici@@increases.

Lemma 6.2 [Wywiat (1992)]: If ﬂfé >%, then O<w<1 and
m 2
ni>no.
The following iteration process leads to the soluto the equation
set (6.37):

W= p(w), i=0,1,2,.. (6.41)

Wywiat (1992) proved that this iteration processasvergent on the true so-
lution denoted by wand it is not dependent on the start solution P<iv

Demidowicz and Maron (1965) explain how to esterthie accuracy
of an approximated solution from the iteration e

| wo-w; | <29 | wy - we |-

This lets us determine the necessary number attibgr steps. The sufficient-
ly accurate solution w leads to the optimal sample size(m;,n*z).
On the basis of the equations:=nwn, and kn;+k,n,=K we have:

. K

== n,=wdmn;. 6.42
1 k1+WDk2 2 o' ( )

6.3.3. Goal optimization of sample sizes

Let us consider two types of problems. The firbttlem leads
to finding a compromising solution which is close éome sense) to all
the optimal sample sizes obtained as a solutiorpddicular problems.
The second problem: for particular problems, theénegd values of the crite-
rion functions are determined. Next, a purpose tfanc is formed
in such a way that it measures the distance betwagitular criterion func-
tions and its optimal values, respectively. Theisohs to these problems are
treated as compromising sample sizes.

Let (ny;, ), i=1,...,m, be optimal sizes of the samples izt
as a solution to the following problem:

{ Ugi (Ng,n,) =min (6.43)

k,n, +k,n, <K, 2<n,<n; <N
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where ldi(nl,nz):DZ(fBis,Ps) are defined by the expression (6.20). This opti-
mal solution is a particular case of the solutianthe problem (6.25)
for m=1, and k=k,;, given by the expression (6.26) whepedad r should be
substituted for kand T, respectively. The parameteiig the multiple corre-
lation coefficient between the variable under stydgnd auxiliary variables
X.

In order to find the compromising solution to theblem, the fol-
lowing additional criterion can be introduced:

m

el ) = 33 =) W + 3 (1 = 1) Wi (6.44)

m

where Y wy; =1 and w; > 0 for each i=1,.m, h=1,2. This leads
i=1
to the following optimization problem:

{ Ug(Ng, N2)=minimum (6.45)

klnl+k2n2S K, 2Sn2< nlS N

m
where: k = ZkZi . Hence, we are looking for such pair of samplesiz
=

(ny,ny) that it is close to all the particular solutiofis;, ny; ), i=1,..,m.
Wywiat (1992) showed the solution to the probler.46),

* *
when n; <n' andn, >n’, where:

K

(- ; n* =T, +ck , 9 =N+ C 6.46
i MThvde ek (6.46)
where:
K -kn, —k,n, _ m
= = =< = W, . for h=1,2
K +K2 , ny, i;DmWhl or :

In this case the solution to the problem (6.45)atermined by the expression
(6.26) and the parameters,(,n, ).

Let Wi (M .y )=Us, i=1,...,m, be the minimal value of the purpose
function defined in the problem (6.43). Let the ffiogent of the relative es-
timation efficiency be defined by the expression:

u..
e=— Y im (6.47)
Ug (Ny,N5)
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The optimization problem is shown by the expression

U, (n,,n,) = minimum
7( 1 2) (648)
kn; + k,n, <K, 2<n,<n <N
where:
mo1
W(ng,p) = Ze— . (6.49)
i=1 C

This problem is a particular case of the probleén2g) for

a= {ii} . Hence, the expression (6.26) lets derive thetisoluo this

gGl gGm

problem.

6.4. Minimization of observation costs under fixed risk

function

6.4.1. Fixed squared risk function

Let u, be an admissible level of the risk functiof{ry,n,) defined
by the expressions (6.20)-(6.24). Hence(nhyny)<u,. This inequality
is equivalent to the following one:

=2 =2
r 1-r1
u{ng,m) = —+
r-]1 2

where: T is defined by the equation (6.24) ang=?t—+u—g where: §
q

is determined by the formula (6.23). Let us consitie following optimiza-
tion problem:

k(n,,n,) =min
u, (n;,n,)<u. (6.50)
2<sn,<n, <N

Let:
— 2 =2
- 2r_2 . N r_z)’ n"=i, (6.51)
u +7r° -1 Nu -7 U
- =2
n, =c ' n, =c Sl (6.52)
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where:
Tk, +@-77)k,
= . (6.53)
UD
. . o1 1
Wywiat (1992) showed that if q (E +Nj>u02 and
r>r, = lil , the solution to the problem is as follows:
1 2

n, =min{N,n!,n" (6.54)
n, =maxr, 2,n,

6.4.2. Fixed standard errors of estimation of averages
in a population

The problem is such a determination of samplesssihat the cost
function k(n,n,), given by the expression (6.19), takes the mihivadue

under the restriction that the varianc@;z(qus,PSd)s d, i=1,...,m and

1<n<m<N. On the basis of the expression (6.20) we hayén;n,)<dg,
i=1,...,m, where:

21—y’ d.
Ugi(Ng,Np) = r'—"'—r', d,=—! +i. (6.55)
n n v(y,) N

1 2

Hence, the optimization problem is as follows:

k(n ,n,) =min
u (n,n,)<d;, i=1,...m. (6.56)
2sn,<n; <N

The set of the admissible solutioDscan be obtained as a prod@st [ D; ,

i=1
where D; is the intersection of the simplex determined bg inequalities
2<n,<n;<N and the convex area determined by the expressgiom,n, )<d.
The setD is convex because it is the intersection of thavea setsD;
i=1,...,m.

Let Bj(ny,ny) be the intersection point of the hiperboloids

Uni(Ny, M) =0ki, Uyj(Ny,np)=0k (i#j=1,...m). Its coordinates are as follows:
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r (rjde - ridej )

ny = — S, s 1 (5.57)
gy (r2d - 12d) - (L- r2)[r2 @-r2) - 2 (L-r2)]

2 2
I dy -1, dDj

n,: = .
Tora-) - a-r)

(5.58)

We assume that the detis non-empty. The solution to the problem
is on the edge of the s&t because it is convex and the purpose function
k(ng,ny) is linear. The optimal solution is equal to tleoinates of the apex
of the setD or to the coordinates of the tangence point ofglan given
by the equation fky+kn,=k;,, and the plain given by;{in;,n,)=d (i=1,..,m)
in the set determined by the inequalitgnZzn<N. The coordinates of one
of the defined points are optimal sample sizeshéf value of the purpose
function denoted by ktakes a minimal value.

6.4.3. The admissible fixed generalized variance

Let the volume of the confidence ellipsoid for thector population
means be fixed. If the ellipsoid is determined lom basis of the vector of the

regression estimators,g, its volume is proportionate to the generalized
variance oft,.. The admissible level of the volume is proportiotead,
where d is the admissible level of the generalizadance of the strategy
(tas,Psd. Hence: daf(t,s,Psg)=us(n,ny)<d, Our purpose is to determine

such sizes _(pn,) of the samples that the cost function k), given
by the expression (6.19), takes a minimal valuendde

(6.59)

k(n,,n,) =min
U (n;,n,)<d, 2<n,<n; <N

where 4 is defined by the equation (6.32).
Wywiat (1992) derived the following optimal soloti;

n, =min{N,n},n;} (6.60)
n, =max{2,n%,n>} |

where n; and n), are determined by the expression (6.51) ang,if;)
is the solution to the following system of the efipzs:

a(nl’n2): —k ,k5?
{ us(nl,n2)=d ©61
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where:

E(on,) (6.62)

a(nl,n2)=—

The first partial derivatives in respect toq and n of the function
F(n,np)=us(ny,np)-d=0 are denoted by, land k, respectively.
The solution to the problem existsrif < Nand n > n,.

When N- o, the solution to the system (6.61) can be singaifi
in the following way: let prwn;. The first equation of the system (6.61)
can be transformed into the form shown by the esgiom (6.37) and
the second equation - into the following one:

1 m(, 1-1§
——detC ré + =d. 6.63
nm EW!::IL[ Qi W ( )

1

The solution wto the equation (6.37) can be obtained by meatiseoitera-
tive process determined by the expression (6.4hjs &nd the equations
(6.63) and prwn, lead to the following optimal solution:

* 1 m 2 1_r(§i
n, —\/EdetCD/y g[rQi + W (6.64)

n, =wg,

Let us note that the conditions of existence of thequalities O<w<l
are determined by the lemma 6.2.

