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INTRODUCTION 

 
 
The book can be treated as a set of contributions to the estimation  

of a vector of the averages of variables in a finite population. The methods 
presented are not only a simple generalisation of the well known problems  
on a multidimensional case but a lot of them can be treated as original ones.  

Particularly, several sampling strategies dependent on auxiliary 
variables are proposed. The problems of optimising a sample size are 
considered in detail for stratified and two-stage sampling designs in the case 
when more than one average in a population is estimated. The well known 
discrimination and clustering methods and their modifications are used  
for optimal stratification or clustering of a fixed population. Solutions 
obtained here can be useful in optimisation of estimation on the basis  
of a double sample.  

The book presents some contributions to interpretations of the 
following measures of accuracy of vector estimators: the generalised 
variance, the mean radius and spectral radius defined as a determinant, the 
trace and the maximal eigenvalue of the variance-covariance matrix, 
respectively. Some definitions and theorems, known in a one-dimensional 
case are extended to the vector estimation case. They let us compare the 
accuracy of vector estimators. The properties of sampling designs and 
sampling schemes depend on the parameters of auxiliary variables like the 
sample generalised variance, the squared difference between the sample mean 
and the population mean are considered. The approximate expressions of the 
variance of the Horovitz-Thompson estimator of the mean value are derived 
for these sampling designs. The unbiased estimators of the generalised 
variance are found in the cases when the simple sample is drawn with as well 
as without replacement.  
 The basic properties of the vector of the regression estimators  
are derived. It is proven that the vector of regression estimators is efficient  
in the class of the vector of the difference estimators in the case of a simple 
sample.  
 Let the double sample consist of the following two samples: the first 
one is a simple sample drawn without replacement from a population, the 
other one is also a simple sample but selected from the first sample. Several 
problems concerning the optimisation of determining the size of the above 
two samples are formulated and solved. The square risk function (or the 
generalised variance of the vector of the regression estimators) is minimised 
under the fixed total cost of observation of variables in the double sample. 
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Next, the cost function is minimised under the fixed variances of the 
regression estimators of the means of particular variables either under  
the fixed value of the generalised variance of the vector estimators or under 
the fixed square risk function.  
 Similar optimisation problems are formulated and solved to determine 
the sizes of a stratified sample or a two-stage one. Moreover, the sizes  
of the samples drawn from given strata are determined through minimisation 
of the spectral radius of the vector of the sample means under the fixed total 
cost of observations of variables in the sample. It is shown that in the case  
of the proportional allocation of the sample in the strata, the mean vector  
of the stratified sample means is not less accurate than the mean vector  
of the simple sample means.  
 The multidimensional auxiliary variables are used to stratify  
a population. Strata can be obtained on the basis of the well known cluster 
method by Ward or the k-mean method or their modifications. For instance, 
in the case of the regressive superpopulation, the strata are selected through 
minimisation of the spectral radius of the intra-strata variance-covariance 
matrix of auxiliary variables.  

A new class of classification estimators is proposed. They are 
constructed as linear combinations of sample means from sub-samples 
determined after a sample selection. The weights of this combination  
are functions of sizes of subsets of a population determined by some 
classification procedures. This method can be explained as a procedure  
of stratifying a population after a sample selection on the basis of the auxiliary 
variable observed in the population and in the sample. 
 The properties of the mean vector from the cluster sample  
are studied. Its variance-covariance matrix is expressed as a function of the 
introduced matrix of the coefficients of the intra-cluster correlation. It is 
proven that the vector of the cluster means is not a less accurate estimator  
of the vector of population averages than the vector of the simple sample 
means when the matrix of the coefficients of the intra-cluster correlation  
is defined as non-positive. A new method of dividing a fixed and finite 
population into groups of the same size on the basis of a multidimensional 
auxiliary variable is proposed. This method maximises the intra-cluster scatter 
of the observations of a multidimensional auxiliary variable.  

The book can be treated as lecture notes. The readership consist  
of undergraduate statistics students, statisticians interested in survey 
sampling methods. 
 
  



 
 
 
 

I. FOUNDATION OF SAMPLING STRATEGIES 
 
 
1.1. Fixed population approach 
 
 Let us introduce the following notation: A finite population is a col-
lection of N unit Ω={ω1,....,ω N}, where N < ∞, and N is called the size of the 
population. The units of a finite population are said to be identifiable if they 
can be labeled from 1 to N and the label of each unit is known, see e.g. Cas-
sel, Sarndal and Wretman (1977). The label k represents the unit ωk  
of a population and that is why a population can be denoted as the set  
of the natural numbers: Ω={1,2,...N}.  

An m-dimensional variable is denoted by y=[y1...ym] and its observa-
tions are columns of the matrix y=[yij], i=1,...,N, j=1,...,m, where yij is the 
value of the j-th variable attached to the i-th unit. 
 Definition 1.1: The matrix  y  is called a parameter of the population 
if to each unit i∈Ω is attached the i-th row of the matrix y. 
 The space of the population parameter y is denoted by YYYY⊆RNm.  
The vector of auxiliary variables will be denoted by x={x1,....,xp} and the ma-
trix of their observations by x=[xij] of dimensions N×p. The matrix y  
as well as x are the parameters of a population. Let y*j  be the j-th column  
of the matrix y and yi*  be the i-th row of this matrix. 
 Definition 1.2: Any parametric function θθθθ: YYYY → ΘΘΘΘ⊆⊆⊆⊆Rm, such that 
θi=θi(y), i=1,...,m is called parametric function or the vector of described  
parameters.  

The set of possible values of the vector is denoted by ΘΘΘΘ and called 
the space of described parameter vector. The elements of the vector θθθθ cha-
racterize properties of variables. The following vectors of described para- 
meters are frequently used in statistical research:  

The vector of mean values is denoted by T
m1 ]y...y[=y , where: 

 

   N= Jyy T-N 1              (1.1) 

 
where JN is the unit column vector of dimensions N×1. 
 The vector of the totals of variables is as follows:  
 

    ~y = yN     (1.2) 
 
 The matrix of variances and covariances of variables will be denoted 
by C*(y)=[c*tj ] (t,j=1,...,m), where: 
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)y(y)y(y
N

),(cc jijt

N

i
itjttj −−

−
= ∑

=

∗=∗

1
1

1
yy                   (1.3) 

 

Particularly, the variance of a variable yj is defined by the expression 
v*(yj)=c*(yj, yj). 
 The correlation matrix will be denoted by: R = R(y) = [rtj] 
(t,j=1,...,m), where: 
 

    
( ) ( )jt

jt

yy

yy

∗∗

=
vv

),(c
rtj

     (1.4) 

 

 Definition 1.3: Let us define the mean radius of an m-dimensional 
variable as the square root of the trace of variance-covariance matrix:  
 

    )((
*

q yy ∗Ctr=)       (1.5) 

 

 The parameter q*(y) is the square root of the mean of the squared 
distances among the points whose co-ordinates are equal to appropriate  
observations of variables from the point whose co-ordinates are equal to  
the averages of those variables 
 Definition 1.4: [Wilks (1932)]: The generalized variance of an  
m-dimensional variable is equal to the determinant of the variance-covariance 
matrix. Hence: 
 

    g(y) = det(C*(y))      (1.6) 
 

 From the geometrical point of view the generalized variance can be 
interpreted in several ways. Let e*j  = y*j  - JN jy  be the vector of the scores.  

 Theorem 1.1: [Anderson (1958), p. 167]: The generalized variance 
g(y) is proportional to the squared volume of the parallelogram spanned  
on vectors, all attached to the origin point oN. The ends of these vectors are  
in the appropriate points e*i ,...,e*m in an N-dimensional space. 
 Let ),,...,(m *i*i*i 1mm1 +

yyy be the volume (measure) of the m-dimensional 

parallelogram spanned on the vectors which are all attached to the point 

*i 1m+
y , and the ends of this vectors are in the appropriate points *i*i m1

,...,yy . 

This volume is determined by the equation1: 
 

 
















−

−
=

+

+

+

*i*i

*i*i

*i*i*i

1mm

1m1

1mm1

yy

.................

yy

det),,..,m( yyy   (1.7) 

                                                           
1
 See, e.g. Borsuk (1969).  
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Let )m( yyy ,,..., *i*i m1
 be the volume (measure) of the m-dimensional paral-

lelogram spanned on the vectors which are all attached to the point y  and 

their ends are in the points: *i*i m1
,...,yy . Anderson (1958), p. 168-170, proved 

the following property. 
 Theorem 1.2: The generalized variance g(y) is proportional to the 
following sum of squared volumes spanned on the vectors which are all  
attached to the point y  and whose ends have co-ordinates which are appro-
priate m-element combinations of rows of the matrix y:  
 

  ( ) ( )yyy ,,...yg *i*i
2

},..,i{i

m

m1
m1

mΣN −=       (1.8) 

 

 Theorem 1.3: [Wywiał (1992a)]: The generalized variance g(y) is 
proportional to the following sum of squared volumes spanned on the (m+1) 
points whose co-ordinates are (m+1) - element combinations of rows of the 
matrix y: 
 

  ),,...,(mN)(g
1mm1

1m1
i*i*i*

2

}i,..,i{

1--m

+
+

Σ= yyyy      (1.9) 

 

 Hence, the generalized variance can be used as the coefficient meas-
uring the scatter of observations of a multidimensional variable. When  
g(y) = 0, all observations of an m-dimensional variable are on not more than 
(m-1)-dimensional hyperplane, see, e.g. Anderson (1958). 
 Let λj (j=1,...,m) be the eigenvalues of the variance-covariance  
matrix C*(y) and λ1 ≥ λ2 ≥ ...≥ λm. On the basis of the well known properties 

of principal components, we know that detC*(y)= 0
m

1i
i ≥λ∏

=
. Then, for each 

value λj there exists such an (m-1)-dimensional hyperplane 

∑
=

=
m

1k
k

)j(
k

)j(
1-m 0a: xH  that the mean of squared distances of the points ei*=yi* - y  

(i=1,...N) from (j)
1m-H  is equal to λj. In the case when λj>0, for j=1,..., m0

`-1 

and λj=0 for j=m0
`, m0

`+1,...,m, points ei*  (i=1,...,N) are on the (m0
`-1)-

dimensional hyperplane. Particularly, if λm = 0 and λm-1>0, then all points ei 

are on the hyperplane (m)
1m-H . 

 The parameter λj is equal to the variance of the j-th principal com-
ponent. The values of this principal components are determined by the equa-

tion: T
*i

)j(
iju ea= (i=1,...,N), where: ]a...a[ )j(

m
)j(

1
)j( =a  and a(j)(C*(y)-Imλj)=0m. 

Hence, a(j)  is the eigenvector of the C*. The j-th principal component will be 
denoted by uj=[u1j...uNj]

T. From the geometrical point of view, the principal 
components are obtained through such a rotation of coordinates' system that 
entire variables are transformed into orthogonal ones called principal compo-

nents. The vector 
→−−−

jNuo  is perpendicular to 
→−−−

iNuo ,(j≠t=1,...,m). This leads 
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us to the equation: ∏
=

∗ λ=
m

1j
j)y(detC . Then we can infer that the generalized 

variance is equal to the squared m-dimensional volume of the parallelogram 

spanned on the vectors: 
→−−−

jNuo  (j=1,...,m). The length of the j-th principal 

component is equal to jλ .  

 The square root of the maximal eigenvalue λ1 of the covariance  

matrix C*(y) is called the spectral radius2, so ρ(y) = 1λ . 

 Let z = [z1...zN]T be the vector of the observations of the variable z. 
The vector z is the linear combination of the columns of the matrix y and let b 
= [b1...bm]T be the vector of coefficients of this combination and bTb = 1. 
Hence, z = yb. Hence, the variance of the variable z is as follows:  
 

 v(z) = bTC*(y)b                                         (1.10) 
 

 The well known properties of square forms allows us to conclude 
that: 

{ }
1

1
111

λ===
=

bCbbCb )(imummax)()(v
*

T

b
T

b
*

T yyz             (1.11) 

where z1 is the variable whose observations are expressed by the transfor-
mation: z1=yb1. Hence, the spectral radius of the matrix C* is equal to a 

standard deviation ( )1v z  of the variable whose values are the linear combi-

nations of the data matrix y. The coefficients of this combination are the ele-
ments of such a vector b1 that the variance v(z1) takes the maximal value. 
 Let us consider the following example. The population consists of N 
households. Let yij (i=1,...,N;j=1,...,m) be the quantity of the j-th good which 
is bought by the i-th household. The prices of these goods are elements of the 
vector: p=[p1...pm]T

.  The vector of the standardized prices b is determined by 
the equation: b = α-1p, where α2 = pTp. Let us suppose that b1>0. We say that 
b1 is the worst standardized price vector if the variance of the household  
expenditures z1 = yb1 takes the value which is not less than variance obtained 
for another standardized price b. Moreover,  

)(v)(v)(v)(v 1
2

11
2

111 wyyz −− α=α== pb  

where: 1
T
1

2
1 pp=α , and w1 is the variable whose values are elements of the 

vector w1=yp1. The elements of w1 determine the households expenditure  

under the worst price vector p1 = αb1. Hence, the standard deviation ( )1v z  

can be treated as a specific coefficient of variation of the expenditure distribu-

tion because it is the ratio of the standard deviation ( )1v w  and the length α1 

of the price vector p1. 

                                                           
2
 See e.g. Ralstona (1975). 
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1.2. Superpopulation model 
 
 Let us assume that the population parameter y is an observation  
of the random matrix Y = [Yij] (i=1,...,N; j=1,...,m). Hence, the space  
of the parameter y becomes the sample space of the random matrix Y.  
Let  F(y)  be the distribution function of the random matrix Y. 
 Definition 1.5: [Cassel et al. (1977)]: By a “superpopulation mod-
el”, or simply a “model”, we shall mean a specified set of conditions that de-
fine a class of distribution functions to which F(y) is assumed to belong.   
 The expected value, variance and covariance of the random matrix YYYY 
are denoted by E(.), D2(.) and Cov(.), respectively and particularly:  
 

  E(Y ij) = µij,   D
2(Y ij) = E(Y ij - µij)

2 = σ ij
2  

 
  Cov(Y ij,Ykt) = E(Y ij - µij)(Ykt - µkt) = σik, jt 
 

Let Y = [Y*1...Y*m], where T
j*Y = [Y1j...YNj]  (j=1,...,m). An outcome y*j  of the 

random vector Y*j  can be treated as an observation of the j-th variable. In the 
one-dimensional case the transformation superpopulation is as follows, see 
e.g. Cassel et al. (1977). In the case of a j-th variable, the superpopulation 
model is determined by the distribution function: F*j (y*j |a*j ,b*j ,µ,σ,ρ) 
(j=1,...,m). The elements of the vectors a*j=[a1j...aNj]

T (aij≠0 for each pair i,j) 
and b*j=[b1j...bNj]

T are parameters of the following transformation:  
 

  
ij

ijij
ij a

bY
U

−
= , i = 1,...,N                (1.12) 

 
The parameters of the elements of the vector U*j  = [U1j...UNj]

T are given  
by the expressions:  
 

 E(Uij) = µ,  D2(Uij) = σ2,  Cov(Uij,Ukj) = ρσ2               (1.13) 
 
where: 

  -(N-1)-1 ≤ ρ ≤ 1                 (1.14) 
 
This and the expression (1.12) lead to the following one: 
 

  










====

====

++++====

2
kjijkjij

22
ijij

2
ijijij

aa)Y,Y(

a)Y(

ba)Y(

ρσ

σ

µ

Cov

E

D                 (1.15) 
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 The generalization of this model on the m-dimensional superpopula-
tion model denoted by GT is as follows: let F(ya,b,µ,σ,ρ) be the distribution 
function of the random matrix Y, where: a=[a*1...a*m] and b = [b*1...b*m]. The 
elements of the random matrix U = [Uij ] (i=1,...,N; j=1,...,m) are determined 
by the equation (1.12). The parameters of the elements of the matrix U are 
determined by the expression (1.13) and the following one for j, t=1,...,m, 
i≠k=1,...,N: 
 

 
tjorazkidla)U,U(

)U,U(
2

ktij

2
jtitij

≠≠





ρσ=
σρ=

Cov

Cov
              (1.16)  

 

The parameters of the random matrix Y are shown by the expression (1.15) 
and for j,t=1,...,m, i≠k=1,...,N, by the following one: 
 

 
tj,kidlaaa)Y,Y(

aa)Y,Y(
2

ktijktij

2
jtitijitij

≠≠





ρσ=
σρ=

Cov

Cov
              (1.17) 

 

 Let R=[ρij] be the correlation matrix for the random vectors 

Ui*=[Ui1...Uim], where: i=1,...,N. Let T
mmJJP ρ= and U*=[U1* ... UN*]

T. The 

expressions (1.13) and (1.16) allows us to infer that the correlation matrix R*  
of the vector U* is of and degree Nm and is determined by the following 
equation:  
 

   



















=∗

R

.

P

P

.

...

...

...

...

.

P

.

R

P

.

P

.