6.5. Minimization of total risk
The total risk function is defined by the expressi

Ug(Ng,p)=u(Ng,nz) + K(,ny)

where the functions k{m,) and y(ny,n,) are determined by the expressions
(6.19) and (6.20)-(6.24), respectively. Let us abersthe following problem:

{ 4 (n,,n,) = min (6.65)

2<n,<n; <N
Let us introduce the following notation:
oF . 1-7?
y n2 _q .
JK, K,

whereT is defined by the expressions (6.23) and (6.24).

n, =
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Wywiat (1992) showed that the set of admissiblausohsL is the triangle
determined by the points &N,2), A(N,N) and A(2,2) without the side

m. If the point A. (n;,n,) O L, its coordinates are the optimal solution
A(ny,ny). If Ag O L then

a)A =(n,2) if 2<n’<N and nj <2

b) A=(N,n3) if n;>N and 2<n;, <N

c)A=(N,2)if n; >N and n, <2

d) Ado not existifn; <2 and n,<2, or n;>N and n,>N.

6.6. Unbiased regression strategies
6.6.1. Sampling strategy I

Let U be a population consisting of N distinct adentifiable units.
The vectory” = [y; ... W] consists of all the values of a variable undedgt
Let x = [x;] be the matrix of the dimensions Nxk. The matxixonsists
of all the values of a k-dimensional auxiliary adolie. The element;x
is an i-th value (i=1,...,N) of a j-th auxiliary rable (j=1,...,k1). Let Jy
be the column vector of the dimensions Nx1. Eaemeht of the vectaly is
equal to one. Let us define:

y= T3, X==JTx,
y Ny N NN
Y=y-J,V X =x-JX,
1 1 1
VW:NYTY, V:[Vjt]:ﬁXTX' V:[Vyj ZNXTY'

The population mean of the variable under studgeisoted byy. The row

vector X consists of the population means of the auxili@griables.
The population covariance matrix of the auxiliagrigbles is denoted by.
The vectow consists of the population covariances betweetixdiary var-
iables and the variable under study.

Let s be the sample of the size n drawn withoptaement from

a population U. Lety! :[yil...yin] be the vector of values of the variable
under study observed in the sample. Similarly ntiagrix
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consists of the values of the auxiliary variabldseayved in the sample s.
Moreover, let us define:

Y. =1y X5 =X
n

ne

Ys=Y.—J.Y, Xs =Xs=J X, Ys =YY, XS:Ys_z

T STo T T
VS__XSXS_XSXS’ Vg =—XsYs ™ Xs Vs

or
1.+ YTy 1.+ IVARV2
Vs_ﬁxsxs_xsxs- Vs HXSYS_XS s

Hence, Vg = I_VsijJ is the sample covariance matrix between the auyilvar-

iables andvs is the column vector of the sample covariancesvéenh
the auxiliary variables and the variable undertud

Let S be the sample space of the unordered samplehg aize n se-
lected without replacement from the population U.

In the paragraph 2.3.10 sampling designg(sp /7 dets
is considered. The sample s is selected with agtitty proportionate to the
sample generalized variance of the auxiliary végisib

detv,

detV
where:
N-k-1)"(n)"
c, = —| .
n-k-1 N
When k=1, the sampling planids) is reduced to the one proportional
to the sample variance of Singh and SrivastavaQ)l9&t ., be the subset

of the sample s. The size of the subggtis equal to k+1< n.
Let us define the following quantity:

R.®=C, (6.66)

ql(skﬂ):detz[\]k+1 XSM] (6.67)
X1 Xk
where: x, ="
X X
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Let er:[xirl...xirkJ be the r-th row of the matrix, . After eliminating
the row x,,,; in the matrixx, we obtain the matrix . After subtracting

the last row of the matri*]

w1 Xs J from the previous rows of this matrix
k+1

we have:

0 X_ —X
det[J k+1 Xsk ]: de{l S k+1DJk:| .
+1 X

k+10

This lets us rewrite the expression (6.67) in tilfing way:

q1(3k+1) =def |,Xsk = Xypqrd kJ : (6.68)

Let us note that(s«+1) is the k-dimensional measure (volume)
of the parallelotop spanned by the vectors witlir tiégins at the same point
X, and the end pointg,,....x,, see e.g. Borsuk (1969).

The following sampling scheme (implementing the jglamgy design
P14(S)) consists of the two following steps.

Step 1: Select k+1 unitssy.g ={i1,i2,...,i k+1} with their pro-

bability of joint selection being proportional tp_L(sk,,l).

Step 2: Selectnék-1) units from the remaining units of the po-
pulation by the simple random sampling without re-
placement.

The sampling design proportional m(skﬂ) is as follows:

P(sm):—N‘EiSS(;ZK/ (6.69)
or
(k + Dde UlMUSM1
AS..)= Nk+f(dew ) (6.70)

Particularly, if k=1, this sampling scheme is reeld to the sampling
scheme proposed by Singh and Srivastava (1980). this case

Q1(Sz): (Xi2 - Xil)2 :
The well known regression estimator of the popatetmean y
is as follows:

Yrs =¥s ~ (ys _X)Bs (6.71)
where:
By =VS_1VS. (6.72)
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Let us introduce the following matrix

Vs_)_/ Ys_y
A= . 6.73
s |:Vs v } (6.73)

Wywiat (1999), on the basis of well-known propesfyithe determinant
of a block matrix rewrote, the estimatgy in the following way:

v+ detAg
Yrs TY detv,

(6.74)

The determinant of the matriA; can be transformed into
the following forms:

(6.75)

detA.=n"*'de
° {XEYS XX

n¥s-y) (% - i)}

S

JT
detAg =n*" de{an }[YSXS] :

The strategy(yRS P (s)) is the unbiased strategy of the population mgan

When the sample size A « and the population size N « in such a way
that N-I’]-» 0,

D(Vrs R ©)= (vyy —VTV ). (6.76)

S|

Let R be the correlation matrix of auxiliary variablesada
r’= [rﬂ...ryk], wherer,; is the correlation coefficient between the j-tifia-

ry variable and the variable under study. This lais rewrite
the expression (6.76) in the following way:

D (Fes Rs @)= v, fL- 1) (6.77)
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is the multiple correlation coefficient between tlaixiliary variables
and the variable under study. Hence, in the asytioptaise, the precision
of the strategy(VRs P (s)) increases when the value of the multiple correla-
tion coefficientr,, increases, too.

Singh and Srivastava (1980) derived the unbiasgichator of the
variance DZ(VRS P (s)) in the case when k=1. Generalizing their result

for k=1, we can construct the following unbiased estimatdhis parameter.

k
b7 =gz N 1O ey
LR T er & detV,

Syz+ N1 Zyiy,-] (6.78)
Dl(N -h)

i0s n-1ps

6.6.2. Sampling strategy II

In the paragraph 2.3.9 the sampling desid®, () O detV ¢
is considered, where

Vgsz%xgxsz%(xs_‘]ni)T(XS_JnY) (679)

is the sample variance-covariance matrix definetherbasis of the population
means of the auxiliary variables. We can prove that

detV ¢
detV

R.®=c, (6.80)

where:

e

When k=1, the defined sampling design is reducedhto one proposed
by Singh and Srivastava (1980).