P

R

R  

 

 Theorem 1.4 [Wywiał (1992)]: If det(R*)>0, the coefficient  
of correlation ρ fulfils the following inequalities:  
 

 ( ) ≤
−

−
m

T
m1N

1

RJJ
ρ

m
T
m

1

RJJ
≤                 (1.18) 

 

and particularly for m=1 these inequality are reduced to this given by the ex-
pression (1.14). 
 Proof: The determinant of the matrix can be written in the following 
way (see e.g. Rao (1982)): 
 

))1N(det()(det)det( 1N PRPRR −+−= −
∗  

 

The characteristic equation 0)κdet( m =−∗ IR can be rewritten as follows:  
 

0))1N(det()(det mm
1N =κ−−+κ−−− IPRIPR  
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On the basis of the equation ( ) ( ) )det(det TT AbAbbbA 11 −+=+  we have:  

 

( ) 0)1N(det))1N(det( T
mm >ρ−+=−+ JJRPR  

 

( ) 011 1 ≥ρ−+ − )Rdet()N( m
T
m JRJ  

 
This leads to the first inequality of the expression (1.18). Under the assump-
tion that ρ≥0 we have:  
 

 ( ) 0)i)(i(det)det( T
m m

>ρρ+=− JJRPR   

where i2=-1, 
 

 ( ) 0)det(1 m
1T

m >ρ− − RJRJ  

 
This result leads to the second inequality in the expression (1.18). The as-
sumption that ρ<0 leads to the same result. 
 Let us notice that the particular case of the transformation model al-
lows us to consider the stratified superpopulation. Moreover, if we assume 
that for each i=1,...,N and j=1,...,m  bij = 0, and aij=1, and ρ = 0, the super-
population model becomes the simple statistical sample which is well known 
in classical statistical inference. 
 Let us assume that the matrix X = [xit] (i=1,...N: t=1,...p) which con-
sists of observations of a p-dimensional auxiliary variable: x=[x1...xp]  
in a population, is available. We introduce the following notation: 

XT= [ ]x x1* *...T
N
T  where xi*=[xi1...xip] and X=[x*1...x*p], where 

x * [ ... ].t
T

t Ntx x= 1  If we assume that µ=0, then, on the basis of the expres-

sions 1.12-1.15, we have:  
 

   E(Y ij) = bij = xi* ββββj               (1.19) 
 
for each i=1,...N; j=1,...,m, where ββββj = [β1j...βpj]

T is the vector of parameters 
of the linear regression. This regression explains the scatter of the j-the varia-
ble Y*j  by means of the auxiliary variables. This definition leads to the fol-
lowing results 
 

   E(Y) = b = Xββββ                (1.20) 
 
where: ββββ = [ββββ1...ββββm]. 
 Let U=Y-E(Y) be the residual matrix. Hence: 
 

   Y=Xββββ+U                (1.21) 
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This model is called regression (superpopulation) model, see e.g. Royall 
(1970). The central moments of the second order of the elements of the ma-
trix Y are determined by the expressions (1.15) and (1.17). Let us note that 
they depend on factors aij (i=1,...,m; j=1,...,N) which are usually determined 
by functions of auxiliary variables.  
 
 

1.3. Sampling designs and schemes 
 
 Let us introduce the following definition, see e.g. Cassel et al (1977).  
 Definition 1.6: A sequence s={k1,...,kn}, such that ki∈Ω, for i=1,...,n 
is called an ordered sample of fixed size n. The set S=S(Ω) of all sequence s 
is denoted by S. 
 Definition 1.7: The number of a distinct elements of a sequence s  
is denoted by v ≤ n and called the effective sample size.  
 Omitting the repetitions in the sequence s, we can define a set s cor-
responding to s: 

   s = {k : k ∈ s }                (1.22) 
 
 Definition 1.8: A nonempty set s such that s⊆Ω is called an unor-
dered sample. The number of elements of s is the effective sample size.  
The set of all sets s is denoted by S.  
 Definition 1.9: The function P(s) on S, satisfying the following 
properties  

  P( s ) ≥ 0 for all s∈S  and  1)s(P
s

====∑∑∑∑
∈∈∈∈S

,              (1.23) 

 
is called an ordered sampling design.  
 Definition 1.10: The function P(s) on S, satisfying the following 
properties:  
 

  P(s) ≥ 0 for all s∈S  and  ∑∑∑∑
∈∈∈∈Ss

1= P(s) ,              (1.24) 

 
is called an unordered sampling design. 
 Let us introduce the following set: 
 
   A(k1,...,kr) = {s: ki ∈ s,  dla i=1,...,r}  
 
 Definition 1.11: The probability of selecting the fixed units k1,...,kr 
to a sample s is called inclusion probability of order r and denoted byπk k r1... . 

It is determined by the expression:  
 

   )s(P
)k....k(As

k...k
r1

r1
∑

∈
=π                (1.25) 
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Similarly, we can define the inclusion probability in a sequence case.  
 The sampling design of the simple and ordered sample P1 is as fol-
lows:  
 

   ∧
∈Ss

   P1(s) = N-n                (1.26) 

 
P1(s) is the sampling design of the simple sample drawn with replacement. 
 Let S*⊂ S. Let s∈S*, if and only if the size of a sample s is the effec-
tive sample size. Hence, S*  consists of all ordered samples without any repe-
titions.  
 The sampling design of the simple and ordered sample with a fixed 
effective size P2 is as follows:  
 

   
!N

)!nN(
)s(P2

s

−=∧
∗∈
   

S

               (1.27) 

 
 The sampling design of the simple and unordered sample is deter-
mined by the expression:  

   









=∧

∈

n

N
)s(P

s

1
3

S

               (1.28) 

 
 The inclusion probabilities of the first order for the sampling designs 
P2 and P3 are as follows: 
 

  ,
N

n)3(
i

)2(
i =π=π     for i=1,...,N               (1.29) 

 
and in the case of the sampling design P1: 
 

  n1)1(
i )N1(1 −−−=π , for i=1,...,N               (1.30) 

 
 The inclusion probabilities of the second order for the sampling  
designs P2 and P3 are determined by the expression:  
 

  ,
)1N(N

)1n(n)3(
ij

)2(
ij −

−=π=π  for i≠j=1,...,N              (1.31) 

 
Let us note that Czerniak (1971) derived the inclusion probabilities  
of the second order for the sampling design P1. The inclusion probabilities  
of the order  r<n  for the sampling designs P2 and P3 were derived by Herzel 
(1986).  
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 The sampling design is a draw-by draw mechanism for selecting 
units such that there is a predetermined set of selection probabilities for each 
unit in each draw. A sampling scheme is said to implement a given design 
P(s) or P(s) if the draw-by-draw mechanism reproduces the probabilities P(s) 
or P(s).  

The set of probabilities implementing a sampling design is defined  
in the following way. Let p(k1) be the probability of selecting a fixed  
population element k1 to a sample. The conditional probability of selecting 
the fixed population element k1 to a sample, provided that the elements:  
ki-1,...,k1  have just been selected to this sample, is denoted by  

 

p(ki|ki-1 ,...,k1)=
)k,...,k(p

)k,...,k,k(p

11i

11ii

−

−                             (1.32) 

 
where ki=1,...,N for i=1,...,n. The defined probabilities fulfill the equation: 
 

   ( ) ( ) ( )sPk,...,kkpkp
n

2i
11ii1 =∏

=
−  

 
where: ki=1,...,N and i=1,...,n. 

The inclusion probability can be determined on the basis  
of the following formula: 

 

  ( )r1k,...,k k,...,kp
)!rn(

!n
r1 −

=π                (1.33) 

 
 Particularly, in the case of the sampling designs P1:  
 

p(ki|ki-1 ,...,k1)=p(ki)=N-1 for i=1,...,n and ki=1,...,N 
 
In the case of the designs P2 or P3:  
 

p(ki)=N-1 for k1=1,...,N 
 

1iN

1
)k,...,kk(p 11ii +−

=−  for i=2,...,n and ki=1,...,N 

  
 Theorem 1.5 [T.V.H. Rao (1962)]: For any given design P(s)  
there exists at least one sampling design that implements P(s).  
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1.4. Data and statistics 
 

 Let us remind you that a population parameter is the matrix y  
of dimensions N×m. Each row of this matrix is a function of an element of  
a population. Each column of the matrix y is treated as a set of observations 
of a character (variable) of the population. All variables can be treated as an 
m-dimensional one.  
 After observation of values attached to elements k∈s, we obtain the 
outcome of the m-dimensional variable denoted as the following vector: 
yk*=[yk1...ykm]. Let yS be the matrix of dimensions n×m. It consists of the 
rows: ]y...y[ mkik*k iii

=y , where i=1,...,n and s={k1,...,kn}. Hence:  

 

















=

*k

*k

s

m

1

y

....

y

y  

 
The following definitions are introduced as generalizing the appropriate defi-
nitions by Cassel et al (1977) on a multidimensional case 
 Definition 1.12: The pair: D = (S, ys) or D = (S, yS) are the data  
of a multidimensional variable obtained through the observations of its  
outcomes in a sequence s or s, respectively.  
 The unlabeled data are denoted by yS and yS in the sequence  
and set cases, respectively. They can be obtained from labeled data D and D. 
 The data can be treated as outcomes of a multidimensional random 
variable. The sample spaces of the random variable D and D, taking values D 
and D, are as follows:  
 
 D={D: s∈S, Y∈Y},  D={D: s∈S, Y∈Y} 
 
where YYYY⊆Rnm is the space of a population parameter. 
 Definition 1.13: Statistic Z=u(D) is a function on such D that,  
for any given s∈S, u(.), depends on Y only through those yk* for which k∈s. 
 The statistic in the set case is defined similarly. 

 
 

1.5. Strategies 
 
1.5.1. The fixed population approach 

 
 The estimation problem of a vector of parametric function: 

θθθθ=[θ1...θm]∈ΘΘΘΘ is being considered. It is estimated on the basis of the data  
d = (s, ys) which is an outcome of the random matrix D = (S, yS)  determined 
by the definition 1.12. The probability distribution of the matrix D depends 
on the population parameter y and on the sampling design. 
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 A vector of statistics tD=[tD1...tDm] will be called an estimator of de-
scribing parameters θθθθ∈ ΘΘΘΘ, if tD takes values from the space ΘΘΘΘ. Similarly,  
the estimator t D  as a function of the data D from an ordered sample S  

can be defined. The symbols tD, t D  can be replaced by tS, tS . The estimator 

tS  is a random variable because it depends on the random sample S while ts  
is a value of the statistic tS. The value ts is determined by the data observed  
in an outcome s of the random sample S.  

For example the vector of population averages  ]  y... y[= m1y  can 

be estimated by means of the vector of sample averages:  ]  y... y[= Sm1SSy , 

where:  

    ∑
∈

=
Sk

kiiS y
n

1
y   

 Hence, an estimate of a parameter vector θθθθ depends on the estimator 
and sampling design. These two elements determine a sampling strategy. 
 Definition 1.14: [Cassel et al. (1977)]: An ordered pair of an estima-
tor and a sampling design (tS, P(s)) or ( ))s(P,St  is called the sampling strate-

gy of a parameter vector  θθθθ. 
 For example let P(s)=P3(s), where the sampling design P3(s) is de-
termined by the equation (1.28). In this case the sampling strategy ( Sy ,P3(s)) 

is called the vector of simple sample means.  
 The vector of estimation errors is as follows:  
 

  B = B(ts, θθθθ) = tS - θθθθ                 (1.34) 
 
 Definition 1.15: The pair {tS,P(s)} is an unbiased strategy of the pa-
rameter vector θθθθ=θθθθ(Y) if and only if:  
 

  ∑
∈∈

==∧
SY
tt

s
S )s(P)(E s

Y
θθθθ                 (1.35) 

 
 Definition 1.16: The pair (tS,P(s)) is a consistent strategy of the pa-
rameter vector θθθθ=θθθθ(Y) if and only if tU=θθθθ(y) for each y∈∈∈∈YYYY.  

The vector of simple sample means (Sy , P3(s)) is an unbiased  

and consistent sampling strategy for a vector of population means 
. ]  y... y[= y m1  

 Let Im be the unit matrix of degree m and let om be the column vector 
of all its m elements equal to zero. Let A be a matrix of dimensions m×m, let 
b be a row vector of dimensions 1×m and let JN be a column vector of dimen-
sions N×1, each element of the vector JN being equal to one. Let D and D'  
be data dependent on population parameters y and y', respectively. Moreover, 
let  y'=yA+JNb. 
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 Definition 1.17: A vector estimator tD is linear invariant if and only 
if y’  = yA + Jnb and for each outcomes d’  and d of data D’  and D, respective-
ly, it is3: 
 

   td' = b + tdA                  (1.36) 
 

The vector estimator tD is origin invariant if A=I m and b≠om. The vector esti-
mator tD is scale invariant if the matrix A is diagonal with positive diagonal 
elements and b=om.  
 The matrix of the second mixed moments of estimation errors  
is denoted by VSR(tS)=VSR(tS)=E(BTB)=[E(BiBj)], where: 
 

E(BiBk) = ∑
∈

θ−θ−
Ss

kksiis )s(P)t)(t(                 (1.37) 

 

We say that VSR(tS) is the matrix of mean square errors. 
 The covariance matrix of an estimator tS is:  
 

V(tS)=E(tS-E(tS))
T(tS-E(tS)). 

 

This matrix can be decomposed in the following way:  
 

VSR(tS) = V(tS) + E(BT)E(B)                 (1.38) 
 

When a vector tS is an unbiased estimator of a vector θθθθ, VSR(tS) = V(tS). 
 For example the covariance matrix of the sampling strategy 
( Sy ,P3(s)) is:  
 

   ( ) ∗
−= CyV

Nn

nN
P, 3S                   (1.39)  

 

where:  C∗=[c∗(yi,yj)] and: 
 

∑
=

∗ −−
−

=
N

1k
jjkiikji )yy)(yy(

1N

1
),(c yy  

 

∑
=

∗∗ −
−

==
N

1k

2
iikiii )yy(

1N

1
),(c)(v yyy . 

 

 An unbiased estimator of the variance ( )3S P,yV  is determined  

by the equation:  
 

( ) S3SS Nn

nN
P, ∗

−= CyV                   (1.40) 

 
 

                                                           
3 See, e.g. Cassel et al. (1977), p. 78, where one-dimensional case is considered.  
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where: C*S=[c*S(yi,yj)]  and  
 

∑
∈

∗ −−
−

=
Sk

jSjkiSikjiS )yy)(yy(
1n

1
),(c yy , ∑∑∑∑

∈∈∈∈
====

Sk
ikiS y

n

1
y                 (1.41) 

 

∑
∈

∗∗ −
−

==
Sk

2
iSikiiSiS )yy(

1n

1
),(c)(v yyy  

 
 Usually, accuracy of the vector estimator tS is characterized  
by means of the vector [E(B1)

2...E(Bm)2]. Its elements are the mean square 
errors of the appropriate elements of the vector tS=[t1S...tmS]. The variances  
of these estimators are represented by the vector [D2(t1S)...D

2(tmS)]. 
 The next method of assessing the accuracy of vector estimation  
is based on the trace of the matrix of mean square errors which is defined  
by the equation:  
 

)(tr)(q SSRS
2
SR tVt =                   (1.42)  

 

The parameter )(q SSR t can be interpreted as a mean distance between  

the point whose coordinates are determined by elements of the vector θθθθ  
and the points whose coordinates are assigned by outcomes of a vector  
estimator  tS.  
 The coefficient  
 

q(tS)= )(tr StV                   (1.43)  

 
can be treated as a mean distance between the vector E(tS) and the outcomes 
of the estimator tS. It can be called the mean radius of the estimator tS.  
 The expression (1.38) leads to the conclusion: if E(tS)=θθθθ, 
qSR(tS)=q(tS). 
 For example the expressions (1.39) and (1.41) lead to the following 
one:  

  ( )  )(v
Nn

nN
q

m

1i
iS ∑

=
∗

−= yy                  (1.44)  

 
 Wilks (1932) introduced the generalized variance as the measure  
of a multivariate scatter4. It is the following determinant of a variance-covariance 
matrix:  
 

g(tS) = detV(tS)                  (1.45) 
 

                                                           
4
 Wywial (1996a, 1997) defined a more general coefficient of multivariate scatter than the gene-

ralized variance.   
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Similarly, we define the generalized mean square error as the deter-
minant:  

 
   gSR(tS) = detVSR(tS).                 (1.46) 
 
 On the basis of Wilks' (1962, p. 546) result we have: 
 
 gSR(tS) = g(tS) (1 + E(B)V-1(tS)E

T(B)) ≥ g(tS)                (1.47) 
 

If tS is an unbiased estimator of a vector θθθθ, gSR(tS)=g(tS). 
 The spectral radius5 of a matrix is equal to its maximal eigenvalue. 
Let ρSR(tS) and ρ(tS) be the spectral radius of the matrices VSR(tS) and V(tS), 
respectively. Let us define the following statistic: toS=tSw

T, where 
w=[w1...wm] and wwT=1 and w∈Rz-{ om}. The statistic toS estimates the linear 
combination: θo=θθθθwT. The mean square error of the statistic toS  
is: vSR(toS)=E(toS-θo)

2=wVSR(tS)w
T. The variance of the estimator toS is:  

D2(toS) = wV(tS)w
T. The well known properties of the maximal eigenvalue  

of a non-negative definite matrix lead to the following result: 
 
 

 { }T
SSR

1
SSR )(imummax)(

T
wtwVt

ww =
=ρ                  (1.48) 

 

  { }T
S

1
S )(imummax)(

T
wtwVt

ww =
=ρ                  (1.49) 

 
Then, ρSR(tS) is a mean square error of estimation of a linear combination 
θo=θθθθwT by means of the statistic toS=tSw

T under the worst vector w∗  
of coefficients  of  the  linear combination  θθθθwT  in  this sense  that 

ρSR(tS)=E(tS w∗∗∗∗
T - θθθθw∗∗∗∗

T )2 ≥ E(tSw
T-θθθθwT)2, for such w that: wwT=1  

and w w∗∗∗∗ ∗∗∗∗ ====T 1, where: w,w∗∈Rm-{ om}. The parameter ρ(tS) is similarly  

explained. Moreover, ρ(tS)=ρSR(tS), when tS is an unbiased estimator  
of the vector  θθθθ. 
 Let us consider the linear combination θθθθ#=θθθθααααT, where αααα∈Rm-{0}. 
Then, the linear combination θθθθααααT is unrestricted in comparison to the linear 
combination θθθθwT. Let t#S=tSααααT be an estimator of the parameter θθθθ#. Its mean 
square error and variance are as follows: vSR(t#S)=E(t#S-θθθθ#)

2=ααααTVSR(tS)αααα, 
D2(t#S)=ααααTV(tS)αααα, respectively. Let us assume that the vector αααα is not known 
during the estimation. In this case the accuracy of the estimation can be as-
sessed on the basis of the maximal values of the following coefficients:  
 

 T
SSRT

S#SR
S#SR )(

)t(v
),t(u wtwV==

αααααααα
αααα                  (1.50) 

                                                           
5 See e.g. Ralston (1975). 
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 T
ST

S#
2

S# )(
)t(D

),t(u wtwV==
αααααααα

αααα                  (1.51) 

 
where:  

Tαααααααα

αααα=w  

 
Then, wwT=1 and  
 
  { }=

−∈
),t(uimummax S#SR

}0{R m
αααα

αααα
ρSR(tS)                 (1.59) 

 
 { }=

−∈
),t(uimummax S#

}0{R m
αααα

αααα
ρ(tS)                 (1.60) 

 
 We should find such a strategy of estimation of a vector θθθθ which  
is unbiased and whose variance (or mean square error) takes the minimal val-
ue in some set of strategies.  