Let & be a subset of the sample s and k<n. Let usalefi
the following:

qz(sk)=det2{\]1 X } : (6.81)

Kk Xs,
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From the geometrical point of view(g,) is the k-dimensional meas-
ure (volume) of the parallelotop spanned by thetarscwith their origins at
the same pointx and the end points which determine the rows
of the matrix Xs, ,s€e, e.g., Anderson (1958) or Borsuk (1969). Hpres-

sion (6.81) can be transformed into the followimg o
o 6,) = def (X ) (6.82)

It can be shown that the following sampling schemelements
the sampling design;ifs):
Step 1: Select k units<iy, ..., iy} with their probability of join
selection being proportional tg(§y).
Step 2: Select (n-k) units from the remaining unitthe pgulatior
by simple random sampling without replacement.
When k=1, the introduced sampling scheme is ratiticeone pro-

posed by Singh and Srivastava (1980). In this a:xazs(el) = (xj - Y)z.
Wywiat (1999) considered the following estimator:

_ n(N-K)r— . _
== -|X. =X)B 6.83
© TN -k) [ys ( s ) #s] ( )
where:
_ 1
B#sszslvns- V#s:FX;ys-

The statisticy ., can be transformed into the following one:

—  _n(N-k)detA

= 6.84
® N(n-k) detV ¢ (6.84)
where:
Ag= YsXs =X or A -1 In [y X ]
# V#s \/#S # n X; S Sl

In the case when k = 1, the statisli¢s is reduced to the estimator

proposed by Singh and Srivastava (1980).
We can prove thai‘y#s B (s)) is the unbiased strategy of the popu-

lation mean Y. The approximate variance of the strate(]‘)/#S,F;4 (s))

is expressed by the right side of the equation7(6.The unbiased estimator
of the variance of the sampling strate(@;/#S B (s)) is as follows:
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k
A NP rDz(n ~h+1) detV, [

D3 =¥%

2 N _1
S — Y 6.85
detV#SL%:sy' n-1 i¢zj]SylyJ:| (6.85)

nblﬁ(N—h+Q

h=2

6.6.3. Sampling strategy III

Let us assume that a population U is divided @igpoint and non-

G
empty clusters | g=1,...,G, andU={JU, . The size of the sampl&

g=1

G
is denoted byN, >1 and N=(JN,. A multivariate auxiliary variable

o=1
of the dimension k is observed in all first-staggtal The sample S, consist-
ing of clusters, is selected at the first stage.e Téampling design
is proportional to the sample generalized variapicthe auxiliary variables
and it is determined by the expression (6.66). & $econd stage, simple
samples Q, ,Q, are drawn without replacement from the clusters

U, .U, , selected at the first stage, respectively. Tlze sf the sample
ng is denoted byl< my, sNgl. The two-stage sample will be denoted

by Q={S,Q,....Q} and its outcome by gq={s;g..,0,}. The sampling design
is as follows:

N -1
%@=%®Quﬂ (6.86)

g

where the sampling designs®) is determined by the equation (6.66).

Let us introduce the following notation:

__1¢ 18 -y
Zy = i 2=—="2.24, 2=~ A 2.\eg~ )
¢} iDZUgyI G; 9 G‘l;( ¢} )
_ 1 1 _ )
=7z, VvV, = ,
Yu, g ¢ Yo N, _1iDZUg( l yug)
— 1
Zo =i, =—7z,,
Q %y Yo, T %o

= Nngg , (6.87)
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Yo, " 1 DZQ (v, -V, F. (6.88)

Let us consider the following estimator of thegraeterz

Zro =20 —(Xs ~X)B, (6.89)
where:
- 1~
Z, ——ZZQg , (6.90)
n gis
BQ = S_1WQ' (691)
W, =[cQ zX) ... Cg (z,xk)],
1 - -
Gz X)) =—— Z(Zog _ZQXXQJ_XJS)'
n-1gs
or
_lots w15 _1ors ot
WQ—FXSZQ—XSZQ or WQ—FXSZQ—XSZQ
EQ/S
where: Zo =] e
ZQIS

The regression estimatorz,, from the two-stage sample

is the unbiased estimator of the parameterThe variance of the strategy
is as follows:

Dz(zRlel ):
:n—leS{ng:SDég/s(EQ. )"‘ YSVs‘lxgdiadDéls('zQ))x sVs_17; +

~IX VXD, (70 it X Vs X D)+

FXVIXT 2+ X V5XT )g;s D2 oz, )} +D2(Zy) (6.92)
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where:
Dals(}Ql ’P:LQ)
D2Q/S(EQ Po)=] s
Dan/S(ZDn 'P19)
D, /s(~zog aﬂg)=w%g

The approximate value of the varianiﬁé(‘zRS ,Plg) is as follows:

D2(7RS’ Fig):%sz(I‘_rvi) (693)

where , is the multiple correlation coefficient betweer tuxiliary variables
and the variable z.
Let us consider the following statistic:

. _mg(Ng _1) =2 _Ng Ny —m,
ZQQ B Ng(mg _1)(2% my Ng -1 MQg (©:99

where:
Mg, =— Sy7
Qg mg &, [
The following statistic is the unbiased estimatbthe varianceD2(2 P ):

RQ’' 19

k
) e 1O ey

N-1 ~ ~
D2 =72 7, +—— Zo Zo |- (6.95)
3Q RQ nk+1 ﬁ(N—h)detVS L%‘s Qq n-1 g:zt:]s Qqy Q|:|
h=1
Finally, the unbiased estimator of the populatatal is as follows:
tro = GZro» (6.96)

The unbiased estimator of population average isradgéned by the expres-
sion:

. _G.
tro = Zre (6.97)
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The variances of these estimators can be easilyedieon the basis of the ex-
pression (6.92). The equation (6.95) leads to cocbn of the estimators of
these variances.

Let us note that the statisti&gQ, defined by the expression (6.96),

can be treated, in some sense, as a particularotdlse regression estimator
of the total value from two stage sample considdngdéarndal, Swensson,
and Wretman (1992).

6.6.4. Example of simulation analysis of accuracy

Let us consider the example of average estimabgnmeans
of regression strategies:(yRS ,P3(s)), (VRS Be (s)), (‘y,,s,lg(s)) and
(‘yt,S B, (s)), where B(s) is the sample design of the simple sample drawn

without replacement determined by the equation8)1.Zhe variable under
study is: the revenues from 1985 municipal taxationmillions of kronor)
-y, the auxiliary variables are: the number of Covatve seats in municipal
councils %, the number of Social Democratic seats in munia@pancils -x,
and the real estate values according to 1984 ameasts(in millions
of kronor) -xs. These variables are observed in the populatioBvaédish
municipalities. The population is divided into eiglstrata according
to geographical regions of Sweden. The data arbgbel by Sarndal Swens-
son, Wretman (1992). We are going to consider tiidydata consisting of 15
municipalities in the seventh stratum. The tablds#46 let compare the accu-
racy of the estimation of the mean of the reverit@a 1985 municipal taxa-
tion. The relative efficiencies are determined ly éxpression:

D?(Vps P, D*(V,e.P,
e=@100%) or e=MlOO%.
D*(Ves P2) D*(V,s.Ps)
Table 6.1
The accuracy of strategi€(§!RS B (s)) and (VRS B (S)) .
The auxiliary variable,

The size of the sample 3 4 5 6 7
The bias under the plany P -45 -28 -20 -16 -11]

The variance under the plag P | 14867 5508 33230 2415 1785
The variance under the plapsP | 6814 4288 2976 216( 1606
The relative efficiency e 45.8 77.9 89.4 89.5 90.

O

Analysis of the tables 6.1-6.3 leads us to thi¥ahg conclusions:
absolute value of the bias oﬁyRS,Ps(s)) decreases when the number

of variables increases. Similarly, the absoluteugabf the bias decreases
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when the size of the sample increases for parti@gts of auxiliary variables.
The variances of both strategi(a;‘:.q?S Ps (s)) and (VRS ,P3(s)) decrease when
sample size becomes greater and greater. In all tases
the precision of the(yRS ,F;G(s)) strategy is better than the precision
of the (VRS B (s)) strategy.

Table 6.2
The accuracy O(VRS B (s)) , (VRS P (s)) strategies.
The auxiliary variablesty, x,
The size of the sample 4 5 6 7
The bias under the plany P -16 -12 -6 -5
The variance under the plag P 6021 2847 2537 1561
The variance under the plangP 2780 1739 1434 1020
The relative efficiency e 46.2 61.1 56.5 65.3
Table 6.3

The accuracy comparison ((XRS R (S)) and (yRS e (S)) strategies.
The auxiliary variablest, x, andxs

The size of the sample 5 6 7
The bias under the plany P 0 -4 -3
The variance under the plag P 33769 3214 1499
The variance under the plapsP 2036 1242 855
The relative efficiency e 6.0 38.6 57.0

The relative efficiency coefficient increases whba sample size increases.
Hence, we can expect that the accuracy of (ﬁgs P (s)) strategy

is not much better than the accuracy of (ﬁgs ,P3(s)) strategy in the large
sample.

Table 6.4
The accuracy o(_y,s R (s)) and (_y,;,S B, (s)) strategies.
The auxiliary variablex,
The size of the sample 2 3 4 5 6 1
The bias under the plan, P -39.2 -29| -22 -18 -14 -12

The variance under the plag P | 29508| 14355| 8689 | 5778| 4045 2912
The variance under the plan,P | 42285| 17499| 9727 | 6104| 4084 2831
The relative effic. e 143.3| 121.9{112.0 | 105.7| 101.q 97.3
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Table 6.5
The accuracy o{_y,qs B (s)), (_y,qs B, (s)) strategies.
The auxiliary variableg,, X,
The size of the sample 3 4 5 6 7
The bias under the plany P -39 -32 -26 -21 -16
The variance under the plag P | 33461 | 15014 8846 5813 4003
The variance under the plan,P | 33912 | 14026 7692 4717 3051
The relative efficiency e 101.4 93.4 87.0 81.1 76.2
Table 6.6

The accuracy comparison ()'MS R (s)) and (_y,;,S B, (s)) strategies.
The auxiliary variables: xx, and %

The size of the sample 4 5 6 7
The bias under the plan, P -60 -45 -34 -25
The variance under the plag P 34551 16940 10380 6764
The variance under the plan,P 41342 16663 8844 5191
The relative efficiency e 119.7 98.4 85.2 76.7

The analysis of the tables 6.1-6.6 lets us irffat in small samples

the regression estimatgdr,, from the simple sample can be more precise than

the (‘y,,S = (s)) strategy. In all the cases the variance of (ﬁgs P (s))
strategy is smaller than the variances of t(Tg,,s ,PM(S)), (‘yqu ,F;(s))
and (VRS B (s)) strategies. The same is with their mean squaceserr

Simulation analysis of the accuracy of the comnsidestrategies
was evaluated by Gamrot and Wywiat (2002).



SUMMARY IN POLISH

W praktyce bada reprezentacyjnych zwykle mamy do czynienia
z problemem wnioskowania o wielu parametrach aoatinych cech popu-
lacji. Rzadko celem takiego badania jest ocenaodgirjednego parametru,
chocia temu widnie przypadkowi jest gléwnie paiccana wiksza¢ prac
Zz metody reprezentacyjnej. Bynajmniej nie oznacgaztte prace mijaj Sie
z praktycznymi potrzebami balastatystycznych, poniewaotrzymywane
wyniki dotyczice wnioskowania o pojedynczym parametrze jednowgnia
wej cechy mana w wielu zagadnieniach bezpednio uogéint na przypadek
wielowymiarowy. W tej dziedziniegsjednak problemy jednoczesnego wnio-
skowania o wielu parametrach, ktére wymagsgczegdlnego podeja. Na-
lezag do nich problem sposobu oceny doktadne@stymacji wektora parame-
trow oraz interpretacjazywanych do tego celu wskaikow. Kluczowe zna-
czenie ma tate usystematyzowanie podstawowych wiadéth@ozwalag-
cych na poréwnywanie doktadém estymatoréw wektorowych. Nagina
kwestia dotyczy optymalizacji bafigrébkowych, a zwlaszcza optymalizacji
rozmiaréw préb zigonych, gdy wysipuja ograniczone naktady na badania
reprezentacyjne orazdania spetnienia wymaganej doktadciooceny para-
metréw.

W ogélndgci wkasnie wymienionym problemom jest fwiecona ni-
niejsza praca. Prezentowano w niej gtownie zagadmidotycace jedno-
czesnej estymacji wielu parametréw cech w populadgicisk potgono na
prezentagj wynikéw otrzymanych przez autora.

W pracy ograniczono sigtdwnie do analizy problemu estymacji
wektora wartéci srednich w populacji. Otrzymane na tym polu wynikizna
jednak fatwo przeni€ na zagadnienie oceny innych amgich z punktu wi-
dzenia praktyki parametrow, takich jak suma waitaechy w populacji,
ilos¢ elementdéw z ceghwyrdzniong w populacji, czstaé¢ wzgledna wysg-
powania okréonego zjawiska w populacji.

W pierwszym rozdziale przedstawiono podstawowéndgé zwia-
zane z rozkladami cech w populacji ustalonej, jak tzw. nadpopulaciji.
Szczegobtowiej potraktowano problem interpretacjamer&nicowania war-
tosci wielowymiarowej zmiennej. Przedstawiono podstasowiadoméci
0 wlasndciach planéw, schematéw losowania oraz strategiwania. Po-
nadto, § prezentowane definicje i twierdzenia, ktére zwykiebezpdredni-
mi uogllnieniami na przypadek wielowymiarowy odpednich okrélen
znanych z przypadku wnioskowania o jednowymiarovparametrze. Szcze-
g6Iny nacisk potéono na problem poréwnywania doktadopestymatoréw
wektorowych.
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Podstawowe parametry rozktadu wektora znanych nmegtrow
Horvitza-Thompsonagsprezentowane w drugim rozdziale. Wyznaczano tu
réwniez w przyblizony sposéb wariancje tego estymatora dla wybrapyah
néw losowania zaleych od cech pomocniczych. Uwzdhiono réwnie
plany losowania préb z populacji przestrzennychezzed od potaenia
wzgledem siebie elementéw populacji.

W trzecim rozdziale prezentowano podstawowe whsmozktadu
wektora estymatorow z préby warstwowej. Konstruosvarrozwigzywano
zadania optymalnej lokalizacji prob w warstwachga@nienie optymalnego
tworzenia warstw w populacji ograniczono do prohlewykorzystania for-
malnych metod grupowania na podstawie obserwowangch w populaciji
do wyodebniania w niej warstw. Wskazano f&kna maliwo$¢ wykorzysta-
nia takich metod do warstwowania préby prostej wglwanej z populaciji.
Z tak utworzonych warstw w ngginym kroku g losowane préby proste,
w ktorych juz obserwuje si cechy badane. Problem ten jest podobny do zna-
nego zagadnienia warstwowania proby po jej wylosowaPrzedstawiono
rowniez estymacj wartcci sredniej na podstawie kombinaciji liniowej prze-
cietnych z podpréb wyrinianych w pierwotnie wylosowanej prébie prostej
z populacji. Te podproby réwniess uzywane do wyodsbniania jednorod-
nych warstw w populacji na podstawie cech dodatkdwy.iczebnéci tych
warstw prowadg do wyznaczenia wspotczynnikéw kombinacji liniowBjo
tworzenia warstw gswykorzystywane m.in. odpowiednie metody klasyfikac
danych. Wprowadzono tutaj rOwaiekryterium reprezentatywioi proby
konstruowane na podstawie definicji zanurzenia pumkzbiorze punktow.

Podstawowe parametry rozktadu wektémednich z préby grupowej
prezentowano w rozdziale czwartym. Parametry tegstawiono jako funk-
cje tzw. wspoitczynnikow korelacji wewtrz-grupowej. Wprowadzono row-
niez wspotczynnik jednorodrici rozkladu wartéci wielowymiarowej
zmiennej. Podjto problem optymalnego wyidiania grup w populacji 4ulz
w wylosowanej prébie prostej na podstawie obserwamih pomocniczych.
Podobnie jak w uprzednim punkcie, do tego celu wgistano formalne me-
tody grupowania zbioréw. Analizowano problem estgjinprzecktnej cechy
badanej na podstawie proby dwufazowej, przy czypieswszej fazie prap
prost racjonalnie dzielono na réwnoliczne grupy na pad# obserwowa-
nej w niej cech pomocniczych. Potem w drugiej fesgpierod tych grup lo-
sowano ja préke, w ktérej obserwowano zmiegiadan.

Rozdziatl pity dotyczy estymaciji wektorérednich w populacji na
podstawie wektordrednich z préby dwustopniowej. Oprécz podstawowych
wlasndci rozktadu wektora tych estymatorow zaprezentowersrwigzania
zada optymalizacji rozmiaréw préb sktadowych préby deaymiowej.