 Let ( ,)1(
St P(1)(s)), )2(

S(t , P(2)(s)) be two sampling strategies of estima-

tion of a vector θθθθ=[θ1...θm]. 

 Definition6 1.18: A sampling strategy )1(
S(t ,P(1)(s)) for estimation  

of a vector θθθθ=θθθθ(y) is not worse than the strategy )2(
S(t ,P(2)(s)) if and only if  

 

))s(P,(v))s(P,(v )2(T)2(
SSR

)1(T)1(
SSR

}0{R m
αααααααα

αααα
tt

Y
≤

∈−∈
∧∧
Y

                (1.52) 

 
where:  

)(E))s(P,(v TT)k(
S

)k()k(
SSR θαθαθαθααααα −= tt , for k=1,2 

 

The sampling strategy )1(
S(t ,P(1)(s)) for estimation of a vector θθθθ=θθθθ(y) is better 

than the strategy )2(
S(t ,P(2)(s)) if and only if the inequality (1.52) is fulfilled 

and for at least one fixed parameter y the inequality (1.52) is sharp.  
Hence, for a fixed y, we can say that the mean square scatter  

of the random vector )1(
St  around the point whose coordinates are determined 

by the vector θθθθ(y) is not bigger than the scatter of the random vector )2(
St  

around the same point, if the inequality (1.52) is fulfilled.  
 
 

                                                           
6
 It is the adaptation of the definitions of Borovkov (1984) and Cassel et al.  (1977). 
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 Theorem7 1.6: A sampling strategy )1(
S(t , P(1)(s)) for the estimation 

of a vector θθθθ(y) is not worse (not better) than a sampling strategy )2(
S(t ,P(2)(s)) 

if and only if for each y∈YYYY the matrix: R=VSR(
)2(

St ,P(2)(s))-VSR(
)1(

St ,P(1)(s)) is 

non-negative (non-positive) definite. When for at least one parameter y∈YYYY 
the matrix R is positive (negative) definite, then the sampling strategy 

( )1(
St ,P(1)(s)) is better (worse) than the strategy ()2(

St ,P(2)(s)). 

 For example, let us compare the strategies: (Sy ,P1) and ( Sy ,P3), 

where the first (second) strategy is called the vector of the mean value from  
a simple sample drawn with (without) replacement. It is well known that: 

( ) ∗
−= CyV

Nn

1N
P, 1S . This and the expression (1.39) lead to the following 

one:  
 

( ) ( ) ∗
−=−= CyVyVR

Nn

1n
P,P, 3S1S0  

 

The matrix R0 is positive definite if detC*>0. Hence, the strategy (Sy ,P3)  

is better than ( Sy ,P1).  

 Theorem 1.7: [Rao (1982)]: Let the matrices: VSR(
)2(

St ,P(2)(s))  

and VSR(
)1(

St ,P(1)(s)) be positive definite. If a sampling strategy ()1(
St ,P(1)(s)) 

for the estimation of a vector θθθθ(y) is not worse than the strategy ()2(
St ,P(2)(s)) 

in the sense of definition 1.6, then: 
 

  qSR( ) ))s(P,(q)s(P, )2()2(
SSR

)1()1(
S tt ≤                  (1.52) 

 

  ( ) ( )(s)P,g(s)P,g (2)(2)
SSR

(1)(1)
SSR tt ≤                  (1.53) 

 

  ( ) ( ))s(P,)s(P, )2()2(
SSR

)1()1(
SSR tt ρρρρρρρρ ≤                  (1.54) 

 

 ( ) ( ))s(P,tv)s(P,tv )2()2(
SiSR

)1()1(
SiSR

m,...,1i
≤

=
∧                  (1.55) 

 

 Proof.  Rao (1982), p. 89, showed: if B is positive definite and 
( )BA −  is non-negative definite then det(A)≥det(B). This and the theorem 

1.6 lead to the expression (1.53). The well known properties of the trace  

of a sum of matrices lead to the expression (1.52). Let A=VSR(
)2(

St ,P(2)(s))  

and B=VSR(
)1(

St ,P(1)(s)). The maximal eigenvalue of a matrices A and B  

are denoted by λ1(A) and  λ1(B), respectively. Hence:  
 
                                                           
7
 See Borovkov (1984), Rao (1982). 
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( ) =λ A1 { }αααααααα
αααααααα

AT

1T
max

=
 

 

( ) =Bλ1 { }ββββββββ
ββββββββ

BT

1T
max

=
 

If ( )BA −  is non-negative definite then for all non-zero vectors γγγγ:  

 

0TT ≥γγ−γγ BA                   (1.56) 
Hence:  

≥λ )(1 A 0TT ≥≥ γγγγγγγγγγγγγγγγ BA , 

so 
)()( 11 BA λ≥λ  

 
This leads to to the expression (1.54). The inequality (1.56) lets us derive  
the expression (1.55).  
 Kish (1965) defined the following coefficientt:  
 

))s(P,y(D

))s(P,t(v
))s(P,t(deff

1S
2

SSR
S =  

 

where P1(s) is given by the expression (1.26), 
n

)(v
))s(P,y(D 1S

2 y
=   

is the variance of the mean from the simple sample of size n drawn with re-
placement, ))s(P,t(v SSR  is the mean square error of a strategy ))s(P,t( S  de-

termined on the basis of a sample of size n. The coefficient ))s(P,t(deff S  is 

called as sampling effect8 and it measures accuracy of a strategy ))s(P,t( S  in 

relation to the mean from the simple sample drawn with replacement. Particu-

larly, 
1N

nN
))s(P,y(deff 2S −

−= , where P2(s) is defined by the expression 

(1.27) and ))s(P,y( 2S  is the mean from the simple sample drawn without  

replacement.  
 Rao and Scott (1981) generalized the deff coefficient into the multi-
variate case in the following way:  
 

=))s(P,(deff St ρ ( )))s(P,())s(P,( 1S
1

SSR yVtV −                 (1.57) 

 
where ρ(.) is the maximal eigenvalue of a matrix. The sizes of the samples  
of the sampling designs are fixed and the same level. The equation (1.57)  
is equivalent to the following:  
 

                                                           
8
 Bracha (1996) sugested that ))s(P,t(deff S

should be rather called as strategy effect.  
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( )
( )

( )
( ) 











=










=

−∈−∈ cyVc

ctVc

yc

tc
t

cc )s(P,

)s(P,
sup

)s(P,D

)s(P,v
sup))s(P,(deff

1S
T

SSR
T

}0{R1S
T2

S
T

SR

}0{R
S

mm

 

 
where c ∈Rm-{0} is a column vector. Hence, there exists such c0 that 

))s(P,(deff St  takes a maximal value of the ratio of the mean square error  

of the strategy ( ))s(P,S
T

0 tc  and the variance of the strategy ( ))s(P, 1S
T

0 yc . 

Particularly, 
12 −

−
=

N

nN
))s(P,y(deff

S
.  

 Cramèr (1958) proposed to compare the scatter of multidimensional 
random variables on the basis of the concentration ellipsoid. In our case  
the concentration ellipsoid of a vector St  is defined by the following  

expression: 
 

( ) ( )[ ] ( )[ ]{ }mT
S

1
SS R,2mEE:K ∈+≤−−= − ztzVtzzt                 (1.58) 

 

 Let us assume that strategies )i(
S(t ,P(i)(s)) (i=1,2) are unbiased  

and that ( ) 0det )i(
S >tV . It is easy to prove that if the strategy ()1(

St ,P(1)(s))  

is not worse than the strategy ()2(
St ,P(2)(s)), K( )1(

St )⊆K( )2(
St ). 

 Let us note the problem of construction of the confidences' sets  
for estimation of the parameter vector θθθθ. We limit our consideration to the 
confidence set in the shape of an ellipsoid. Let tS be an unbiased estimator  
of the vector θθθθ. An unbiased estimator of covariance matrix V(tS) will be de-

noted by )(
~

StV . Hence, the ellipsoid confidence set for the vector θθθθ  

is determined by the expression:  
 
   P{QS < qγθθθθ} ≥ γ   
where: 

  QS = (tS - θθθθ) 1~ −V (tS)(tS - θθθθ)T                 (1.59) 
 
 Under some assumptions connected with a limit distribution of the 

estimator vector tS, the limit distribution of the statistic QS is of the 2
mχ   

with  m  degree of freedom.  
The precision of the estimation can be assessed by means of the  

volume H of the ellipsoid9:  
 

  )(gcqH S
2/m2/m tγ=                   (1.60) 

 

                                                           
9
 See, e.g. Cramer (1958).  
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where:  
 

  
)1m5.0(

c
2/m

+Γ
π=  

 

Hence, the volume H depends on the generalized variance g(tS)=detV(tS).  

 For example, let us consider the well known unbiased strategy 
( Sy ,P3(s)), called the mean from a simple sample drawn without replacement. 

The unbiased estimator of its variance-covariance matrix is determined by the 
expression (1.40). In this case the statistic QS takes the following form:  
 

  QS = ( Sy  - y ) 1
S
−V ( Sy ,P3)( Sy  - y )T                (1.61) 

 

here the matrix VS( Sy ,P3) is defined by the expression (1.40).  

The precision of the estimation can be assessed by means of the vol-
ume of the ellipsoid QS<qγ. This volume is determined by the expression 
(1.60), where g(tS)=g( Sy ,P3)=det VS( Sy ,P3). Hence, on the basis of the ex-

pression (1.39) we have:  
 

  g( Sy ,P3)= g
n)1N(

nN
m










−
−

                  (1.62) 

 

where:  

*

m

det
N

1N
g C







 −=  

 

 Mikhail and Mir (1981) proposed the following unbiased estimator 
of the generalized variance10 g.  
 

S1m

m

S g
N

)1n(n

1mn

1mN

n

N

g~ +

−










−−
−−










=                  (1.63) 

 

where:  

SS detg ∗∗∗∗==== C  

 
 
 

                                                           
10 See Wywial (1996, 1997).  
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is a biased estimator of a population generalized variance g. Hence, when  
in the expression (1.62) we substitute the generalized variance g for its esti-
mator Sg~ , we obtain the unbiased estimator of the generalized variance  

of the strategy ( Sy ,P3).  

 
 

1.5.2. The superpopulation approach 
 
 According to the definition 1.5 of the superpopulation model the 
population parameter y can be treated as an outcome of a random matrix Y  
of dimensions N×m. Properties of probability distribution of the matrix Y  
determine the superpopulation model. The parametric function θθθθ=θθθθ(y),  
determined by the definition 1.2, should be treated as an outcome of the ran-
dom vector ΘΘΘΘ=θθθθ(Y) of dimensions 1×m. 
 Let us assume that the size of a sample is fixed and equal to n. Let  
us remember that the matrix ][

n1 k...k yy  is a sub-matrix of the matrix y. More-

over, outcomes ][
n1 k...k yy  are treated as outcomes of random variables 

]...[
n1 kk YY  observed in a sample s={k1,...,kn}. Let D=((k,yk), k∈s) be the data 

from unordered sample s. The data D can be treated as an outcome  
of the random variable D=((k,Yk), k∈s).  
 Let us assume that noninformative sampling designs will be consi-
dered. It means that a draw of a sample s does not depend on the distribution  
of random variables 

n1 kk ...YY , where ki∈s, see, e.g.: Cassel et al (1977). 

Hence:  
 

 P(D =D) = P(s)P(Yk=yk, for k∈ s)   (1.64) 
 

 The value θθθθ(y) of a random variable ΘΘΘΘ=θθθθ(Y) is predicted by means 
of a statistic t(D). This statistic will be denoted by TS and called the predictor 
of ΘΘΘΘ. An outcome Ts of the predictor TS is obtained for a fixed sample s.  
If ]...[

nn11 kkkk yYyY == , an outcome of TS is denoted by tS. Finally,  

if a sample s is fixed and ]...[
nn11 kkkk yYyY ==  then an outcome of TS  

will be denoted by ts. 
 Definition 1.1911: The statistic TS is called a p-unbiased predictor  
of  ΘΘΘΘ  if and only if for a given design p and for Y∈YYYY 
 

  E(TS)=θθθθ(Y)                   (1.65) 
 
The strategy (TS, p) will be called p-unbiased if TS is a p-unbiased predictor 
of  θθθθ(Y).  

                                                           
11

 See Cassel et al. (1977), p. 92. 
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The statistic TS is called a ξ-unbiased predictor of ΘΘΘΘ if and only  
if for a given probability distribution ξ 
 

   E(TS - ΘΘΘΘ) = 0                  (1.66) 
 

TS is called a p-ξ-unbiased predictor of ΘΘΘΘ if and only if for a given p 
and ξ 
 

   EE(TS - ΘΘΘΘ) = 0                  (1.67) 
 

 Precision of the strategy (TS, p) will be determined by the expected 
value of the matrix of mixed second moments of prediction errors:  
 

 E[VSR(TS)] = EE(TS - ΘΘΘΘ)T(TS - ΘΘΘΘ)                 (1.68) 
 

Let V(Ts)=E(Ts-E(Ts)]
T[(Ts-E(Ts)] be the ξ-covariance matrix of prediction 

errors and let B(Ts)= E(TS -ΘΘΘΘ) be the ξ-bias of a strategy Ts. Moreover, let 
V(ΘΘΘΘ)=E(ΘΘΘΘ-E(ΘΘΘΘ)]T[(ΘΘΘΘ-E(ΘΘΘΘ)].  
 Theorem12 1.8: If a sampling design p of a strategy (TS, p) is nonin-
formative, then 
 

EVSR(TS) = EV(TS) + EB2(TS) + V(ΘΘΘΘ)- 2E{ ΘΘΘΘ - E(ΘΘΘΘ)}E{T S - E(ΘΘΘΘ)} 
(1.69) 

 

Particularly:  
 

a) If TS is p-unbiased: 
 

  EV(TS) = EV(TS) + EB2(TS) - V(ΘΘΘΘ)                (1.70) 
 
b) If TS is p-ξ-unbiased: 
 

  EV(TS) = EV(TS) - V(ΘΘΘΘ)                  (1.71) 
 

 The synthetic coefficients of accuracy of a vector prediction  
are as follows: the mean square radius of a strategy (TS,p) is determined  
by the equation: 
 

   )(tr)( SSRS TVT EqSR =                  (1.72) 
 

 The generalized mean square error of prediction is defined by the 
expression:  
 

  gSR(TS)=det EVSR(TS)                  (1.73) 
 

                                                           
12

 This theorem is the generalization of the theorem by Cassel et all (1977), pp.94, on multi- 

dimensional case.  
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 The mean square spectral radius of a strategy (TS,p) is denoted  
by  ρSR(TS) and it is equal to the maximal eigenvalue value of the mean square 
errors matrix EVSR(TS). 
 Let M be a class of superpopulation models. Let BS1=TS1-ΘΘΘΘ  
and  BS2=TS2-ΘΘΘΘ be prediction errors. The following definition is similar  
to the definition 1.18.  
 Definition13 1.20: {T1, P1} is not a worse strategy than (T2,P2)  
if and only if, for each probability distribution ξ∈M  
 

 
){R z

z oe −∈
∧    EE(BS1e

T)2 ≤ EE(BS2e
T)2                   (1.74) 

or 

){R z
z oe −∈
∧ eEVSR(TS1,P1)e

T ≤ eEVSR(TS2P2)e
T                  (1.75) 

 
If there exist such e∈Rm and such ξ∈M that the inequalities (1.74)  
and (1.75) are sharp then (TS1, P1) is a better strategy than (TS2, P2). 
 Theorem14 1.9: If for each ξ∈M the matrix L=EVSR(TS2,P2)-
EVSR(TS1,P1) is not negative definite, (TS1,P1) is not worse than the strategy 
(TS2,P2). 
 Theorem15 1.10: If det EVSR(TS,P1)>0, (TS1,P1) is not a worse pre-
dictor of a vector ΘΘΘΘ than a strategy (TS2,P2) in the sense of the definition 1.20 
then for each ξ∈M  
 
  qSR(TS1,P1) ≤ qSR(TS2,P2)                               (1.76) 
 
  gSR(TS1,P1) ≤ gSR(TS2,P2)                               (1.77) 
 
  ρSR(TS1,P1) ≤ ρSR(TS2,P2)                               (1.78) 
 

                                                           
13

 This definition is an adaptation of ones considered by Borovkov (1984) and Cssel et al. 

(1977), p. 93.  
14

 See Borovkov (1984), Rao (1982). 
15

 See Rao (1982).  



 
 
 
 

II. VECTOR OF HORVITZ-THOMPSON ESTIMATOR 
 
 
2.1. Basic definitions 
 

Let us assume that a sample s of a fixed size n is drawn without  
replacement from a finite population. If k∈s, ak=1 and if k∉s, ak=0.  
This leads to the following properties: 
 

( ) ( ) ∑
=

=π=π=π
N

1k
kikkikk n,aaE,aE , 

 

( ) ( ) ( ) .a,aCov,1aD ikkiikkkk
2 ππ−π=π−π=  

 

Horvitz and Thompson (1952) proposed the following estimator of popula-
tion average y :  

   ∑
= π

=
N

1k k

kk
HTS

ya

N

1
t      (2.1) 

 

The statistic tHTS is the unbiased estimator of the population mean y .  
Its variance is determined by the expression:  
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1
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1
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ππ
+π−π









π
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= ≠ =
  (2.2) 

 

For the effective sample size: 
 

 ( ) ( )
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1
kiik2HTS

2 yy
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1
tD 









π
−

π
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< =
   (2.3) 

 

The variance ( )HTS
2 tD  is estimated by means of the following statistic:  
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k2HTS
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1
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                      (2.4) 
 

This statistic is the unbiased estimator of the variance ( )HTS
2 tD  but  

it can take negative values.  
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Sen (1953), Yates and Grundy (1953) derived the following non-
negative valued estimator, in the case when πk πi -πki >0 for each k≠i=1,...,N:  
 

 
2

i

i

k

k

ki

kiik

ik

ik
N

ik

N

1i
ik2S

2 yyyy
aa

N

1
)t(D

~









π
−

ππ
π−ππ

ππ
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> =
HT     (2.5) 

 
Let us note that Horvitz and Thompson proposed the estimator of a popula-
tion average in the case when a sample is selected with replacement. Proper-
ties of the Horvitz-Thompson estimator were studied e.g. by: Godambe  
and Joshi (1965), Joshi (1965, 1966), Ramakrishnan (1975), Sarndal (1976), 
Hartley and Rao (1968, 1969).  
 Let us assume that a sample is selected without replacement  
from a fixed and finite population. The vector of Horvitz-Thompson statistics  
will be denoted by tHTS=[tHT1S...tHTmS], where:  
 

   .,
π

∑ ==
=

m

1k k

ikk
i m,1,i
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N

1
t KSHT

 

 
It is the estimator of the vector of population averages denoted by 

[ ]m1 yy L=y . The vector tHTiS is the unbiased estimator of the vector y . 

 The covariances of elements of the vector tHTiS are as follows (see 
Thompson (1997)):  
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or:  
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 Let Gπ be a diagonal matrix of degree N with the following diagonal 
elements: πk, k=1,..,N. Moreover, let a=[a1...aN] and ππππ= [π1...πN]. Hence: 
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This leads to the following expressions:  
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  V(tHTS) = N-2 yT yGVG 11 )( −
π

−
π a       (2.9) 

 

where: V(a)=[Cov(aiaj)] is a variance-covariance matrix of the vector a, 
Cov(aiaj)=πij-πiπj, D

2(ai)= Cov(aiai)πi(1-πi), i≠j=1,...,N.  
 If for each k≠h=1,..,N, the inequality πkh>0 is fulfilled, the unbiased 
estimator of an element of the matrix V(tHTS) is the following statistic [see e.g. 
Konijn  (1973), p. 235]: 
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for i,j=1,...,m. 
Next estimator is as follows (see the estimator of the variance  

by Yates and Grundy):  
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2.2. Taylor’s approximation of variance 
 

A variance of the estimator S,HTy  can be expressed in the following 

way:  
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 Let us treat this variance as a function of the vector of inclusion 
probabilities denoted by ππππ=[π1...πN π12...π1N π23...π2N...πN-1,N]. So 
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 The Taylor’s series expansion of the variance ( ) ( )π= uyD S,HT
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is as follows. 
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where θ ∈ (0, 1) and R(θ, N, n) is the remainder. 
 Let pi=f1(xi) and qi=f2(xi), be functions of an auxiliary variable and 
 

  ( )1
ii NOp

N
−=α=∆                   (2.19) 

 

 ( )[ ] ( )2
jiji2ij nNOcqbqppa

N

n −=+++=∆                 (2.20) 

 

where  α,a,b,c ( )hkNnO=  and  k,h≤0.  

 Let 
 

( ) 001010

N

1i

egz
izge vq,vp,qpyy

N

1
v ==−= ∑

=
,      zgezge v

1N

N
v

−
=∗       (2.21) 

 
where z,g,e∈{0,1,2}.  
 
 Wywiał (2000) derived the following Taylor’s expansion of the 
Horvitz-Thompson estimator: 
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2.3. Approximation of variances of strategies 

 
2.3.1. Sampling design proportionate to sample average of auxiliary 

variable 

 
 Let x=[x1...xN] be the vector of an auxiliary variable's observations. 
Moreover, let each value of the auxiliary variable be positive. The sample and 

population means of the auxiliary variable are denoted by ∑
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1
x  and 

∑
=
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x , respectively. The size n of a sample is the effective sample 

size. Let sampling design of an unordered sample s be proportional  
to the sample mean of the auxiliary variable, then: P(s) Sxn∝  and  
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Hence, when 

21 ss xx >  the probability of selecting the sample s1 is larger 

than the probability of selecting the sample s2.  
Lahiri (1951) considered the following sampling design: 
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The probabilities of the first and second order are as follows (see e.g. Wywiał 
(1991a, 1992, 1995, 2000): 
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where  k ≠ t = 1, ..., N. 
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When we state that c = 0, b = 0 and  
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the expression (2.22) leads to the following approximation of the variance: 
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is the variance of the mean from the simple sample s drawn without replace-
ment.  

Hence, when N→∞, n→ ∞ in such a way that N – n → ∞, 
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 Let us assume that (xi, yi)  i = 1, ..., N can be treated as outcomes  
of a two-dimensional normal random variable. In this case the expression 
(2.33) is reduced to the following one: 
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Hence, under the stated assumption, the strategy ( )4S,HT P,y  is more accurate 

than the simple sample mean when 
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Moreover, the size of the sample should be rather small. 

 
 

2.3.2. Sampling design proportionate to total of values of auxiliary var-
iable which are not observed in sample 

 
 Wywiał (1992,1995, 2000) considered the sampling design )s(P5  

proportional to the total of the non-observed values in the sample. Hence, 
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When ∑∑
−Ω∈−Ω∈

>
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i
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i xx  the probability of selecting the sample s1 is larger  

than the probability of selecting the sample s2.  
 The inclusion probabilities of the first and second order  
are as follows:  
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where:   
x
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= , k≠l=1,...,N                 (2.41) 

 
 Wywiał (1992, 1995) determined the conditional probabilities of the 
sampling scheme implementing the sampling design P2. Wywiał (2000) pro-
vided the following expressions:  
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This and the expression (2.21) lead to the approximation of the variance  
of the strategy:  
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Let us note that in the case of two-stage sampling, P5 can be a sampling 

design of the first phase of the sampling and xk can be treated as communica-
tion cost (e.g. by bus) from the center of research to the k-th region (cluster).  

 
 
 

2.3.3. Sampling design proportional to sample variance of auxiliary variable 

 
 The sample variance )(v s2 x and population variance )(v 2 x  of  

an auxiliary variable are denoted as follows:  
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 Singh and Srivastava (1980) proposed the sampling design )s(P6  

proportional to the sample variance ( )xsv :  
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 Singh and Srivastava (1980) proposed the sampling scheme imple-
menting this sampling design.  
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 Let  
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 The probabilities of inclusion are as follows (see Wywiał (1995)):  
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for k ≠ t = 1,....,N. Hence:  
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 The approximate variance of the strategy (tHTS,P6) is as follows:  
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 Under the assumption that, η22=1+2ρ2

, η12=0 and η14=0 (e.g.  
in the case when variables (y,x) have an approximately two-dimensional nor-
mal distribution) the variance takes the following form: 
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For sufficiently large n and N the strategy )P,t(D 6SHT  is better than )P,y( 3S  
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2.3.4. Sampling design proportional to function of sample variance  
of auxiliary variable 

 
 Wywiał (1992, 1995, 2000) considered the sampling design )s(P7  

proportional to Nv2(x)-nv2s(x). Hence:  
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The probabilities of inclusion are defined by the following expressions:  
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 The approximate variance of the sampling strategy is:  
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Hence, the variances of both strategies )Py(),Pt( ,, SS 37HT   

are almost the same.  
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2.3.5. Sampling design proportional to squared estimation error  
of auxiliary variable mean 

 
 Wywiał (1995, 2000) considered the properties of the following de-
sign: 
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 The probabilities of inclusion are as follows:  
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where pk and qk are defined by the expression (2.44) and k≠t=1,...,N. 
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The approximate variance is as follows:  
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 This expression is more simple when we assume that the variables 
(y,x) have an approximately normal distribution. Hence, η22=1+2ρ2, η13=3ρ 
and  

 














ρ−

γ
+ρ+= 2

y
2

22
23S

2
8S

2 4
1

n

)(v2
)(v

n

2
)P,y(D)P,t(D

y
yHT ( )3−+ nO  

 (2.63) 
 
 

2.3.6. Sampling design proportionate to decreasing function  
of squared estimation error of auxiliary variable mean 

 
 Arnold and Groeneveld (1981) proved the following inequality:  
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where: P8(s) is defined by the equation (2.59). Hence, when estimation error 

2
s )xx(

2
−  is larger than 2

s )xx(
1

− , the probability of selecting the sample s1 

is larger than the probability of selecting the sample s2. 
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The probabilities of inclusion are as follows:  
 

 k2k p
)2N(N

n2N

N

n

−
−−=π                   (2.65) 

 

 )8(
ktkt )2N(

1

)2N(N

)1n(n
π

−
−

−
−

=π                  (2.66) 
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where: pk, qk and )8(
ktπ  are defined by the right sides of the expressions (2.61) 

and (2.61), respectively. After appropriate transformations we have:  
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 The approximate variance is as follows:  

 

( )3
3S

2
9S

2 nO)P,y(D)P,t(D −+=HT                 (2.69) 

 
 

2.3.7. SIMULATION ANALYSIS OF ESTIMATION 
PRECISION 
 
 Let us assume that the variables (x,y) have an approximately two-
dimensional normal distribution. The variable y is treated as a variable under 
study and the variable x as an auxiliary variable. The pseudovalues  
of a normal two-dimensional random variable have been obtained by means 
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of Hastings’ (1955) generator1. The simulation procedures were written down 
by means of the matrix language of the SPSS statistical package2.  
We considered sample sizes of 2, 5 and 10 elements. The population size  
was 100 elements. The relative efficiency was determined as a ratio  
of the variance of Horvitz-Thompson strategy to the variance of the mean 
from the simple sample drawn without replacement. The variance  
of the Horvitz-Thompson strategy was determined on the basis of 1000 repli-
cations of the set {x,y} of the fixed size.  
 The computer simulations lead to the conclusion that the simple 
sample mean is a better estimator of population averages than the strategies 
(tHTS, P7) and (tHTS, P8).  
 The figure 2.1 shows that the strategies (tHTS, P5) and (tHTS, P9)  
are only a little more efficient than the simple sample mean. The relative effi-
ciencies of the strategies are expressed by non-linear functions  
of the population size as well as of the correlation coefficient of the auxiliary 
variable and variable under study and the ratio of the variation coefficients 
k=γx/γy. As we have expected, under a fixed population size, the relative effi-
ciencies of the strategies (tHTS,P4), (tHTS, P6) usually decrease  
when the sample size is smaller and smaller.  
 In conclusion, from a practical point of view, the strategies (tHTS, P4) 
and (tHTS, P6) can be preferred. In the case of the strategy (tHTS, P4)  
the correlation coefficient should take a high positive value and the variation 
coefficient k should belong to the appropriate interval. In the case  
of the strategy (tHTS, P6) the absolute value of the correlation coefficient 
should be close to one. Both these strategies should be especially preferred 
instead of the simple sample mean when a population size as well as a sample 
size are rather small. Hence, they can be useful in the case of a two stage 
sampling design.  
 More details on results of the simulation study are showed  
by Wywiał (2000).  
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                           
1
 See Zieliński (1979).  

2 SPSS Advanced Statistics 7.5. SPSS Inc. 1997. 
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 Figure 2.1.  
 
 
 
2.3.8. Space sampling design  
 
 The present paragraph deals with sampling in a space population.  
It is assumed that the neighborhood of the population elements is fixed  
and identified by so called neighbor matrix. Four sampling designs  
are constructed on the basis of that matrix. Two of them prefer drawing popu-
lation elements, which are neighbors. Next two ones prefer sampling elements 
which are not adjacent to each other. Those designs can be useful  
in research devoted to ecology, protecting environment, economic problems 
and so on.  
 The position of population elements can be identified by neighborhood 
matrix A=[aij ]. If the elements (i,j) are neighbors (are not neighbors)  
then aij=1 (aij=0). 
 
 Let us consider the following population:  
 

 2  
5 1 3 
 4  

The neighborhood matrix is as follows:  
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


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
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

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10111
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A  

 

The space of samples of size three is as follows:  
 

S={(1,2,3); (1,2,4); (1,2,5); (1,3,4); (2,3,4); (2,3,5); (3,4,5); (1,3,5); 
(2,4,5); (1,4,5)} 

 

Let A(s)=[aij(s)] be the neighborhood matrix of elements  
of a sample s. Hence, for the samples of  the space S we have:  

 

 

















====
111

111

111

)5,4,1()4,3,1()5,2,1()3,2,1( AAAA ; 

 

 

















===
101

011

111

)5,3,2()5,3,1()4,2,1( AAA ; 

 

 

















==
110

111

011

)5,4,3()4,3,2( AA ;  

















=
111

110

101

)5,4,2(A . 

 

 Let a sample design prefers the neighbor elements to be drawn with-
out replacement. Wywial (1996b) considered the following sampling design:  
 

  

∑∑∑

∑∑

∈ = >

= >=

Ss

n

1i ij
ij

n

1i ij
ij

10

)s(a

)s(a

)s(P .                 (2.70) 

 

Then for our population:  
 

  P(1,2,3)=P(1,2,5)=P(1,3,4)=P(1,4,5)=
8

1
, 

 

 P(1,2,4)=P(2,3,4)=P(2,3,5)=P(3,4,5)=P(1,3,5)=P(2,4,5)=
12

1
. 
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The inclusion probabilities are as follows: 
 

 π1=
3

2
,  π2=π3=π4=π5=

12

7
, 

 

 π12=π13=π14=π15=
3

1
,  π23=π25=π34=π45=

24

7
,  

 π24=π35=
4

1
. 

 
 In the case of sampling with replacement, the probability  
of selecting a k-th element is defined proportionally to the sum of elements 
which are its neighbors. Then:  
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∑

= =

==
N
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N
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kj

N

1j
kj

11

a

a

)k(p .                (2.71) 

 
In the case of the population under consideration:  
 

 p2(1)=
21

5
,  p2(2)= p2(3)= p2(4)= p2(5)=

21

4
. 

 
 Let us define the design that prefers drawing without replacement the 
elements which are not neighbors. Then: 
 

 ∑∑
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1
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P12(s)>0 provided that α>0.  
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where: 
 

    ∑∑∑
∈ = >

=β
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n
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 It is obvious that: 
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
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
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n

N

1
Plim 12                    (2.74) 

 
Hence, if α→∞, the sampling design P3(s) tends to be a simple sampling de-
sign.  
 In the case of our population and α=0.1, we have:  
 

  P(1,2,3)=P(1,2,5)=P(1,3,4)=P(1,4,5)=
16

1
, 

 

 P(1,2,4)=P(2,3,4)=P(2,3,5)=P(3,4,5)=P(1,3,5)=P(2,4 5)=
8

1
, 

 

 π1=
35

13
,  π2=π3=π4=π5=

35

23
. 

 

π12=π13=π14=π15=
70

13
, π23=π25=π34=π45=

70

23
,  π24=π35=

70

33
. 

 If α=0.5 then:  
 

  P(1,2,3)=P(1,2,5)=P(1,3,4)=P(1,4,5)=
22

1
, 

 P(1,2,4)=P(2,3,4)=P(2,3,5)=P(3,4,5)=P(1,3,5)=P(2,4 5)=
22

3
.  

 

 π1=
2

1
,  π2=π3=π4=π5=
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5
, 

 π12=π13=π14=π15=
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5
,  π23=π25=π34=π45=

22

7
,  

 
 

 π24=π35=
22

9
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 In the case of sampling with replacement, probabilities of selecting 
the k-th population element can be defined as follows:  
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Hence, the probability p13(k) increases if the sum of the elements which  

are adjacent to the k-th element decreases.  
 In the case of the population under our analysis we have:  
 

  p2(1)=
9

1
,  p2(2)= p2(3)= p2(4)= p2(5)=

9

2
. 

 
 

Table 2.1 
 

The variances 

Strategy Variance 

3S P,y  1.6400 

10HTS P,t  0,7706 

12HTS P,t ; α=0.1 3.3691 

12HTS P,t ; α=0.5 40.4913 

 
 Let us define the variable y: y(1)=8, y(2)=1, y(3)=3, y(4)=1, y(5)=3. 
The population mean value is 2.3y =  and the population variance is 

2.8)yy(
1N

1
v

N

1i

2
i =−

−
= ∑

=
∗ . 

 The population mean y  is estimated on the basis of the sample mean 

Sy  and of the Horvitz-Thompson estimator HTSt , given by the expressions 

(2.1). Let us remember that P3 is the sampling design of the simple sample 
without replacement, defined by the expression (1.28).  
The variance of the strategy is determined by the form (2.2). The table 2.1 
refers the calculated variances of the strategies.  
 The variance of the strategy )P,t( 10HTS  takes the lowest value.  

The design of this strategy prefers selecting elements of the population which 
are neighbors.   
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2.3.9. Sampling designs dependent on the determinant of sample co-

variances matrix 

 Let x=[xij] be the matrix of dimension m×N. It consists of the values 

of an m-dimensional auxiliary variable. Let ]x...x[ mjj1
T

j =∗x , N...,,1j=   

be an observation of the m-dimensional variable attached to a j-th population 
element. The vector ]x...x[ iN1ii =∗x  (i=1,...,m) consists of observations  

of the i-th auxiliary variable. Then: 

x = [x∗1 x∗2 ... x*N]      or      
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x . 

 Values of auxiliary variables observed in a sample s of size n  

can be written as the matrix xS=[
1j∗x ,..., ]

nj∗x . 

 Let z=[xij- ix ], where: ∑
=

=
N

1j
iji x

N

1
x  (i=1,...,m; j=1,...,N) and let 

zS= [ ]
n1 jj z...z ∗∗ ,  where: [ ])xx...()xx(

mmjj
T

j
kkk

−−=∗ 11
z , n1k ...,,= . Let u=[xij-

ix (s)], where: ix (s)= .x
n

1

sj
ij∑

∈
 Moreover, let uS= ]...[

n1 jj ∗∗ uu , where: 

( )( ) ( )( )[ ]sxx...sxxu
mmjj

T
j

kkk

−−=∗ 11
, n1k ...,,= . Then, zS and uS are sub-matrices 

of the matrices z and u, respectively. Hence, the sub-matrices zS and uS  
can be obtained through eliminating all the columns of the matrices z and u 
except those which correspond to the population elements drawn  
to a sample s.  
 The population generalised variance is defined by the following ex-
pression:  
  g=N-m|z zT|                   (2.76) 
 
 The sample generalized variance is defined by the formula:  
 

 gs=n-m |uS
T
Su |                   (2.77) 

 
 All the sampling designs presented in this and next paragraphs  
were proposed by Wywial (1997a, 1999, 1999a). 
 Let us consider the following sampling design: 
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It can be transformed into the following form:  
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When m=1, the sampling design P14(s) is reduced to the one considered  
by Singh and Srivastava (1980). 