Sz0sty rozdziat jest gwiecony wektorowym estymatorom zdico-
wym i regresyjnym. Prezentowane &h macierze wariancji i kowariancji
w przypadkach, gdy losowana jest proba progti podwdjna. Gdy estyma-
tory te § wyznaczane na podstawie obserwacji cech badanyamcni-
czych w prébie podwadjnej, formutowano i roazywano zadania optymalne-
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go ustalania liczebroi obu préb skltadowych proby podwojnej. Ponadto
przedstawiono wiasioi trzech strategii édacych uogdlnieniami regresyj-
nych strategii Singha i Srivastawy. Strategie teglgdniajs wiecej niz jedm
zmienny dodatkowy oraz jedna z nich zatg od dwustopniowego planu loso-
wania préby.

Rezultaty otrzymane w pracy powinny przyczysic do racjonaliza-
cji bada reprezentacyjnych populacji. Prezentowane wihsnestymatorow
wektorowych i planéw losowania préb winny utatwivyb6r najodpowied-
niejszych spérdd nich w praktyce badastatystycznych. Celem optymalnego
tworzenia warstw ddz grup w populacji jest w konsekwencji zkszenie
doktadndci oceny parametrow na podstawie prob warstwowweli grupo-
wych. Zastosowanie tych procedur przyczyri ghwniez do oszczdnaici
nakltadow przeznaczanych na badania reprezentadrtej kwestii zwtasz-
cza mag bezpdrednie znaczenie analizowane w pracy zagadnierianab-
nego ustalania liczebsa prob zi@zonych z uwzgidnieniem kosztéw bada-
nia i zadanej doktadnéci ocen parametrow.



INDEX OF EXPRESSIONS

V=[¥,-¥,1", ¥=N*YTJ, : the vector of mean values from a population;
y =Ny : the vector of global values from a population;
Cyy =Cu(y)=[cy] (Lj=1,...m), where:

Cy=C (Y ¥)) = N_—li;(y“ =YW ~¥1): the matrix of variances

and covariances of variables
v-(y)=c(y;, ¥;): the variance of a variablg;

R =R(y) = [rg] (tj=1,...,m), wherey, - BoY) - the correlation matrix;
VoY Vol

a(y) = JrCy) : the mean radius of an m-dimensional;

g(y) = detC-(y)): the generalized variance of an m-dimensiondhbde;

p(y) = \/)\_1: the spectral radius is equal to the square rbdhe maximal
eigenvalue\; of the covariance matrig-(y),

P(s): sampling design of an ordered sample s,

P(s): sampling design of an unordered sample s,

Ti: inclusion probability of order one,

Ti,: inclusion probability of order two,

Pi(s):the sampling design of the simple and ordereinpde, see
the expression (1.26),

P,(s): the sampling design of the simple and ordesaahple with a fixed
effective size, see (1.27),

P5(s): the sampling design of the simple and unorisgmple with a fixed
effective size, see (1.28),

E(.), D) and Cov(.): expected value, variance and cavag determined
on the basis of a sampling design,

E(.), D%.) and Cov(.): expected value, variance and covariance etedua
on the basis of superpopulation model,

ts: an estimator of a parame®r©, where® is a parameter space,
te a value of the estimatos,,
(ts, P(s)): the sampling strategy,
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(Ys,Ps(s)): the vector of simple sample means where

= _ -1 .
yS :[_yS]."'ySm ] y yis —_zyki y |:1,...,m,
N ks

V(tg)=E(ts-E(ts)) (ts-E(ts)): the covariance matrix of an estimatgr

Ver(te)= E(ts0) (ts8): the matrix of the second mixed moments of esti-
mation errors,

q3x(ts) =tV (ts) , the mean square radius,
q(ts):m: the mean radius of the estimatgr
Osr(ts) = deW gx(ts): the generalized mean square error,
g(ts) = deW (tg): the generalized variance of the estimagpr
psr(ts): spectral radius of the matriX.sr(ts),
p(ts)= spectral radius of the covariance mat¥ifts),
D %.R6)
deff 5 ,PE) = p(Ver ts POV (Vs .RE)): generalized of the deff
coefficient into the multivariate case,

V(TY=E(T<E(TI]'[(T+E(TH]: aE-covariance matrix of prediction errors,

deff (; ,PE)) = : the deff coefficient,

0 (Ts) =+ EVgr(TS) : the mean square radius of a stratey),

E[Vsi(T9)] = EE(Ts - ©)'(Ts - ©): the matrix of mixed second moments
of prediction errors,

N g, _ .
trs = iZ"—y": the Horvitz and Thompson estimator,
Nia

P4(s): Lahiri 's sampling design, see expression4(2.2

Ps(s): the sampling design proportional to total afues of auxiliary variable
which are not observed in sample, see (2.38),

Ps(s): Singh and Srivastava's sampling design, sd&)2

P;(s): the sampling design proportional to functioh sample variance
of an auxiliary variable, see (2.49),

Pg(s): the sampling design proportional to squaredimesion error
of auxiliary variable mean, see (2.59),

Py(s): the sampling design proportionate to decreafimction of squared
estimation error of auxiliary variable mean, se€42,

P1o(S),...,R3(S): space sampling designs, see the expression8),(42.71),
(2.72), (2.75),

P14(S),...,R&(s): Sampling designs dependent on the determiofisample
covariances matrix, see the expressions (2.781)2(2.82), (2.85),
(2.86),
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P1o(s): the two stage-Singh-Srivastava's samplinggtlesiee the expression
(6.86),

P.(s): the sampling design of the stratified sampés the expressions (3.1),
(3.2),

R, : the sampling design of the stratified samplehia tase of proportional
allocation of the samples in strata,
(Vgs Py ): the cluster sample strategy, see the chapter 4.1

H
Yus = 2.W,Y,s : the vector of stratified sample means,
h=1

the regression model, see the expressions: (1118} (3.64), (3.65),

RM = [rij(w)]: the matrix of the coefficients of within-clusteorrelation, see
the expressions (4.5), (4.6), (4.12),

Cm=[cm(yi,yj)]: the between-cluster matrix of the covariancese se
expression (4.23),

C, = [cw (yi Y )J : the within-cluster matrix of the covariances,

A: the homogeneity coefficient of multidimensional ighfe, see expression
(4.27),

(3795 ,Pd): the two stage sampling strategy, see the chapter
(tss,P3): the simple regression strategy, see the chépter

7?: the mean determination coefficient, see the esgioa (6.10),

(fss,P&j): the vector of regression estimators from doutdengle, see
the chapter 6.2,

(VRS Ps (s)): the first generalised Singh-Srrivastava's regpesstrategy, see
the expressions (6.66), (6.71)-(6.74),

(VRS Ps (s)): the second generalised Singh-Srrivastava's reigrestrategy,
see the expressions (6.80), (6.83), (6.84),

(TRQ, Pig(s)): the two stage-Singh-Srivastava's samplincgatetry, see
the expression (6.86)-(6.97).



REFERENCES

Anderson T.W. (1958)An Introduction to Multivariate Statistical Analgsi
John Wiley & Sons, New York.

Anderson D.W., Kish L., Cornell R.G. (1980): Onatification, grouping
and matchingScandinavian Journal of Statistiogl. 7, pp. 61 — 66.

Arwanitis L.G., Afonia B. (1971): Use of generalizeariance and the gradi-
ent projection method in multivariate stratifiedrgding. Biometrics
vol. 27, pp. 119-127.

Beardwood J., Halton J.H., Hammersley J.M. (195)e shortest path
through many point®roceedings of Cambridge Phil. Speol. 55.

Bethel J. (1989): Sample allocation in multivariateveys.Survey Methodo-
logy, vol. 15, nr 1, pp. 47-57.

Bethleham, J.G. (1988): Reduction of nonresponas tirough regression
estimation.Journal of Official Statistics4, pp.251 — 260.

Blythe J.R.H. (1945): The economics of sample sipplied to the scaling
of sowlongsBiometrics Bulletinvol. 1, s. 67-70.

Borovkov A.A. (1984):Mathematical statistics. Estimation. Testing Hypoth
esis(in Russian). Nauka, Moscow.

Borsuk K. (1976)Multidimensional Analytical GeometrPWN, Warszawa.

Bracha Cz. (1978): Estimation of linear regresgi@nameters on the basis
of sample drawn without replacement from finite glagion (in Polish).
Przeghd Statystycznwol. 25.

Bracha Cz. (1982): Estimation of linear regresgianameters on the basis
of two-stage sample (in PolistBrzeghd Statystycznyol. 29.