Let z(k1,....kr) be a sub-matrix obtained through eliminating  
the columns of numbers k1,...,kr  from the matrix z. Wywial (1997a, 1999) de-
rived the probabilities of drawing elements k1,...,kr from a population  
for a sample in the r fixed selections. The probabilities of inclusion  
are as follows:  
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 Let us define the following sampling design:  
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The sampling design is as follows:   
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where P14(s) is defined by the expression (2.78). Wywial (1997a) showed 
how to determine the inclusion probabilities.  

Let us note that the sampling design P14(s) prefers (unlike  
the sampling design P15(s)) the selection of such a sample s that  

the determinant || T
sszz  is large.  
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2.3.10. Sampling designs dependent on generalized sample variance 
 

Wywiał (1997, 1999, 1999a) considered the sampling design propor-
tional to the sample generalized variance gs of an m-dimensional auxiliary 
variable which is defined by the expression (2.77). Let us consider the follow-
ing sampling design:  
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This design can be transformed into the following form: 
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When m=1, the sampling design P16(s) is reduced to the sampling design pro-
portional to sample variance considered by Singh and Srivastava (1980). 
 Let x(k1, ..., kr) be a sub-matrix obtained through eliminating  
the columns of numbers k1, ..., kr  from the matrix x. Moreover, let: 
 

 T
wNw1w1w1 )k,...,k()k,...,k()k,...,k( −−= Jxxv . 

 
JN-w is the column vector with all its (N-w) elements equal to one and:  
 

 wNw1w1 )k,...,k(
wN

1
)k,...,k( −−
= Jxx . 

 
 Wywial (1997a, 1999a) derived the probability of drawing without 
replacement elements k1,...,kr to a sample s during the r fixed selections  
from a population. The inclusion probabilities of order r=1 and r=2  
are as follows:  
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 Let us considered the following sampling design: 
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It can be transformed into the following form:  
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where: P16(s) is given by the expression (2.82). 

The sampling design P17(s) prefers (opposite to the sampling design 
P16(s), given by the formula (2.82)) selection of such a sample s  
that the generalized variance T

SS
m

S ng uu−=  is not large.  

 Wywiał (1997a, 1999a) derived the probability of drawing elements 
from a population into a sample during the r fixed selections.  
 The next sampling design is as follows: 
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We can prove that:  
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 The probability of drawing elements k1,...,kr from a population into  
a sample s during the r fixed selections can be derived (see Wywiał (1997a, 
1999a)). The inclusion probabilities are as follows:   
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Let us suppose that the average value of a variable under study  
is highly dependent on a vector of auxiliary variables. We can expect  
that some of the considered sampling designs can provide a good sam-
pling strategy of estimation of the population average of the variable un-
der study. The Horvitz–Thompson estimator will be the unbiased estima-
tor of the average but it seems that any analysis of its accuracy should be 
supported  
by a computer simulation. The sampling designs proportional to  
a generalized variance P14 or P16 will be used to construct the regression 
strategies at the end of the chapter 6.  

 



 
 
 

 

III. STRATIFIED SAMPLING 
 
 
3.1. Basic properties  
 

Let us assume that the population Ω is divided into non-empty strata 
denoted by Ωh (h=1,...,H) and Ωh∩Ωl=∅ for each pair h≠l=1,...,H and 

Ω=Ω
=
U
H

1h
h . Let Nh be the size of the stratum Ωh (h=1,...,H) and 

N

N
w h

h = , 

where: ∑
=

=
H

1h
hNN . A simple sample of size 0<nh ≤Nh drawn from the h-th 

stratum will be denoted by  Sh, h=1,...,H. The sampling design of the stratified 
sample S={S1,...,SH} is as follows:   
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in the case when the samples are drawn without replacement or  
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=

−=Ρ
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n
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in the case when the samples are drawn with replacement. 
 Let yihk be the k-th observation of an i-th variable in an h-th stratum.  
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The statistics ]yy[

hh mSS1hS L=y  and )](c[ jSS* hh
y,yi∗=C , where:  
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are unbiased estimators of parameters: ]yy[ mhh1h L=y  and 

)](c[ jhh* y,yi∗=C , respectively. 
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 The vector y  of population means is the following function  
of the strata means: 
 

∑
=

=
H

1h
hw hyy . 

 

 An unbiased estimator of the vector y  is defined by the expression:  
 

    ∑
=

=
H

1h
hwS w hSyy .      (3.4)  

 

Its covariance matrix in the case of sampling without replacement is as fol-
lows: 
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The variance of the i-th element of the vector of estimators ywS  is as follows: 
 

  )(v
nN

nN
w)P,y(D ih

hh

hh
H

1h

2
hiS

2 yww ∗
=

−= ∑ .     (3.6) 

 

 An unbiased estimator of the matrix )P,( wwSyV  is as follows:  
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h
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where the elements of the matrix )](c[ jSS* hh
y,yi∗=C  are determined  

by the equation (3.3).  
In the case of the sampling with replacement, the covariance matrix 

of the estimator wSy  is as follows:  
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where:     h*
h
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1N
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−
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 An unbiased estimator of the matrix )P,( ,
wwSyV is as follows:  
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3.2. Optimization of samples sizes 
 
3.2.1. Proportional determination of sample sizes  
 

 Let n be the total size of a sample selected from strata i.e. ∑
=

=
H

1h
hnn . 

Let n h#  be size of a sample selected from the h-th stratum. When we assume 

that n h#  is proportional to the fraction of population elements in the stratum:  

 
   ,nwn hh# =     h=1,...,H                  (3.10) 

 
 The sampling designs for samples of such sizes, selected without re-
placement from strata, can be derived on the basis of the expressions (3.1), 

(3.2) and (3.10). It will be denoted by 'pP  and Pp in the cases of sampling with 

replacement and without replacement, respectively. The expressions (3.5) and 
(3.10) lead to the following variance-covariance matrix of the sampling strat-
egy:  
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h*hpwS w
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nN
)P,( CyV    (3.11) 

 
 In the case of sampling with replacement, the equations (3.8)  
and (3.10) lead to the following variance-covariance matrix:  
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 Theorem 3.1 [Wywiał (1992)]: The sampling strategy )P,( '

pwSy   

is not worse than the strategy )P,( 1Sy  in the sense of the definition 1.18. 

When the sizes of the strata Nh (h=1,...,H) are sufficiently large, the sampling 
strategy )P,( pwSy  is not worse than the strategy )P,( 3Sy , where )P,( 1Sy   

and )P,( 3Sy  are mean vectors from a simple sample drawn with and without 

replacement, respectively.  
 Proof: Let [ ]iih yy −=B  be the matrix of dimension m×H, where 

ihy  is the mean of an i-th variable in an h-stratum. The vector of stratum frac-

tion is w=[w1...wH]. Its elements are the diagonal elements of the matrix 
Dw=diag(w). After a simple transformation we have:  
 

T
w

'
pwS1S n

1
)P,()P,( BBDyVyV += . 
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The matrix T
wBBD  is non-negative definite. This and the theorem 1.6 let  

us say that the strategy )P,( '
pwSy  is not worse than )P,( 1Sy  (the means from 

the simple sample drawn with replacement). In the case of the samples drawn 
with replacement the proof is similar.  

This result and the theorem 1.7 lead to the conclusion that all con-

sidered synthetic measures of the strategy )P,( '
pwSy  precision are not larger 

than the appropriate measures of the strategy )P,( 1Sy  precision. A similar 

conclusion deals with strategies )P,( pwSy )P,( wwSy  and )P,( 3Sy . 

 
 
3.2.2. Minimization of risk function under fixed cost of data  

observation 
 
 Neyman (1934) determined sample sizes selected from strata through 
minimization of the estimator variance under a fixed total of sample sizes16. 
The solution to this problem is connected with only one variable under study. 
A generalization of this optimization problem is considered.  
 Costs of data observation are described by the following linear func-
tion17:  
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hhH1 nk)n,...,n(k)(k n    (3.13) 

 
where: ]n...n[ h1=n  and kh  is the unit cost of data observation in an h-th 

stratum, h=1,...,H. An admissible level of the total costs of data observation  
is denoted by K. 
 Let us consider the following risk function: 
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where ai>0 and )P,y(D wwiS
2 , i=1,...,m, are determined by the expression 

(3.6). After some simple transformations:  
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16

 Cochran (1963), p. 97, noted that this problem had been stated and solved by Tschuprow 

(1923), too. 
17 Beardwood, Halton i Hammersley (1959) considered a non-linear cost function.  
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If ai=1 for i=1,...,m, f1(n) is equal to the trace of the covariance matrix of the 
sampling strategy )P,( wwSy . 

 The problem is: how to determine such a vector of sample sizes 
n=[n1...nH ] that the risk function takes the minimal value under fixed total 
costs of observation K. 
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
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N,K)(k

minium)(f
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where: k(n) is given by the expression (3.13), oH is a vector of the dimension 
1×m whose all elements are equal to zero, w is a vector of strata fractions and 
Nw=[N1...NH ].  
 A more general problem was solved by Hughes and Rao (1979).  
In our case, the algorithm of deriving the solution to the problem (3.17)  
is as follows: firstly, we determine the quantity:  
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Let us assume that the sequence (Ah) is not increasing. Moreover, let 
 















=

−=+






=

==

∑

∑∑

∑

=

=+=+
+

=

H

1h
hhH

i

1h
hhhh

H

1ih
h

1i
1i

hh

H

1h
h

1
10

NkG

1H,...,1i,Nkkbw
A

1
G

kbw
A

1
G,0G

   (3.18) 

 
Let z (z = 0,1,..., H −1) be such index that )G;G[K 1zz +∈ . Finally,  

the solution is shown by the expression: 
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Particularly, let ]G;0(K 1∈ , what means that hh

H

1h
h

1
1 kbw

A

1
GK ∑

=
=≤ . 

So, in this case z=0 and nh≤Nh for all h=1,...,H. Moreover, let us note that 
z=0, if Nh  → ∞ for each h = 1,...,H or  
 

   
0k

K
Nh >                                    (3.21) 

 

where: { }
H,...,1h

ho kimummink
=

= . 

 If m=1, solution (3.19) is reduced to the well known Neyman’s loca-
tion of samples in strata.  

 A particular case of the risk function f1(n) is equal to )P,(q wwS
2 y ,  

if ai=1 for all i=1,...,m. Greń (1964) proposed 
2
i

i
y

1
a =  for all i=1,...,m.  

In this case f1(n) is the sum of the squared variation coefficients of elements 
of the estimator vector ywS . 

 Wywiał (1990) considered more general risk function. Auxiliary var-
iables are applied to optimization sample sizes by Dayal (1985).  
 
 
3.2.3. Minimization of total cost of observation under  

fixed risk function 
 
 Let us consider the following optimization problem:  
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The constrain f1(n)≤f0 is equivalent to the following one:  
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The solution is a particular case of the solution to a more general problem 
formulated and solved by Hughes and Rao (1979). The algorithm of getting 
the solution is as follows: 
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where the parameter bh is defined by the expression (3.16). Let us assume that 
the sequence (Bh) is not decreasing. Let  
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Let q be such index that ]f;f(f q*1q** +∈ , q=0,1,...,H-1. The solution to the 

problem is as follows:  
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where:  
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 Particularly, if  f* >  f*1,  then q=0.  
 Let us note that some other optimisation problems were considered 
e.g. by Melaku (1987) or Mukerjee and Rao (1985).  
 
 
3.2.4. Minimization of total risk  
 
 The function of the total risk is the sum of the cost function given  
by the expression (3.13) and the risk function determined by the equation 
(3.15) and it is shown by the expression18: 
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where the parameter 2hb  is defined by the expression (3.16). The problem  

has the following solution for  oh<n<Nw19: 
 
 

                                                           
18

 Dalenius (1957). noted that this problem was formed by Blythe  (1945). 
19

 See Yates  (1960) and Wywiał (1992).  
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minimumn .   (3.27) 

 

 The optimal sample size selected from an h-th stratum can be equal 
to a stratum size or it is proportional to the product of the fraction of an h-th 
stratum and to the bh coefficient.  
 
 
3.2.5. Optimization of sizes of samples selected from strata  

under the fixed standard errors of estimators 
 
 Dalenius  (1957) formed the problem how to determine the sizes  
of simple samples selected without replacement from strata in such a way that 
the cost function takes the minimal value under the fixed levels of standard 
errors of estimators of means. He solved this problem in the case of two strata 
and two estimated population means. In general, for the samples drawn with 
replacement, the problem was solved by e.g. Greń (1963, 1966), Hartley 
(1965), Huddleston, Claypool and Hocking (1970), Jaganathan (1965, 
1965a), Kokan (1963) and Yates (1960). Finally, in the general case of sam-
pling without replacement, the problem was solved by Kokan and Khan 
(1967). The problem described here can be defined as follows: 
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where: the cost function is defined by the (3.13) and the variance D2(.)  

by (3.6). In order to solve this problem the transformation 
h

h n

1
x = , 

h=1,...,H, leads to the following form of the problem:  
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 Kokan and Khan (1967) proposed an appropriate algorithm leading 
to a solution to their optimization problem. Bethel (1989) proposed a simpli-
fied method of solving the problem (3.28). Chatterjee (1968) considered the 
dual problem to given by the expression (3.28). In some sense a particular 
case of the problem (3.28) was formed by Ghosha (1963).  
 Skibicki and Wywiał (2002) considerd the problem (3.28) in the case 
when the cost of observation of all population elements is the same. In this 

case the unit cost function is simplified to the form: ∑
=

=
H

1h
hH1 n)n,...,n(t . 

They stated the following problem of stratifiacation of a population. The pop-
ulation is partitioned into strata and at the same time the sizes of samples 
drawn from these strata are determined in such a way that the sum 

)n,...,n(t H1  takes a minimal value under the fixed variances of estimators  

of mean values. The variances are the functions of observations of variables 
in strata and they depend on partition of a population into strata. Hence,  
the problem (3.28) is generalizing in such a way that additionally the optimal 
partition of a population into strata is evaluated. This problem can be consid-
ered in the situation when we have census data from a population and we look 
for optimal sampling design for future survey of the population.  

 
 

3.2.6. Optimization of sample size on the basis of the spectral radius 
of variance-covariance matrix of estimators  

 
 In the paragraph 1.5.1 the spectral radius of the variance-covariance 
matrix )P,( wwSyV  was defined as a maximal eigenvalue of this matrix. Let 

us treat this spectral radius as the function of sample sizes n=[n1...nH ]  
and denote by f(n). Let us consider the following optimization problem:  
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where: w = [w1...wH].  
 The purpose function f(n) can be obtained as maximal value  
of characteristic polynomial of the matrix )P,( wwSyV . This polynomial  

can be written in the following way:  
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where: 
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A j-th principal minor of the (m-i) degree of the matrix )P,( wwSyV   

is denoted by gij.  
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 Hence, the problem (3.30) is equivalent to looking for a conditional 
minimum of the implicit function F(n,f)=0. It is a rather complicated numeri-
cal problem.  

Wywiał (1988a) proposed the following simplification of the prob-
lem (3.30). The well known basic properties of matrix norm lead to the con-
clusion that the spectral radius f(n) is not greater than the function r(n)  
for each n>o, where:  
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)( h∗ρ C  is the spectral radius of the matrix C*h which is the variance-

covariance matrix of variables under study in the h-th stratum, h=1,...,H.  
Our simplified problem is as follows:  
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The solution to this problem is determined by the expression (3.19), if we 

state that bh= )( h∗ρ C , for k=1,...,H.  

 The problem of determining the optimal sample sizes drawn form the 
strata is formed in such a way that the cost function k(n) takes the minimum 
value under a fixed level of the function r(n) can be solved similarly to the 
problem defined by the expression (3.22). 
 Let us consider the following squared form of the matrix 

)P,( wwSyV :  
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Let us simplify the set of admissible solutions to the problem (3.30) 
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of the simple samples drawn from the strata. The problem (3.30) can be re-
written in the following way:  
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An iteration method of solving to the problem is constructed in the following 
way20:  
 
   { }),(qminmax)~,~(q nn
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The Lagrange function is as follows: 
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The necessary condition for the existence the extreme of the function  
is as follows:  
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After multiplying the equation (3.39) from the right side by ααααΤ, we have: 
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This and the expression (3.39) lead to the following: 
 
    αααα=ααααP(αααα)    (3.40)  
 
 
                                                           
20 See Wywiał  and Kończak (1994) or Wywiał (1995).  
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where:  

T)(

)(
)(

αααααααααααα
αααααααα

G

G
P =  

This leads to the construction of the following iteration expression:  

   ααααt+1=ααααtP(ααααt), t=1,2,...    (3.41) 

 Next on the basis of the expressions (3.37) and (3.38), the elements 
of the vector )](n)...(n[ tHt1t αααααααα=n  are determined. If a norm ||nt-nt-1||  

will be lower than an admissible level, the elements of the vector nt  
are treated as a sufficiently good approximation of optimal sample sizes 
which should be selected from strata.  

Skibicki (2003) proved that f(n) is a convex function of  n and pro-
posed the solution to the problem (3.30) based on a gradient method. 
 
 

3.2.7. Optimal allocation of strata in the case of testing a hypothesis about vector of 

population means 

 The hypothesis concerning the vector of population means is considered. 
It is tested on the basis of data observed in a stratified sample in the case  
of large sizes of samples as well as large sizes of strata.  

Let us consider the sequence of the population ( ){ } ....2,1,U =υυ  .  

The size N(υ) increases when υ → ∞. Let us assume that U(υ) is divided  

into non-empty and disjoint strata ( ) ( )υυ
H1 U,...,U  of sizes ( ) ( )υυ

H1 N,...,N ,  

respectively, and let ( ) ( )∑
=

υυ =
H

1h
h NN . In each stratum ( )υ

hU , the array 

( ) ( )[ ]υυ = j,i,hh yy  is observed, where i=1,...,( )υ
hN , j =1,...,k,  h=1,...,H. Each row  

of the matrix ( )υ
hy  is the observation of a k-dimensional variable. Let 

 ( ) ( )
( ) H,...,1h,

N

1
h

T
N

h

h
h

== υ
υ υ yJy  

where Ja is the column vector consisting of a-elements all equal to one. So, 

hy  is a row-vector consisting of the means in an h-stratum. A row-vector  

of population means is ∑
=

=
H

1h
hhw yy where: 

( )

( ) H,...,1h,
N

N
w h

h ==
υ

υ

  

The variance-covariance matrix in the h-th stratum is: 
 

  ( )
( )( )

( )

( )( )hi,h
Ui

T

hi,h

h

h
h

1N

1
yyyyC −−

−
= υ

∗
∈

υ
∗υ ∑

υ
 

 

where: ( )υ
∗,i,hy  is an i-th row of the matrix ( )υ

hy . 
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 The simple sample ( )υ
hs  of the size ( )υ

hn  is drawn without replace-

ment from the h-stratum, h = 1, ..., H. Let ( ) ( )
U
H

1h
hsS

=

υυ = . The vector  

of the stratified sample means is as follows: 
 

  ( ) ( )∑
=

υυ =
H

1h
shws h

w yy  

 
where: 

  ( ) ( )
( )

( )
∑

υ
υ

∈

υ
∗υ=

h
h

Si
i,h

h
s n

1
yy . 

 
The variance-covariance matrix of the vector ( )υS

y  is as follows: 

 

  ( )( ) ( ) ( )

( ) ( )∑
=

υυ

υυ −
=υ

H

1h
h

2
h

hh

hh
S,w

w
Nn

nN
CyV . 

 
The sample variance-covariance matrix in an h-stratum is as follows: 
 

  ( ) ( )
( )

( )( ) ( )
( )( )

( )
∑

υ
υυυ

∈

υ
∗

υ
∗υ −−

−
=

h
hhh

Si
Si,h

T

Si,h

h
S 1n

1
yyyyV . 

 
The unbiased estimator of the matrix ( )( )υwS

yV : 

 

  ( ) ( )( ) ( ) ( )

( ) ( ) ( )∑
=

υυ

υυ

υυυ

−
=

H

1h
S

2
h

hh

hh
S,wS h

w
Nn

nN
VyV . 

 

 Let us assume that ( ) ∞→υ
hN , ( ) ∞→υ

hn  and Nυ - nυ → ∞  

as ∞→υ . Moreover, let the arrays ( ) H,...,1h,h =υy  be modified in such  

a way that the parameters hh , Vy  and wh are constant for each υ = 1, 2, ... 

Under the introduced notation, the theorem of Thompson (1997, p. 60),  
is as follows: 
 Theorem 3.2. Under the conditions: ( ) hSh

VV →υ  in probability  

as  υ→ ∞  and  ( ) 0)h( →εδ υ   for any  ε > 0,  where: 

 

( )
( ) ( )

( )

( )

hi,h

N

n
1n,Ui:i

h

)h(

h

h
hhi,hh

N

1
yy

yy

−=δ ∗




















−ε>−∈

υυ ∑
υ

υ
υ

∗
υ

 

 
and .  is the Euclidian norm, the distribution of the vector statistic: 
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  ( ) ( )( ) ( ) ( )

( ) ( )υυ

υυ −
−= υυ

hh

hh
hSS Nn

nN
hh

yyz    

 
approaches the multidimensional normal distribution N(O, Vh). 
 This theorem leads to the following. 
 Lemma 3.1. When for any h = 1, .., H the assumptions of the theo-
rem 3.2 are fulfilled, the distribution of the vector statistic ( )υwSy  approaches 

the multidimensional normal distribution ( )( )( )υwS
,N yVy . 

 Lemma 3.2. The matrix ( ) ( )( )υυ
−

wS
1

S
yV  approaches the matrix 

( )( )υ
−

wS
1 yV  when υ → ∞. 

Proof: ( ) ( )( )υυ
−

wS
1

S
yV  is a continuous function of ( )υ

hS
V , h=1,...,H, which  

approaches Vh, respectively, as υ → ∞. This is derived in the following way. 

Let ( ) )j,i(c S11
υ

∗  be the sample covariance of the i-th and j-th variables.  

The sample variance-covariance matrix ( )υ
hS

V = ( )[ ])j,i(c S11
υ

∗  approaches 

Vh= [ ])j,i(c 11∗  as υ → ∞ when for any ε>0:  
 

( ) 1)j,i(c)j,i(cPlim
k

1j,i
11S11 =









ε≤−
=

∗
υ

∗∞→υ
I     (3.42) 

 

On the basis of the well known Bonferroni inequality (see e.g. Miller (1981)) 
we have:  
 

( ) ( ){ }∑
=

∗
υ

∗∞→υ=
∗

υ
∗∞→υ

ε>−−≥








ε≤−
k

1j,i
11S11

k

1j,i
11S11 )j,i(c)j,i(cPlim1)j,i(c)j,i(cPlim I  

 
This and the Chebyshev inequality:  
 

( ){ } ( )( )
2
S11

2

11S11

)j,i(cD
)j,i(c)j,i(cP

ε
<ε>−

υ
∗

∗
υ

∗  

 

lead to the following:  
 

( )
( )( )

∑
=

υ
∗

∞→υ=
∗

υ
∗∞→υ ε

−≥








ε≤−≥
k

1j,i
2
S11

2k

1j,i
11S11

)j,i(cD
lim1)j,i(c)j,i(cPlim1 I . 

 
The equation (3.42) is true if for any i,j=1,...,k  
 

( )( )
0

)j,i(cD
lim

2
S11

2

=
ε

υ
∗

∞→υ
.     (3.43) 
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Hence, we have to prove the above expression. Let us simplify  
the notation of the population and sample covariances in the following way: 

 

 ( )( ) ∑ ∑∑
= ==

∗ ==−−
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N
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N

1i
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N

1i
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where:  ai = 1 if i ∈ s and ai = 0 if i ∉ s, ( )
N

n
aE i = , 

 

  ( ) ( ) ,
)2N)(1N(N

)2n)(1n(n
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)1N(N
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The generality of the following derivation does not depend on the assumption 
that .0yx ==  
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Hence, the statistic c∗11S is the unbiased estimator of the covariance c∗11.  
Now, we are going to determine the variance of the statistic c∗11S. Firstly,  
we are going to derive the second moment of the estimator c∗11S: 
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( ) ( )
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
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This and the expressions (3.43)-(3.46) lead to the following: 
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This result leads to the expression (3.43). 
Theorem 3.3. Under the assumption of the theorem 3.2, the statistic 

 

 ( ) ( )( ) ( ) ( )( ) ( )( )T

wSwS
1

SwSS
Û ∆∆∆∆∆∆∆∆ +−+−= υυυυυ

− yyyVyy ,   (3.47) 

 
where: ∆∆∆∆ is a constant row vector, approaches the non-central chi-square dis-

tribution ( )κχ2
k  with k-degree of freedom and the non-centrality parameter: 

 

  ( )( ) T
wS

1 ∆y∆V υ
−=κ      (3.48) 



 
III. Stratified sampling 

81

Proof. The lemma 3.2 leads to the conclusion that the statistic ( )υSU  

approaches the following Wald’s statistic (see, e.g. Everitt (1998)) when 
υ→∞ 

  ( ) ( )( ) ( )( ) ( )( )T

SS
1

SS
U ∆yyyV∆yy +−+−= υυυυ

− . 

 
It is the square form of the vector ( )( )∆yy +−υS

 which, on the basis of the 

lemma 3.1, approaches the normal distribution N(∆∆∆∆, V), as υ → ∞. Hence,  
the well known limit theorems, see e.g. Rao (1982), lead to the conclusion 

that the Wald’s statistic ( )υS
U  approaches the ( )κχ2

k  distribution, as υ → ∞. 

 We assume that υ takes such a sufficiently large level that the statis-

tic US has approximately ( )κχ2
k  distribution. For the sake of simplification, 

let us introduce the following notation: 
 

( ) ( ) ( ) ( ) ( ) ,SS,NN,nnandH,...,1hfor,NN,nn hhhh ====== υυυυυ  

 

  ( ) ( ) SSSS
ÛÛ, == υυ yy . 

 
 Let us consider the following hypothesis: 
 
  H0 : ∆∆∆∆ = O, H1 ∆∆∆∆ ≠ O  
 
 If the hypothesis H0 is true, the statistic US has approximately the 

central 2
kχ  distribution with the k-degree of freedom. In the case when H1  

is true, the statistic US has the non-central ( )κχ2
k  distribution with κ > 0.  

The non-centrality parameter shown by the expression (3.48) can be rewritten 
in the following way: 
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S

1T γyγV∆∆ −=κ      (3.49) 
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If λ is the maximal eigenvalue of the variance-covariance matrix ( )SyV , 
λ
1

 

is the minimal eigenvalue of the matrix ( ))(wS
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υyV - . This and the expression 

(3.49) lead to the following:  
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λ

=κ≥κ
T

0

∆∆
.   

 
The power of the test increases when the parameter κ is larger and larger.  
So, as the maximal eigenvalue λ becomes shorter and shorter, the power  
of the test becomes bigger and bigger. The maximal eigenvalue λ of the ma-
trix ( ))(wS υyV  is the function of the sample sizes n1, .., nH. Hence, we have the 

optimization problem of determining such sample sizes {n#h} that the function 
λ(n#1, ..., n#H} takes the minimal value under the limited sum of these sizes  
or the limited level of the following cost function: 
 

  ( ) ∑
=

=
H

1h
hhH1 ncn,..,nc .     (3.51) 

 
The unit cost of observation of variable values in an h-stratum is denoted  
by  ch.  More precisely, we have the following optimizing problem: 
 

  

( )
( )
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
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=≤≤
≤
=λ

H,...,1hforNn1

cn,...,nc

minimumn,...,n

hh
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    (3.52) 

 
 In some situations we expect that the power of the test, under both 
fixed hypotheses, should be not less than β. This means that βκ≥κ   

and βκ≥
λ

=κ
T

∆∆
0

. So: β
β

λ=
κ

≤λ
T

∆∆
. Then, we have the following  

optimization problem: 
 

  

( )
( )









=≤≤

λ≤λ
=

β

H,...,1hforNn1

n,...,n

minimumn,...,nc

hh

H1
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    (3.53) 

 
Now we determine such sample sizes that the cost function should take  
a minimal value under the assumed level β  of the power of the test of the hy-
potheses H0 and H1. 
 In order to handle both optimization problems the appropriate  
numerical methods should be applied, see the unit 3.2.6. 
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3.2.8. Optimization of sample sizes on the basis of Neyman’s location 
 
 Neyman (1934) determined the optimal sizes of samples selected 
from strata in the case when only one variance is minimized. These optimal 
samples are the solution to the problem (3.17) in the case when only one  
variance of the i-th variable is minimized, that is when the purpose function 

has become variance of an i-th variable. If the standard deviation )( ih yv∗  

substituted for bh, h=1,...,H, the optimal sample sizes are shown by the ex-
pressions (3.18)-(3.20). Let us denote by n(i) (i=1,...,m) the vectors of the  

optimal sample sizes determined in such a way. Substituting )( ih yv∗ , n(i) 

for  bh, n, resperctively, in the expression (3.15) we obtain the minimal value 
of the variance of the i-th estimator which is denoted by f1i (n( i )) under  
the vector  n(i)

. 
On the basis of these Neyman’s optimal sample solutions n(i) 

(i=1,...,m), compromise sample sizes can be found. This problem was consi-
dered e.g. by: Dalenius  (1953, 1957), Geary (1949), Greń (1963, 1964), Kish 
(1961), Neyman (1934), Mahalanobis (1944), Srikantan (1963). Generally, 
their results can be treated as solutions obtained on the basis of goal optimiza-
tion. Almost all the authors considered the following problem:  

 

   

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   (3.54) 

 
where ei is the relative efficiency coefficient defined by the expression 
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)(f
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The variance )P,y(D wwiS
2 is determined by the equation (3.6). The optimal 

solution to the problem (3.54) is determined by the equations (3.18)-(3.20) 
when bh is defined by 
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 Let us show the following problem considered by Greń (1964):  
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When Nh→∞ for each h=1,...,H the compromise solution is as follows: 
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where: 

∑
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1
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 Let us note that other problems involving Neyman’s optimal sample 
sizes can be formed and solved on the basis of multipurpose optimization 
methods. 
 
 
3.2.9. Optimization of sample sizes on the basis of generalized  

variance 
 
 The generalized variance is a measure of precision of a vector  
estimation based on the ellipsoid confidence set as it was noted in paragraph 
1.5.1. The generalized variance is an increasing function of the volume  
of such a confidence set. Hence, the sizes of a sample (selected from strata) 
should be determined in the such a way that the generalized variance  
of the vector ywS  takes the minimal value. This problem was formulated  

by Dalenius (1953) and can be rewritten as follows:  

   




≤<≤
=

wnon

n

N,K)(k

minimum)(f

h

     (3.57) 

where: the cost function is defined by the expression (3.13) and 

f(n)=detV( wwS P,y ).  

The iteration method was used to determine the solution to this problem  
by Ghosh (1958). Greń and Koźniewska (1964) proved that Ghosh’s solution 
is convergent on the true solution but in the case when H=m=2 and 

0)P,,(Cov wS2wS1w ====yy . Arwanitis and Afonia (1971) adapted the gradient 

method to solve the problem (3.57) for m<4 and H>2.  
 Lemat 3.3 [Wywiał (1989, 1992)]: If at least one intra-stratum  
variance-covariance matrix C*h  (h=1,..,H) is positive definite, the generalized 
variance f(n) is a strictly convex function in the set Db for sampling without 
replacement or in the set Dz for sampling with replacement, where: 
 
   Db = {n: oH < 2n < Nw}    
 
   Dz = {n:  n > oH}   
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 Wywiał (1992) showed that the vector of optimal sample sizes  
is a solution to the following set of equations:  
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where21 :  
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where the elements of the matrices )P,( wwS ′yV  and Ch are denoted by vij  

and chij= ch (yi,yj), respectively.  
 Let us suppose that the admissible level fo of a generalized variance 
f(n) is determined. Then, we can find such sizes of samples selected  
from strata that the cost function k(n) takes a minimal value. This problem 
can be written as follows:  
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 Wywiał (1992) showed that the solution to the following system  
of equation  
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is the vector of optimal sample sizes.  
 
 
 
 
 
 

                                                           
21

 See e.g. Kubik and Krupowicz (1982), p.  445-446. 
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3.3. Stratification of population on the basis  

of auxiliary variables 
 
 The vector of stratified sample means is usually a more accurate  
estimator of population averages than the vector of simple sample means. 
Precision of the vector of the stratified samples is good when the intra-stratum 
spread of variables is short. Hence, a population should be divided into such 
strata that intra-stratum spread of variables under study is short as possible.  
In a one-dimensional case, the values of a variable under study are divided 
into such subsets (strata) that the intra-stratum variance takes the value as low  
as possible. This approach was considered and developed e.g. by: Cochran 
(1961, 1963),  Dalenius (1957),  Dalenius  and  Gurney  (1951),  Hess,  Sethi 
i Balakrishnan (1966), Jonin, Jonina and Zhuravlev (1978), Serfling (1968). 
Let us add that Kish (1965) presented practical rules which should lead  
to good stratification of a population. When dividing a population into strata 
is not possible or too expensive, so called stratification after selecting  
a sample is considered. 
 
 
3.3.1. Non-dominated partitions of population into strata  
 
 Let us consider the proportional location of the sample in strata. So, 
nh=nwh and Nh=Nwh for all h=1,...,H where nh is the size of a simple sample 
sh drawn without replacement from h stratum. Under this assumption  
the vector of variances of the stratified sample means is as follows:  
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where:  
 

( ) ∑
=

−==
H

1h
ih*hwSi

2
i )|y(v)(w

Nn

nN
|yD)(d aaaa , i=1,...,m.   (3.61) 

 

{ }H1 U,...,U=a  is a partition of a population U into a set of strata. Let us  

assume that nwh>1 for each h=1,...,H. Let A be a set of admissible partitions 
of a population. Our purpose is determining such a partition a∈A that 
d(a)=minimum. The set of non-dominated partitions, denoted by A⊆A,  
is a solution to this problem. Partitions  a,b∈A  if it is not true that d(a) > d(b) 
and d(a) < d(b) and d(a) < d(c) and d(b) < d(c) for c ∈ A-A. Usually, the set 
A includes more than one partition. In order to select the only one reasonable 
partition a* from the set A the additional optimization criterion should be con-

structed. For instance, the sum ∑
=

=
m

1h
i )(d)(d aa , a∈A can be minimized. 
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 Let us remember that the variance covariance matrix of the simple 

sample (drawn without replacement) was denoted by ( ) *S Nn

nN
CyV

−= .  

The variance-covariance matrix of the vector of stratified sample mean  
is denoted by ( )wSyV  and expressed by the form (3.11) in the case when  

the samples are drawn without replacement from strata and their sizes  
are proportional to the sizes of appropriate strata. We can postulate that such 
a partition of a population into strata should be evaluated that the stratified 
sample vector is better than the vector of the simple sample. It means that  
we postulate that such a set G of partitions of a population into strata  
is formed that the matrix 

  ( ) ( )ayVyVa |)(F wSS −= , for a∈G   (3.62) 

is positive definite. The variance-covariance matrix of the vector of means 
drawn from the partition a of a population into strata is denoted  
by ( )ayV |wS . Now, we can look for the set G⊆G of non-dominated parti-

tions determined by the maximization of the following criterion function:  
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where λλλλ(a) is the vector of all eigenvalues of the matrix F(a) and λ1≥λ2≥...≥λm. 
Usually, the set G consists of more than one partition. In this case the new su-
per-criterion function should be constructed in order to obtain the unique par-
tition. For instance, such functions can be determined by  

 ∑
=

=λ=λ
m

h
i*

)(tr)()(
1

aFaa ,  )()( aa 1λ=λ
∗∗

 

 Determination of the set of all non-dominated partitions is rather dif-
ficult even in the case of not too large population. That is why some cluster-
ing methods can be suggested in order to stratify a population. Some modifi-
cation of the well known k-means method presented in the paragraph 3.7 can 
be adapted for this purpose.  
 