Bracha Cz. (1983): Linear Regression in Survey Siaggin Polish).Prace
i Materiaty Instytutu Cybernetyki i Zaydzania. SGPiSWarszawa.

Bracha Cz. (1987): Using Auxiliary Information inusey Sampling.
(in Polish). ZBS-GUS i PAN, Warszawa.

Bracha Cz. (1991): Selected problems of stratify@agnpling. (in Polish)
Prace i Materialy Instytutu Cybernetyki i Zadzania. Tom 20.
SGPIS, Warszawa.

Bracha Cz. (1996)Teoretyczne podstawy metody reprezentacyjpéyN,
Warszawa.

Cassel C.M., Sarndal C.E., Wretman J.H. (19F08undation of Inference
in Survey Samplinglohn Wiley & Sons, New York-London-Sydney-
-Toronto.



218
SOME CONTRIBUTIONS TO MULTIVARIATE METHODS...

Chatterjee S. (1968): Multivariate stratified syweJournal of the American
Statistical Associatignvol. 63.

Cochran W.G. (1961): Comparison of methods for rmieitgng stratum
boundaries.Bulletin of International Statistical Institutevol. 38,
No. 2, pp. 345-358.

Cochran W.G. (1963Bampling Techniquedohn Wiley & Sons, New York.

Cramer H. (1958)Mathematical Methods in Statistiin Polish) PWN, War-
szawa.

Czerniak W. (1971): On independend sampling witlaegement (in Polish).
Biblioteka Wiadom¢xi Statystycznychfom 15, pp. 40-86.

Dalenius T. (1950): The problem of optimum stratfion. Journal of the
American Statistical Associatiompl. 54, pp. 88 — 101.

Dalenius T. (1953): The multivariate sampling pesbhl Scandinavisk
Aktuarietidskrift vol. 36, pp. 92-102.

Dalenius T. (1957)Sampling in Sweden. Contribution to Methods andbThe
ries of Sample Survey Practig®mqvist & Wiksells, Stockholm.

Dalenius T., Gurney M. (1951): The problem of optim stratification II.
Scandinavisk Aktuarietidskriftol. 34, pp. 133-148.

Dalenius T., Hodges J.L.Jr. (1959): Minimum variastratification.Journal
of the American Statistical Associatjorol. 54, pp. 88-101.

Dayal S. (1985): Allocation of sample using valoésuxiliary characteristic.
Journal of Statistical Planning and Inferene®l. 11, pp. 321-328.

Demidowicz B.P., Maron I.A. (1965Numerical MethodsVol. I. (in Polish)
PWN, Warszawa.

Deville C.M., Sarndal C.E., (1992). Calibrationiesttors in survey sam-
pling. Journal of the American Statistical Associatiowol. 87,
nr 418, pp. 376-382.

Donoho D.L., Gasko M. (1992): Breakdown Propertésocation Estimate
Based on Halspace Depth and Projected Outlyingdessals of Sta-
tistics 20, pp.1803 — 1827.

Efron B., Tibshirani R.J. (1993An Introduction to the Bootstrafchapman
& Hall, New York, London.

Everitt B.S. (1998)The Cambridge Dictionary of StatistidS8ambridge Uni-
versity Press, Cambridge.

Fisz M. (1963): Probability Theory and Mathematicstaitrstics. Wiley,
New York.

Fisz M. (1967): Introduction to Probability and Mathematical Stdics
(in Polish). PWN, Warszawa.

Flachsmeyer J. (19F:7Combinatoricg(in Polish). PWN, Warszawa.

Gamrot W., Wywiat J. (2002). Comparison of the aacy of some two-stage
sampling schemes by means of computer simulaf@szyty Nau-
kowe no. 21, Akademia Ekonomiczna w Katowicach, p281-



219

References

Geary R.C. (1949): Sampling methods applied tdldgricultural statistics.
Technical Series

Ghosh J.K. (1963): A game theory approach to tioblpm of optimum allo-
cation in stratified sampling with multiple charaxd. Calcutta Statis-
tical Association Bulletinvol. 12, pp. 4-12.

Ghosh S.P. (1958): A note on stratified random d@gpwith multiple
charactersCalcutta Statistical Association Bulletinol. 8, pp. 81-90.

Godambe V.P., Joshi V.M. (1965): Admissibility arBlyes estimation
in sampling finite populations lAnnals of Mathematical Statistics
vol. 36, pp. 1707-1722.

Gren J. (1963): Localization of sample in the case oftiparameter stratified
sampling (in Polish)Przeghd Statystycznwol. 10, pp. 291-302.

Gren J. (1964): On some methods of localization of danip the case
of multiparameter stratified sampling(in PolishHPrzeghd Statys-
tyczny vol. 11, pp. 361-369.

Gren J. (1966): On application of non-linear programgnio survey sampling
(in Polish).Przeghd Statystycznwol. 13, pp. 203-217.

Gren J. (1969): Multidimensional regression estimatdr noean values
(in Polish).Przeghd Statystycznyol. 16.

Gren J. (1970): Multidimensional regression estimatbmean values in fi-
nite population (in PolishPrzeghd Statystycznwol. 17, pp. 73-78.

Gren J., Kazniewska 1. (1964): Solution to some recurrence ggoacon-
nected with two-parameter stratified sampling (ioli$h). Przeghd
Statystycznyvol. 11, pp. 169-176.

Hartigan J.A. (1975)Clustering AlgorithmsNew York. J. Wiley.

Hartley H.O. (1965): Multiple purpose optimum abdion in stratifed sam-
pling. Proceedings of the American Statistical Associati®ocial Sta-
tistics Sectionpp. 258-261.

Hartley H.O., Rao J.N.K. (1969): A new estimatibedry for sample surveys
II. In: New Developments in Survey Samplifdited by N.L. Johnson
and H. Smith. Wiley-Interscience, New York, pp. 1450.

Hastings C. (1955)Approximation for digital computations. Princentomi-
versity Press, Princenton.

Herzel A. (1986): Sampling without replacement witiequal probabilities:
sample designs with preassigned joint inclusiorbahbilities of any
order.Metron vol. 44, no. 1-4, pp. 49-68.

Hess I., Sethi V.K., Balakrishnan T.R. (1966): Sfication - a practical
investigationJournal of the American Statistical Associatiool. 61.

Horvitz D.G., Thompson D.J. (1952): A generalizatiof sampling without
replacement from finite univers@ournal of the American Statistical
Associationvol. 47, pp. 663-685.



220
SOME CONTRIBUTIONS TO MULTIVARIATE METHODS...

Huddleston H.F., Claypool P.L., Hocking R.R. (1970ptimal sample allo-
cation to strata using convex programmiAgplied Statisticsvol. 19,
pp. 273-278.

Hughes E., Rao J.N.K. (1979): Some problems of nugti allocation
in sample surveys involving inequality constrai@ommunication
in Statisticsvol. A8, pp. 1551-1571.

Huisman M. (2000): Post-stratification to correat honresponse: classifica-
tion of ZIP code areas. Compstat 20B@ceedings in Computational
Statistics, 1% Symposium held in Utrecht, The Netherlands. Edited
by J.G. Bethleham and P.G.M. van der Heijdgm,325 — 330.

Jaganathan R. (1965): The programming approach utiphe characters
studies Econometricavol. 33, pp. 236-237.

Jaganathan R. (1965a): A method for solving a neali programming prob-
lem in sample surveys. "Econometrica”, vol. 3841l-846.

John S. (1969): On multivariate ratio and produstingators.Biometrika
vol. 56, pp. 533-537.

Jonin B.G., Jonina N.P., Zhuravlev N.M. (1978):dismvanye protsedur op-
timisatsyi pri klassifikatsy obyektov i faktoroin: Ekonomika i stati-
sticheskoye modyeli w prognozirovyi planirowanyomyshlennogo
proisvodstvaNauka, Moskwa.

Joshi V.M. (1965): Admissibility and Bayes estinoatiin sampling finite
populations Il i 1ll. Annals of Mathematical Statistics/ol. 36,
pp. 1658-1670.

Joshi V.M. (1966): Admissibility and Bayes estinoatiin sampling finite
populations IV.Annals of Mathematical Statisticgol. 37, pp. 1658-
1670.