 

3.3.2. Stratification of population through minimization of the spec-
tral radius of the variance-covariance matrix of auxiliary variables 

 
Let us consider the regression superpopulation model defined  

in the unit 1.2 by the probability distribution of the random vector 
Y=[Y1...YN], where Yk is attached to the k-th element of a population 

Ω={1,...,N}. It has the following properties: 
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 Yk=βo+ββββxk
T+Zk, k=1,...,N   (3.64) 

where: xk=[xk1...xkm] is the vector of the values of the fixed auxiliary varia-

bles observed on the k-th population element. The vector of regression pa-
rameters is denoted by ββββ=[β1... βm]. The operators of the expected value, 

variance and covariance calculated on the basis of the distribution function 
which defines a superpopulation model are denoted by the symbols E(.), 

D2(.), Cov(.). Let us introduce the following assumptions:  
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                  (3.65) 

where: k≠l=1,...,N.   
 Let us assume that the population Ω is partitioned into non-empty 
and disjoint strata  Ωh , h=1,...H. 

The predictor wSŶ  of a value of the population mean ∑
=

=
N

1k
kY

N

1
Y  

is as follows:  

 ∑
=

=
H

h
ShwS
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      (3.66) 

where:  

  ∑
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The strategy ( )
pwS P,Ŷ  is p-ξ unbiased predictor of the mean Y .  Anderson, 

Kish and Cornell (1980) derived:  

 ( ) T
h*h* ββ= CVE +σ2.     (3.67) 

where: 
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This and the expression (3.11) lead to the following one:   

 ( ) +−= T
pwS [

Nn

nN
P,ŶD ββββββββ w

2E C σ2]   (3.68) 

where:  ∑
=

∗=
H

1h
hhw w CC is an intra-stratum variance-covariance matrix of the 

auxiliary variables. Let ρw be the maximal eigenvalue (the spectral radius)  
of the matrix Cw. Then:  
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ρw { }T
w
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imummax αα C
1=αα

= ,   where:   
Tββββββββ

ββββαααα =  

 

 ( ) T
wS [

Nn

nN
ŶD ββββββββ−≤2E ρw + σ2]=M(ρw)    (3.69) 

 
Hence, the parameter ρw can be the criterion function of the cluster method 
used to stratify the population Ω into strata of the same size. The strata were 
determined in such a way that the maximal eigenvalue of the intra-stratum 
variance-covariance matrix of auxiliary variables takes a minimal value.  
The clustering algorithm can be an adaptation of the well-known Ward meth-
od. That is why this clustering algorithm will be called the modified Ward 
method. Let us note that the order method of Ward leads to such strata that 
the trace of the intra-stratum variance-covariance matrix of auxiliary variables 
takes a minimal value. 
 Anderson, Kish and Cornell (1980) compared the )P,Ŷ(D pwS

2E   with 

the mean square prediction errors of the mean Y  from a simple sample  
of size n. They stratified the population through partition values of each auxil-
iary variable into the class boundaries by the well-known rule  
of Dalenius and Hodges (1959) and then they explored how the efficiency  
of stratification depended on the correlation coefficients between  
the auxiliary variables and the main variable. 
 Let the matrix Cw=Cw(X) be the intra-stratum variance-covariance 
matrix for the partition of a population into the strata Ω1, ..., ΩH represented 
by the block matrix X = [X1, ..., XH] of the auxiliary variables observations. 
The sub-matrix Xh of dimension m×Nh consists of the Nh observations  
of the m-dimensional auxiliary variable. Let ρw=ρw(X) be the spectral radius 
of the matrix Cw(X) for the partition X. 

On the basis of the expression (3.69) we infer that M(ρw(X))  
is minimal if the function ρw(X) is minimal. Then it leads to the following op-
timization problem: 

 
 ρw ( )

ℵ∈
=

X
X imummin { ρw(X)}    (3.70) 

 
where: ℵ  is the set of block matrices of type X and each of them represents 
the admissible partition of a population into strata. 
 Hence, the optimal stratification is equivalent to the determination  
of such a partition of the population represented by the block matrix X, which 
minimizes the spectral radius ρw(X) of the intra-stratum matrix of variance- 
-covariance Cw(X) in the set ℵ . 
 Let us note that the partition X is optimal in the case when a vector 
of means of variables under study is estimated and variables are described  
by the regression models dependent on the same set of auxiliary variables.  
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It is difficult to find the solution of the optimization problem directly 
through minimization of ρw(X) because the size of the admissible solution set 
ℵ  is very large. That is why the well-known agglomeration clustering meth-
od of Ward was adapted in order to form the partitions of a population into 
strata. When the number of the algorithm stage increases, the quantity  
of groups (strata) decreases. At each stage of the algorithm, groups are joined 
in such a way that the spectral radius of the intra-stratum matrix of variance-
covariance achieves a minimum value. Before proceeding with the clustering 
algorithm a population is treated as a collection of one-element groups.  
At each stage of the algorithm there are three ways of forming a new cluster. 
Two elements of a population can be clustered into one group. A population 
element can be joined to a multi-element group. It is possible to join two mul-
ti-element groups. 

Let us suppose that the following block matrix represents  
a collection of groups resulting from the t-th stage of the algorithm:  

 
{ },)t(h:)t()t( h ηηηη∈= XX   t = 0, 1, ..., N – 1   (3.71) 

 
where: η(t) = {h: 1 ≤ h ≤ N} is the set of (N – t) indices of the clusters of size 
Nh(t) ≥ 1 represented by the submatrices Xh(t) of dimension m × Nh(t)  
of auxiliary variables data. The block matrix X(t) consists of (N – t) subma-
trices. 
 Let Xk(t+1) be a submatrix representing a new group formed at the 
(t+1)-th stage of the algorithm, then Xk(t+1) = [Xi(t) ∪ Xj(t)] for k = min 
{i,  j}. Then η(t+1) = η(t) – max{i,j}. Denoting by Xh(t+1) = Xh(t)  
the remaining submatrices for h ∈ η(t)-i-j, we obtain the admissible set  
of groups for the (t+1)-th stage represented by the following block matrix: 
 
  X(t+1) = {Xh(t+1) : h∈η(t+1)}. 
 
Let ℵ (t+1) be the set of all admissible matrices of type X(t+1). For all 
X(t+1) ∈ ℵ (t+1) the increment of the spectral radius will be denoted by: 
 
  d(X(t+1) = ρw(X(t+1)) – ρw(X(t)).    (3.72) 
 
Finally, we select an optimal partition of the population represented by such  
a matrix X(t+1) that: 
 
 ( )

)1t()1t(
imummin)1t(d

+ℵ∈+
=+

X
X {d(X(t+1))}.    (3.73) 

 
 The algorithm will be completed at the stage number t = N – 1 when 
due to the agglomeration process only one cluster equal to the population  
is left. 
 It can be proved almost immediately that if m = 1, then  
the expression (3.72) can be reduced to the form: 



 
III. Stratified sampling 

91

 
 

  ( ) ( ) ( )ji
T

ji
1

jiji NNNN))1t((d xxxxX −−+=+ −  

 
where: ji ,xx  are the vectors of means of variables of the joint groups repre-

sented by the submatrices Xi, Xj, respectively. Hence, d(X(t+1)) becomes the 
well-known clustering criterion proposed by Ward (1963). Therefore, the 
Ward’s choice rule of optimal population partition can also  
be applied in this case. The partition represented by X(g) and obtained  
at the g-th stage of the algorithm is optimal if it fulfils the following expres-
sion: 
 
  ( ) { }))1t((dimummax)1g(d

,...2,1t
+=+

=
XX  

 
 Then the partition represented by the block matrix X(g) is chosen  
as an optimal one if the increment of the criterion function reaches  
the maximal value at the next stage of the algorithm. 
 Let us note that the problem of the optimal stratification has been 
formulated by Dalenius (1950). A given population is partitioned into strata 
on the basis of clustering outcomes of a multidimensional auxiliary variable. 
The problem has been developed by many statisticians. Among others, Singh 
(1971), Anderson, Kish, Cornell (1980), Wywial (1991b, 1995a), Skibicki 
and Wywiał. (2001) have used an auxiliary variable for the stratification. 
Schneaberger and Pollot (1985) have obtained an optimal division of values 
of a two-dimensional normal random variable. Bracha (1991) has presented 
the survey of stratifying methods and their modifications while Thomsen 
(1976) has compared several methods of stratification. 
 Wywial (1998) considered an example of stratification of a popula-
tion by means of the three methods defined above. Data consist  
of Swedish municipalities. They were published by Sarndal, Swensson and 
Wretman (1992). We consider two auxiliary variables  p75 -  the  size  of  the 
 
 

 

 
Figure 3.1. The geographic. strat.  Figure 3.2. The geographic. strat. 
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Figure 3.3. The meth. of Ward.  Figure 3.4. The meth. of Ward. 
 
 

 
Figure 3.5. The mod. meth. of Ward.  Figure 3.6. The mod. meth. of Ward. 
   

 
population in 1975 (in thousands), ME84 - number of municipal employees in 
1984 and the variable under study: RMT85 - revenues from the 1985 munici-
pal taxation (in millions of kronor). The number of data is 284. After studying 
the distribution of the data, three non-typical observations of the variables 
were found. Their values were too large. They create the first stratum and 
they all have to be sampled. The rest of the data were clustered into three stra-
ta by means of the three mentioned. Firstly, the strata were determined ac-
cording to the geographical regions of Sweden. Next, these strata were ob-
tained by means of the clustering method of Ward on the basis of the auxilia-
ry variables. The third stratification was developed by means  
of the modified method of Ward. The scatters of the two auxiliary variables in 
the strata obtained by means of these three methods are represented  
by figures 3.1, 3.3 and 3.5 respectively. The distributions in the particular 
strata of the variable (under study) RMT85 are represented by the figures 3.2, 
3.4 and 3.6 according to the methods of stratification. The analysis of the fig-
ures leads to the conclusion that the sets of strata which have resulted  
from the two Ward methods are better than geographical stratification be-
cause the strata means obtained by the Ward methods are not homogenous 
and the intra-strata distribution are not spread too much. 



 
III. Stratified sampling 

93

 
Table 3.1 

 
The accuracy comparisons 

 
 

The method  
of stratification 

The optimal 
location  

of the samples 

The op-
timal val-

ues  
of the 

variances 

The ratio of the variances  
to the variance in the case  

of the stratification: 

 
I 

 
II 

 
III 

 
the geograph. 

the modi-
fied Ward 

1 2 3 4 5 6 7 

The geographical 10 12 8 1085 - - 

The order method  
of Ward 

9 15 6 124 0.114 0.544 

The modified method 
of Ward 

10 18 2 228 0.210 - 

 

 The optimal location of a sample of size 30 was considered on the 
basis of the standardized auxiliary variables. The size of a sample drawn  
from a stratum was proportionate to the product of the stratum fraction  
and the square root of the trace of the stratum variance-covariance matrix  
of the standardized auxiliary variables. Next, the variance of the stratified 
sample mean of the RMT85 variable was computed for each location  
of a sample, separately. The results are shown in the table 3.1. The optimal 
location of the samples in the strata obtained by means of Ward methods 
leads to a shorter variance of the estimator than the optimal location  
in the geographical strata. Moreover, in this sense the order method of Ward 
leads to a better estimation accuracy of the population mean of the RMT85 
variable than the modified method of Ward.  

 

3.3.3. On stratification of population in order to optimize the sample 
sizes in the case of estimation of mean vector  

 

Let Ω={1,...,N} be a fixed and identifiable population. It is parti-

tioned into H strata: Ωh, where: U
H

h
h

1=

Ω=Ω  and Ωh kΩ∩ = ∅ for k ≠ h = 

1,...,H. The size of an h-th stratum is denoted by Nh and ∑
=

=
H

1h
hNN . Let sh  

be  a  simple sample of size  nh  drawn without replacement from  an  h-th 

stratum  and  let  U
H

1h
hss

=
= . The  considered population parameters  are  as 

follows: 
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∑
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−
−
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ihik

h

ih yy
N

v 2

1

1
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As it is well-known, the unbiased estimator of the average iy  

(i=1,...,m) is the following statistic:  
 

 ∑
=

=
H

1h
ishis h

ywy      (3.74) 

where: 
 

  ∑
∈

==
h

h
sk

ik
h

is
h

h y
n

1
y,

N

N
w  

 
Its variance is as follows: 
 

  ( ) ∑
=

−
==

H

1h
ih

hh

hh2
his

22
i v

nN

nN
wyDD

h
   (3.75) 

 
 The problem is how to determine the sizes nh, h = 1, ..., H, in such  

a way that the sum ∑
=

=
H

1h
hnn  takes the minimal value if variances  

of stratified sample means are fixed. This is explained by the following ex-
pression:  

              















=≤≤

=≤

=∑
=

H,...,h,Nn

m,...,i,eD

imumminn

hh

ii

H

h
h

12

122

1

                                            (3.76) 

Let us assume that 
h

h n

1
x = , for h = 1, ..., H. This leads to the following 

equivalent problem (see e.g. Kokan and Khan (1967)): 

( )
















=≤≤

=≤

==

∑

∑

=

=
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N
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mummini
x

x,...,xf

h

h

H

1h
ihih

H

h h

H

150
1

1

1

1
1

                               (3.77) 
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where: 

  ∑
=

+==
H

1h h

ih
2
h2

iiih
2
hih N

vw
eb,vwa     (3.78) 

 
Wywiał (2000a) noted that the conditions, defined by the inequalities in the 
expression (3.77), determine the simplex R consisting of the admissible solu-
tions to the problem. The purpose function f(x1, ..., xH) is strictly convex and 
decreasing in the simplex R. Hence, the solution to the problem  
is determined by the co-ordinates of the point lying on one of the walls  
of the simplex. 

The shape of the simplex R depends on the fractions {wh}  
and variances {vih}. So, it depends on a partition of a population into strata. 
Let Rt, Rt+1 be simplexes and let gt, gt+1 be their volumes. The simplexes  
are determined by two different partitions of the population into the strata. 
These partitions are indexed by t and t+1. Moreover, let ft and ft+1 be optimal 
values of the purpose function of the problem (3.77). If Rt ⊂ Rt+1, both sim-
plexes have the same point A which is the origin point of the edges of the 
simplexes. These edges are parallel to the axis of the co-ordinate system. 
Hence, if Rt ⊂ Rt+1 then gt ≤ gt+1 and ft ≥ ft+1. In this situation Wywiał (2000a) 
concluded that the strata should be determined in such a way that the volume 
gt of the simplex Rt should be as large as possible.  

Let us note that it is possible, gt > gt+1, even if Rt ⊄ Rt+1. In this case 
the inequality ft ≥ ft+1 can be true but not necessarily.  
 Let u be the matrix of dimension H×k and A be the column vector  
of dimension H×1. Let Rt be the simplex spanned on the points whose  
co-ordinates are elements of the vector A and the columns of the matrix u. 
The number of all these vertexes is denoted by k. If m≥H, the simplex Rt can 
be decomposed (triangularised) into such disjoint simplexes that their sum  
is equal to the simplex Rt. Let ( )

H1 j,...,jt ,uAR  be the simplex spanned on the 

points whose co-ordinates are elements of the vector A and the columns  
of the matrix 

H1 j...ju . This matrix consists of the columns of the matrix u iden-

tified by the indexes j1,...,jH. Let us assume that {j1,...,jH} is such a set  
of all H-element combinations of the column indexes of the matrix u that:  
 

( ) ( ) ( ) ( )

( )
{ }











==

≠∅=∩

tt
j,...,j

j...jt

H1H1e...etj...jt

R),(RR

e,...,ej,...,jforR,

H1

H1

H1H1

uAuA,

uA,uA

U

R

  (3.79) 

 

where: m≥H and k= { }( ) 







≤

H

m
j,..,jCard H1 . The volume of the simplex 

( )
H1 j...jt ,R uA  is determined by the expression (see e.g. Borsuk (1969)): 
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  ( ) 







=

H1

H1
j...j

j...jt

1
detg

uA

J
uA, , 

where each element of the row vector J is equal to one. Hence: 
 

  ( )
{ }
∑=

H1

H1
j,...,j

j...jtt ,gg uA .     (3.80) 

 

 In the case when H=2 and m≥2, the columns of the matrix u can  

be rewritten as follows: 







≤=








=

2

m
k,...,1j,

u

u

j2

j1
ju . Let the columns of the 

matrix u be ordered in such a way that uj f  uj+1 if and only if u1j ≥ u1,j+1  
and u2j ≤ u2,j+1 and at least one of these two inequalities is sharp.  
Let ( )jij,i ,,R uuA=∆  be a triangle spanned on three points { }ji ,, uuA . 

The triangularisation of the simplex R(A,u) is as follows:  
 














=∆

−=∅=∆∩∆

−

=
+

+

),(R

1k,...,2jfor

1k

1j

uAU 1jj,

1jj,j1,-j

 

 In order to maximize the determinant gt, the well-known clustering 
method of Hartigan (1975), called the k-means clustering method, can  
be adopted. The starting point of the clustering algorithm is an arbitrary parti-
tion of the population into strata. At the t-th stage of the clustering iteration, 
each element of the population is moved from one stratum  
to another and the values of the determinant gt are evaluated. The new parti-
tion, obtained in this way is optimal if the determinant takes a maximal value 
and if gt>gt-1. Let us notice that during the (t+1)-th iteration such  
a possible partition is admissible if for which the simplex includes  
the previous optimal simplex (determined in the t-th iteration). The iteration 
process is continued until the T-th iteration, when there is no new partition 
that leads to a greater value of the simplex volume than gT. The next stop rule 
is assigning the admissible number of the iterations.  
 The problem considered above can be considered in practice when 
the census data are available. In this case, it is possible to stratify  
a population through the maximization of the simplex volume. Next,  
the optimal sample sizes can be evaluated. The obtained partition of the popu-
lation into strata as well as the optimal sample sizes can be useful  
to make up projects of sample surveys of the population before the next cen-
sus.  

Let us note that Skibicki (2002) considered the problem (3.76)  
in more general case when costs of observation of data are not the same.  
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3.4. Two-phase sampling for stratification 
 

Wywiał (1996c) considered the following problem. A two-phase 
sample is drawn from a superpopulation. In the first phase the simple sample 
is selected without replacement. Next, it is stratified by means  
of  an  appropriate cluster method. The  stratification is based on auxiliary 
variables.  In  the  second phase  the  simple samples  are  selected without 
replacement from the just created strata. 