Kish L. (1961): Efficient allocation of multipurpessample Econometrica
vol. 29, pp. 363-385.

Kish L. (1965): Survey samplingJohn Wiley & Sons, Inc. New York-
London-Sydney.

Kokan A.R. (1963): Optimum allocation in multivaiéasurveys.Journal
of the Royal Statistical Societyol. A 126, pp. 557-565.

Kokan A.R., Khan S. (1967): Optimum allocation inltivariate surveys: an
analytical solutionJournal of the Royal Statistical Societpl. B 29,
pp. 115-125.

Konijn H.S. (1962): Regression analysis in sampilesesys. Journal of the
American Statistical Associatipwol. 57.

Konijn H.S. (1973):Statistical theory of sample survey and analysigrth-
Holland Publishing Company, Inc., Amsterdam-Lond@merican
Elsevier Publishing Company, Inc., New York.

Krzysko M. (2000). Multidimensional Statistical Analysin Polish). Uni-
wersytet im Adama Mickiewicza, Pozha



221

References

Kubik L.T., Krupowicz A. (1982)introduction to Probability and Its Appli-
cations(in Polish). PWN, Warszawa.

Lahiri G.W. (1951): A method for sample selectiooyding unbiased ratio
estimator.Bulletin of the International Statistical Instityteol. 33,
pp. 133-140.

Lehman E.L. (1991)Theory of Estimatioiin Polish). PWN, Warszawa.

Lipski W., Marek W. (1986)Combinatoric Analysigin Polish). PWN, War-
szawa.

Liu R. (1990): On a Notation of Data Depth Baseddan SimplicesAn-
nals of Statistic48, pp. 405 — 414.

Lynch G.W. (1978): The choice of auxiliary variablen multivariate ratio
and regression estimatofBroceedings of the Section on Survey Re-
search MethodsAmerican Statistical Association.

Mahalanobis P.C. (1944): On large scale sampleegarfPhil. Trans. Roy.
Soc London, vol. B 231, pp. 329-451.

Melaku A. S. (1987): L d-norm and other methods $ample allocation
in multivariate stratified surveysComputational Statistics & Data
Analysis vol. 5, pp. 415-423.

Mikhail N.N., Mir. M.A. (1981): Unbiased estimated the generalized va-
riance for finite populationJournal of the Indian Statistical Associa-
tion, vol. 19, pp. 85-92.

Miller R., G. (1981).Simultaneous Statistical Inferenc8pringer Verlag,
New York- Berlin- Heildelberg-London-Paris-Tokyo-hgp Kong-
-Barcelona.

Mukerjee R., Rao T.J. (1985): On a problem of atmn of sample size
in stratified random samplingBiometrical Journal vol. 27, nr 3,
pp. 327-331.

Murthy M.N. (1977): Sampling theory and practicéStatistical Publishing
Society, Calcutta.

Neyman J. (1934): On two different aspects of thpresentative method:
the method of stratified sampling and the methogwfposive selec-
tion. Journal of the Royal Statistical Socigtpl. 97, pp. 558-606.

Olkin 1. (1958): Multivariate ratio estimation fdinite populations.Bio-
metrika vol 45, pp. 154-165.

Ralston A. (1975)Introduction to Numerical Methodén Polish). PWN,
Warszawa.

Ramakrishnan M.K. (1975): Choice of an optimum démgp strategy |.
Annals of Statistigs/ol. 3, pp. 669-679.

Rao C.R. (1973)Linear Statistical Inference and Its Applicationdhn
Wiley & Sons, Inc., New York — London — Sydney —rdiato.

Rao C.R. (1982)Linear Models of Mathematical Statistifia Polish). PWN,
Warszawa.



222
SOME CONTRIBUTIONS TO MULTIVARIATE METHODS...

Rao J.N.K. (1973): On double sampling for stragifion and analytical sur-
veys.Biometrika vol. 60, nr 1, pp. 125-133.

Rao J.N.K. (1985): Conditional inference in survepmpling. Survey
MethodologyVol. 11, No. 1, pp. 15 — 31.

Rao J.N.K., A.J. Scott (1981). The analysis of gatieal data from complex
sample surveys: Chi-squared tests for goodnesg ahd independ-
ence in two-way tableslournal of the American Statistical Associa-
tion,
vol. 76, no. 374, pp. 221-230.

Rao T.V.H. (1962): An existence theorem in samplthgory. Sankhya
vol. A 24, pp. 327-330.

Royall R.M. (1970): On finite population samplirffgebry under certain linear
regression model®iometrika vol. 57, pp. 377-387.

Sarndal C.E. (1976): On uniformly minimum varianestimation in finite
populationsAnnals of Statisticsvol. 4, pp. 993-997.

Sarndal C.E., B. Swensson, J. Wretman (19®R)del Assisted Survey Sam-
pling. Springer Verlag, New York-Berlin-Heidelbergendon-Paris-
-Tokyo-Hong Kong- Barcelona-Budapest.

Schneeberg H., Pollot J.P. (1985): Optimum straifon with two variables.
Statistical Papersyol. 25, pp. 97 — 117.

Sen A.R. (1953): On the estimate of the varianceampling with varying
probabilities.Journal of the Indian Society of Agricultural Ssdits
vol 5, pp. 119-127.

Serfling R.J. (1968): Approximately optimum stratition. Journal of the
American Statistical Associatipuol. 63.

Singh P., Srivastava A.K. (1980): Sampling schepresiding unbiased re-
gresion estimator&8iometrika vol. 67, pp. 205-209.

Singh R. (1971): Approximately optimal stratificati on the auxiliary
variable. Journal of the American Statistical Associatioml. 66,
pp. 829 — 833.

Skibicki M. (2002). Maximization of measure of allable sample sizes re-
gion in stratified sampling. InClassification, Clustering, and Data
Analysis Eds. K. Jajuga, A. Sokotowski, H.H. Bock. Springerlin,
Heidelberg, New York, Barcelona, Hong Kong, Londbfilan, Paris,
Tokyo, 2002, pp. 263-269.

Skibicki M. (2003). Optimatization of sample sizesawn from strata
on the basis of spectral radius of covariance mafrmeans estimator
vector.Statistics in Transitionln printing.

Skibicki M., J.Wywiat. (2001): On using clusterimgethods to stratification
of population. (in Polish)\wiadomdgci Statystyczne2001, 8, pp. 4-11.



223

References

Skibicki M., Wywiat J. (2002). On optimal samplelagiation in strata.
W: Statystyka regionalna w ghie samorzdu lokalnego i biznesu
pod. red. Jana Paradyszkademia Ekonomiczna w Poznaniu, Inter-
netowa Oficyna Wydawnicza, Centrum Statystyki Rediej Pozna.

Srikantan (1963): Problems in optimum allocati@perational Research
vol. 11, pp. 265-273.

Theil H. (1979): Principles of Econometrics (in Bb). PWN, Warszawa.

Thomsen |. (1976): A comparison of approximatelytiropl stratification
given proportional allocation with other method sfratification
and allocationMetrika, vol. 23, pp. 15 - 25.

Thompson M.E. (1997)Theory of Sample SurveyS8hapman & Hall, Lon-
don — Weinhein — New York —Tokyo — Melbourne — Malr

Tillé Y. (1998): Estimation in surveys using comalital inclusion probabili-
ties: simple random samplingnternational Statistical Review/ol.
66, No. 3, pp. 303 — 322.

Tillé Y. (1999). Estimation in surveys using comalial inclussion probabili-
ties: Complex Desigrsurvey Methodologyol. 25, No 1, pp. 57-66.

Tripathi T.P. (1973): Double sampling for indusjmmobabilities and regression
method of estimationJourlnal of the Indian Statistical Association
vol. 10, pp.33-46.

Tripathi T.P. (1976): On double sampling for mutiiate ratio and difference
methods at estimationJournal of the Indian Society of Agri-
cultural Statisticsvol. 28, nr 1, pp. 33-54.

Tschuprow A.A. (1923): On the mathematical expéatabf the moments
of frequency distribution in the case of correlateldservations.
Metron, vol. 2, pp. 461-493 i s. 646-683.

Wagner W., Kobyliska M. (2000): On using depth measure in desribiag
tistic. (in Polish). In:Wyzwania i dylematy statystyki XXI wieku pod
red. W. OstasiewiczéAkademia Ekonomiczna we Wroctawiu.

Ward J.H. (1963): Hierarchical grouping to optimae objective function.
Journal of the American Statistical Associationl. 58.

Williams W.H. (1962): The variance of an estimateith part-stratified
weighing. Journal of the American Statistical Associatiorfol. 57,
pp. 622 — 627.

Wilks S.S. (1932): Certain generalization in thelgsis of varianceBio-
metrika vol. 24, pp. 471-494.

Wilks S.S. (1962):Mathematical statistics John Wiley & Sons, Inc.,
New York-London.

Wywiat J. (1988): Estimation of vector of meanstbe basis of difference

and regression estimators (in PolisRjzeghd Statystycznyvol. 35,
pp. 19-35.



224
SOME CONTRIBUTIONS TO MULTIVARIATE METHODS...

Wywiat J. (1988a): Location of sample in strata imizing spectral radius
of variance-covariance matrix (in PolislBrace Naukowe Akademii
Ekonomicznej we Wroctawiar 404, pp. 195-200.

Wywiat J. (1989): On minimization of generalized risace of vector
of means from stratified sample (in PolisWiadomdci Statystyczne
nrll, pp. 23-24.

Wywiat J. (1990): On optimization of sizes of sammrawn from strata
in the case of estimation of vector of mean valnefinite population
(in Polish).Zeszyty Naukowe Akademii Ekonomicznej w Katowjcach
nr 117, pp. 19-32.

Wywiat J. (1991): Properties of cluster sample drdmm population clus-
tered on the basis of auxiliary variablrace Naukowe Akademii
Ekonomicznej we Wroctawiar 559, pp. 107-112.

Wywiat J. (1991a).0On sampling design proportionate to sample mean
of auxiliary variable (in Polish\Wiadomdci Statystyczne, pp. 21-22.

Wywiat J. (1991b): On optimal stratification of & population on the basis
of multidimensional auxiliary variable (in PolistBadania Operacyj-
ne i Decyzjel 991, no 2, pp.63-69.

Wywiat J. (1992).Survey Sampling in Economic Research (in PolBhgce
Naukowe Akademii Ekonomicznej w Katowicach.

Wywiat J. (1992a): On some coefficients measuripgead of multidimen-
sional variable and generalization of Friedman-Rigbiclustering
method of finite population (in PolishfZeszyty Naukowe Akademii
Ekonomicznej w Katowicachr 120, 129-149.

Wywiat J. (1993)Prediction of superpopulation average and clusigropu-
lation on the basis of auxiliary variables. (in iBlo). Przeghd Stat-
ystycznyVol. XL, zeszyt 3-4, pp. 303-308.

Wywiat J. (1995).Multidimensional Aspects in lurvey Sampling (inlitg.
Ossolineum, Warszawa-Wroctaw-Krakow.

Wywiat J. (1995a):0n optimal stratification of population on the lms
of auxiliary variables Statistics in Transition. Vol. 2, No. 2, pp. 831-
837.

Wywiat J. (1996):Unbiased estimators of generalized variance franpls
random sample drawn without replacement from firptgpulation.
Journal of the Indian Statistical Associatiaml. 34, pp. 125-129.

Wywiat J. (1996a): Generalization of the Ward melthand its application
to decomposition of regression relationstipoceedings of I5inter-
national Conference on Multivariate Statistical Ayss-MSA’96.
University of £6d:. ,December 4-5, 1996, todpp. 59-75.

Wywiat J. (1996b): On space samplirtatistics in Transitiowol. 2 No. 7,
pp. 1185-1191.

Wywiat J. (1996¢): On two-phase sampling for sfigdtion. Statistics
in Transition.Vol. 2 No. 6, pp. 971-977.



225

References

Wywiat J. (1997): Decomposition of time series te tasis of modified
grouping method of WardActa Universitatis Lodziensis, Folia
Oeconomicd4l, p. 137-148.

Wywial J. (1997a): Sampling Design proportionathe Sample Generalized
Variance of Auxiliary VariablesProceedings of 1% International
Conference on Multivariate Statistical Analysis- AM&/. Edited
by Cz. Domanski and D. Parys. November 27-29 1@8partment
of Statistical Methods, Institute of Econometricyd éStatistics, Uni-
versity of tod, Polish Statistical Association. November 27-29.
1997r., pp. 129-143

Wywiatl J. (1998): On stratification of a Populatitty means of Cluster
Methods.Statistics in Transitionol. 3 no. 3, pp. 569-574.

Wywiat J. (1998a): Estimation of Population Averame the basis of Strata
Formed by Means of Discrimination FunctioSgatistics in Transition
(Journal of the Polish Statistical Associatior)l. 3, No. 5, pp. 903-
912.

Wywiat J. (1999): Generalization of Singh and Sstexa’s schemes provid-
ing unbiased regression estimatiorStatistics in Transitiorvol. 2,
No. 2, pp. 259-281.

Wywiat J. (1999a): “Sampling designs dependenttendample generalized
variance of auxiliary variablesJournal of the Indian Statistical Asso-
ciation.Vol. 37, pp. 73-87.

Wywiat J. (2000): “On precision of Horvitz-ThompsatrategiesStatistics
in Transition (Journal of the Polish Statistical skgiation) vol. 4,
nr5, pp. 779-798.

Wywiat J. (2000a). On optimal stratification of pdation in the case of es-
timation of mean vector (in PolishPrace Naukowe Akademii Eko-
nomicznej we Wroctawiaor 857, pp. 217-223.

Wywiat J. (2000b). On conditional estimation of ptaiion average on the
basis of stratified population through clusterihg tselected sample.
Proceedings in Computational Statistics "14Symposium held
in Utrecht, the Netherlands, 2000. Short Commurocat and Post-
ers. Edited by W. Jansen and J.G. Bethlel&atistics Netherlands.

Wywiat J. (2001). Stratification of population afteample selectiorStatis-
tics in Transitionvol. 5, nr 2, 2001, pp. 327-348.

Wywiat J. (2001a). Using of auxiliary variables ¢stimation of population
parametersReport from grant KBN 1H02B 008 ,18kademia Eko-
nomiczna w Katowicach .

Wywiat J. (2001b). On estimation of population méanhe case when non-
respondents are presentafe Naukowe Akademii Ekonomicznej
we Wroctawiu nr 906, Taksonomia@. 13-21.

Wywiat J. (2001c)Estimation of population mean on the basis of riopke
sample when non-response error is presBtdtistics in Transition
vol. 5, no. 3, pp. 443-450.



226
SOME CONTRIBUTIONS TO MULTIVARIATE METHODS...

Wywiat J. (2002): On stratification of population the basis of auxiliary var-
iable and the selected samphecta Universitatis, Folia Oeconomica
156, pp. 83-90.

Wywiat J. (2002a): On estimation of population ags on the basis of clus-
ter sample. In:Classification, Clustering, and Data Analysigds.
K. Jajuga, A. Sokotowski, H.H. Bock. Springer BerliHeidelberg,
New York, Barcelona, Hong Kong, London, Milan, RarTokyo,
2002, pp. 271-277.

Wywiat J. (2002b). On the accuracy of mean estiomatin the basis of two-
phase sampling for stratification. VBtatystyka regionalna w shie
samorzdu lokalnego i biznespod. red. Jana ParadysZskademia
Ekonomiczna w Poznaniu, Internetowa Oficyna Wydexeni Cen-
trum Statystyki Regionalndpozna.

Wywiat J., Kaaczak G. (1994): On location of sample in strataimiring
spectral radius of variance-covariance matrix R@tish). In: Proceed-
ings of theXl Conference devoted .t®rofessor Zbigniew Pawtowski.
Trzemignia 24-26 Ill. Akademia Ekonomiczna w Krakowie85-92.

Yates F., Grundy P.M. (19538Belection without replacement from within
strata with probability proporcional to size. Jowlnof the Royal Sta-
tistical Societ”, vol. B15, pp. 235-261.

Yates F. (1960):Sampling methods for censuses and survéysfin &
Company Lth., London.

Zagpa R. (1972)Survey Sampling (in PolistPWE, Warszawa.

Zielinski R. (1979).Generators of random pseudovalues (in PQIiSNT,
Warszawa.