In the first phase a simple sample s' of the size n' is drawn without 
replacement from a fixed population Ω. Values of auxiliary variables  
are observed in the sample s'. The sample s' is clustered into strata denoted  

by sh
, , h=1,...,H, of the sizes nh', respectively. The sample can be stratified 

by means of a well-known cluster method like Ward's or k-means  
on the basis of auxiliary variable observations.  
 Let S={S1,...SH} be the sequence of samples, where Sh is a simple 

sample of the size  nh drawn form the strata sh
, . The value of the population 

mean y  is estimated on the basis of the following statistic:  

 

   
hS

H

1h

,
hwS ywŷ ∑

=
=      (3.81) 

where:  
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Sarndall, Swenson and Wretman (1992), p. 353, proved that the statistic  

wSy  is an unbiased estimator of the mean and they derived the following 

formula for its variance: 
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where:  
 

∑
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where (.)ES′  is the operator of the expected value calculated on the basis  

of the probability distribution of  the simple random sample S'. 
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 Let us assume that 
H

n
nh

′
=′  and that 

H

n
nh =  for h=1,...,H.  

for h=1,...,H. Hence, the variance given by the expression (3.82) takes  
the following form:  
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yy .  (3.83) 

 
 Let s be the simple sample of size n drawn without replacement from 

a finite and fixed population. The sample mean is denoted by ∑
∈

=
Sk

kS Y
n

1
Y . 

Its variance is as follows:  
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can be decomposed in the following way:  
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Then:  

 ( )2H

1h
'SS

H

1h

yy
)H'n(H

'n
)(v

H'n

1'n
)'s'S(v

H

1
,
h

∑∑
=

∗
=

∗ −
−

−
−
−== yy S'S,

h
. 

 
The obtained result and the expression (3.83) lead to the following formula:  
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        (3.85) 
 
This result allow us to calculate the following difference: 
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or  
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        (3.87) 
 
This result leads us to the following conclusion: If N→∞ and n'→∞  
and  N-n'>0,  then  
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Hence, if the sample size n is fixed and the sample size n' and the population 
size N are sufficiently large, the estimator wSy  is not less accurate then  

the sample mean Sy .  

 Let us consider an example of stratification on the basis of the varia-
ble under research. A population consists of eight elements (N=8). The fol-
lowing values of a variable y are observed: 1,2,3,4,10,11,12,13. The value  
of the population mean is 0.7y =  and the value of the variance 

∑
=

∗ −
−

=
N

1i

2
i )yy(

1N

1
)(v y =24.5714. The sample s' whose size is six ele-

ments, is drawn without replacement from the population. Then, the number 

of different samples is 28
6

8
=








. Each sample has been divided into two stra-

ta of the same size. The two strata are optimal if the wihin-strata variance 
takes the minimal value. After some calculations we receive: 
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1
+n

2
  and  n

1
=n

2
.  In our case  2≤n≤6.  Moreover:  

 

( ) 9811.2ŷD ws
2
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2
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The variance of the simple sample means takes the value: 
 

    ( ) 0714.3
n

5714.24
yD S

2 −= . 

 
Hence: 
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Let the ratio 
)y(D

)ŷ(D
e

s
2

ws
2

=  be a relative efficiency coefficient:  

 
 e=0.324  for n=2;  e=0.493  for n=4. 
 
The variance of the stratified sample mean is less than the variance of the 
simple sample mean. This result was obtained when the first phase sample 
was stratified on the basis of the researched variable. In practice, the stratifi-
cation of the sample should be based on auxiliary variables. Some accuracy 
analysis of the estimator wsŷ  based on simulation method was considered  

by Wywiał (2002b). From the other point of view the problem is considered 
in the next paragraph:  
 
 
3.5. Estimation of population average on the basis of strata 

formed by means of discrimination functions 
 
 Let Ω={e1,...,eN} be a fixed population of size N. The observations 
of a k-dimensional variable under study are denoted by yi = [yi1 ... yik], i = 1, 
..., N. Let xi = [xi1 ... xia], i = 1, ..., N, be an i-th observation of an a-th dimen-
sional auxiliary variable. We assume that the variables under study and auxil-
iary variables are highly dependent on each other. A simple sample s  
of size m is drawn without replacement from the population Ω. The sample s  
is clustered into mutually disjoint and nonempty subsets s1, s2, ..., sH. Hence 

U
H

1h
h ss

=
= . The set sh, h = 1, ..., H, is of the size mh and 1 ≤ mh ≤ m - H  

and ∑
=

=
H

1h
hmm . The sets s1, s2, ..., sH are obtained on the basis of the obser-

vation of the variables under study by means of an appropriate clustering 
method. Particularly, we can propose the well known clustering method  
by Ward or the k-means method. They provide a short intracluster spread  
of observations of a multidimensional variable. 

Let [ ]
hh is xx =  be the matrix of dimensions mh x a. The row 

hi
x  

of the matrix 
hsx is the outcome of an a-dimensional auxiliary variable ob-

served in the set sh, so ih ∈ sh. The population Ω will be partitioned into 
nonempty and mutually disjoint strata (subpopulations) Ωh, h = 1,...,H, and 

U
H

1h
h

=
Ω=Ω . The row 

hi
x of the matrix 

hΩx is the outcome of an  

a-dimensional auxiliary variable observed in the stratum Ωh, so ih ∈ Ωh. 
The matrices 

H1 ss ,...,xx  can be a base of construction of a discrimination 

function which divides the population Ω into nonempty and mutually disjoint  
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strata. Particularly, the well known linear discrimination functions can  
be obtained when the auxiliary variables have approximately normal multi-
dimensional distributions with the same covariance matrices in the sub-
populations, see e.g. Rao (1973). These quite strong assumptions are not nec-
essary in other discrimination methods. 

Let dij be the Euclidean distance between the vectors xi,xj∈X, where 
X is the matrix of auxiliary variable observed in a population Ω. Hence: 
 

 ( ) ( )( )T
jijijiij ,dd xxxxxx −−==     (3.89) 

 
where xi and xj are observations of auxiliary variables attached to the popula-
tion elements i and j respectively, where i∈Ω and j∈Ω. 
 Let us assume that sh ⊆ Ωh for all h = 1, ..., H. The distance between 
a vector xi∈X and a set of vectors 

jsX  will be denoted by ρ ( )
j

,i sXx .  

For example:  
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,i sx Xρ { }ip
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dimummin
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=      (3.91) 
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j
,i sx Xρ { }ip
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dimummax

j∈
=      (3.92) 

 
The criterion function is defined in the following way. We assume  
that ( ) 0,

hi =ρ sXx , if i ∈ sh. The i-th element of the population is attached  

to the t-th stratum if and only if i∈Ωt-st and 
 
 ( ) ( ){ }

jt si
H,...,1j

si ,imummin, XxXx ρ=ρ
=

     (3.93) 

This discrimination method can be named the conditional k-means method. 
Its algorithm is as follows. Firstly a population Ω is arbitrarily divided into 

such subpopulations )o(
hΩ , h = 1, ..., H, that sh⊆ )o(

hΩ  for all h = 1, ..., H. 

Next, the well known algorithm of the k-means method is implemented but 
under the condition that the subset sh is the constant object in the subpopula-

tion )t(
hΩ  for each h = 1,...,H and for each iteration index t=0,1,2,.... 

 Let Ω1, ..., ΩH be the strata (subpopulations) provided by the condi-
tional k-means method or some other method of discrimination. Hence, sh ⊆ 
Ωh and the size of the stratum Ωh is equal to Nh ≥ mh for all h = 1, ..., H and 

∑
=

=
H

1h
h NN . We can expect that the spread of observations of the multidimen-

sional auxiliary variable as well as the spread of observations  
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of the multidimensional variable under study to be low in the strata  
Ω1, ..., ΩH. More specifically, we can expect that intrastratum variances  
of the auxiliary variables and the intra-stratum variances of the variables un-
der the study should be small. This suggests drawing the samples  
from the strata Ω1, ..., ΩH. 
 Let zh be a simple random sample of the size nh drawn without re-
placement from the set Ωh-sh, h=1, ..., H. The sum of these samples  

will be denoted by U
H

1h
hzz

=
= . Moreover, let g = (s, z). Hence the sample s  

can be treated as a pilot sample which lets us divide the population Ω  
into the strata. Next, the stratified sample z is selected. In another situation, 
the sample s can be drawn on one occasion and the sample z on another occa-
sion of statistical research. 
 In order to simplify our study, let us assume that an estimation  
of the average of only one variable under study is considered. It does not limit  
the generality of the following results: the population mean is defined  
by the expression: 
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Ω ==
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 The sample treated as a random set will be denoted by a capital let-
ter, e.g. S. The outcome of the sample S will be denoted by a small letter s. 
The simple sample mean is as follows: 
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 Let us define the following statistics: 
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The estimator of population mean is as follows: 
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where: 
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 The conditional expected value of the statistic Gŷ  is as follows: 
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or 
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Particularly 
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m
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On the basis of the expressions (3.95) or (3.96) we infer that the un-
conditional expected value of the estimator is: 
 
 ( ) ( ) yŷEEŷE GS/ZSG == .      (3.98) 

 
The variance of the estimator is derived according to the expression: 
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Wywial (1998a) derived the following formula: 
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This expression can be rewritten in the following way: 
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where: 
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∈
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2
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h
S yy
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1
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Particularly, on the basis of the expression (3.100) we have: 
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m
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                                                                                                        (3.102) 
 
 The unbiased estimator of the variance of the estimator Gŷ   

is as follows: 
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where: 
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 Let us assume the proportional allocation of the samples in the strata. 

If nh=nwh for all h=1,...,H, then ∑
=

=
H

1h
hnn and the expression (3.100)  

can be simplified to the form: 
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(3.104) 
 

 When N is large and m is small (that is when N → ∞ and 
N

m
 → 0), 

then 
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Moreover, if N → ∞ and 0
N

m →=α , then 
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 We are going to compare the variance of the simple sample mean 
and the variance of the estimator Gŷ  in an asymptotic situation under  

the proportional allocation of the samples to the strata and under  

the assumption that 
N

m=α . Let S0 be a simple random sample of the size 

m+n drawn without replacement from a population U. Hence, the simple 
sample mean takes the form: 
 

 ∑
∈+

=
0

0
Si

iS y
nm

1
y .  (3.107) 

 
It is the unbiased estimator of a population and 
 

 ( ) ∗+
−−= v

)nm(N

nmN
yD

0S
2   (3.108) 

 
Wywiał (1998a) derived the following expression: 
 

 ( ) )rv(
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where: 
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This result and the expression (3.108) under the assumptions that N → ∞, 

0
N

m →=α  lead to the following expression: 

 

 ( ) ( ) ∗+
−=− v

)nm(n

m

n

r
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G
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S
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0
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If we additionally assume that the size m is very small in comparison  
to the sample size n and the variance v*, we have 
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 ( ) ( ) 0
n

r
ŷDyD )P(

G
2

S
2

0
≥≈− .                (3.112) 

 

Hence, under the stated assumptions, the estimator )P(
Gŷ  is not less precise 

than the simple sample mean 
0Sy . 

 The construction of the estimator Gŷ  is strictly connected with  

the process of dividing a population into strata by means of a discrimination 
function. That is why the estimator Gŷ  can be named a discrimination esti-

mator of a population average. 
 Let us note that the statistic GŷN  is the unbiased estimator  

of a population total. 
 
 

3.6. Stratification of population after sample selection 

 In survey sampling, conditional methods are usually connected with 
post-stratification estimators for domains and with inference on the basis  
of regression models or contingency tables. These problems were considered 
e.g. by Rao (1985), Tillé (1998, 1999), Williams (1962). The problem  
of stratification of a population, on the basis of observations of a variable un-
der study in a sample, was considered by e.g. Dalenius (1957). 

Wywial (2001) deals with the problem of an appropriate division  
of a simple sample into subsamples. This partition leads to clustering  
a population into subpopulations. Each of these subpopulations includes one 
and only one previously created subsample. The linear combinations  
of statistics from the subsamples are used for the estimation of a population 
mean.  The  subsample  means  and   the  regression estimators  from   the 
subsamples are considered to be these statistics. The coefficients of this linear 
combination  are  proportionate  to  the  sizes  of the subpopulations. The 
construction  of  the estimators depends on the methods of clustering the 
sample  into subsamples and the population into subpopulations. Bias and 
variances of a certain estimator have been derived but the precision of others 
should be studied by means of some simulation methods. An example of such 
a simulation study is presented. Moreover, some generalizations of proposed 
estimators have been suggested.  
 
 
3.6.1 Basic notation 

 
Let us assume that the values of an auxiliary variable are known  

in a fixed and finite population of size N. A k-th value of the auxiliary varia-
ble is denoted by xk, k=1,...,N. The simple sample s of the size n  
is drawn without replacement from a population U. An i-th value of a variable 
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under study  is  denoted by  yi,  i=1,...,N.  Moreover, let us assume that the 
elements of the population U={1,...,N} are ordered in such a way that xi<xj 
for each i<j and i=1,...,N and j=1,...,N.  

Let us divide each sample s={ii,...,im,im+1,...,in}, where ij < ih, into two 
following subsamples s1(k)={i 1,...,im} and s2(k)={i m+1,...,in}, where k=im and 
k=1,2,...,H<N. The integer k=im is a function of observations { }

n1 ii x,...,x   

of the auxiliary variable in the sample s. Hence, s1(k)∩s2(k)=∅ and 
s1(k)∪s2(k)=s. The sizes of the subsamples s1(k) and s2(k) are denoted by 
n1(k) and n2(k), respectively. Let )( kU1 ={i: x i ≤ xk} and )k(U 2 ={i: x i >xk}, 

k =1,..., H. Hence, )k(U1 ∩ )k(U 2  = ∅ and )k(U1 ∪ )k(U 2 =U, k = 1, ..., H. 

The sizes of the subpopulations )k(U1  and )k(U 2  are denoted by )k(N1  

and )k(N 2 , respectively. Similarly, the fractions of the elements in these 

subpopulations are denoted by: 
N

)k(N
w 1

)k(s1
=  and 

N

)k(N
w 2

)k(s2
= . 

Wywiał (2001) considered the following conditional estimator  
of the population mean y : 

 
 )K(S)K(S)K(S)K(SK/S 2211

ywywy~ +=       (3.113) 

 
where: 
 

  ∑
∈

=
)k(Si

i
h

)k(S
h

h
y

)k(n

1
y , h = 1, 2.       

(3.114) 
 
 Let s, s1(k) and s2(k) be outcomes of random samples S, S1(K)  
and S2(K), respectively. Let the sampling design of the sample s be denoted 
by P(S=s) or simply by P(s) for s ∈ S, where S is the sampling space.  
The sampling design P(s) can be rewritten as follows:  
 

P(s)=P(s1(k), s2(k), K=k)=P(s1(k), s2(k)| K=k)P(K=k)=P(s| K=k)P(K=k). 
 
This enables us to write the expected value of the estimator in the following 
way:  
 

 ( ) =K/Sy~E ( ) ( )∑
=

=
N

1k
k/Sk/S kKPyE        

(3.115) 
 
where: 
 

( ) ( ) ( )( ) ( ) ( )( )kSkSk/SkSkSk/Sk/Sk/S 2211
ywEywEyE += .      (3.116) 

 



 
SOME CONTRIBUTIONS TO MULTIVARIATE METHODS... 

108

The conditional expected value ES/K(.) and the conditional variance ( ).D 2
K/S  

are determined on the basis of the conditional sampling design P(s|K=k).  
The variance is as follows: 
 

( ) ( )( ) ( )( )K/S
2

K/SKK/SK/S
2
KK/S

2 y~DEy~EDyD += .      

(3.117) 
 
 If ( ) yy~E k/Sk/S =  for each k=1,...,H the conditional statistic k/Sy~   

is the unbiased estimator of the population average y  and  

 

( )( ) 0y~ED K/SK/S
2
K = .        

(3.118) 
 
 We are going to show some particular forms of the estimator K/Sy~ . 

Each of them can be obtained through determining a function which provides 
the value k (of the random variable K) which constitutes the border between 
the subsamples s1(k) and s2(k). This function may depend on the auxiliary 
variable.  
 
 
3.6.2. Randomly divided sample 
 
 Let us assume that all values of an auxiliary variable are distinct, so: 
x1<x2<...xN. Let m = 1, ..., n-1 be a number of observations of the auxiliary 
variable which are less than or equal to the value xk in sample s. Then, 
m=n1(k) is the size of the sub-sample s1(k). The size n2(k) of the sub-sample 
s2(k) is equal to n–m. Let us introduce the following notation: 
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( ) ( ) ( )( )
( )

( )( )ksi
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kxys h
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v −−
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∈
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 The non-decreasing sequence ( )

n1 ii x,...,x  is observed in the particular 

simple sample s. Let the value xk be chosen randomly from the elements  
of the sequence ( )

1n1 ii x,...,x
−

. Hence, the probability of selecting the k-th 

value of an auxiliary variable from the sequence ( )
1n1 ii x,...,x

−
 is equal  

to 
1n

1

−
. Hence, the number of the divisions of each sample s  

of the size n into two subsamples s1(k) and s2(k) is equal to n–1. The number 
of all possible divisions of all possible simple samples s of the size n is equal 

to ( ) 







−

n

N
1n =c-1. 

 The number of all such samples s of the size n that s = s1(k) ∪ s2(k) 

and s1(k) is of the fixed size m is equal to 

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. Under  

the conditions: N-k ≥ n−m, k≤N–n+1≤N– n + m  the number of all the samples  
s∈Ω  that s=s1(k) ∪ s2(k)  is equal to  
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(3.119) 
 
Hence, if  n−1 ≤ k ≤ N – n+1,  then 
 

  )k(cA)kK(P 11 == .        

(3.120) 
 
 Let us note that 
 

  








−
−










−
−

===
mn

kN

1m

1k
c)mM,kK(P1 ,      

(3.121) 
 

  P(s1(k),s2(k),K=k,M=m)=
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So, 

=== )mM,kK|)k(s),k(s(P 21  

 
)mM,kK|)k(s(P)mM,kK|)k(s(P 21 ===== .     (3.124) 

 
Using the well known Cauchy’s formula (see e.g. Flachsmeyer 

(1977) or Lipski and Marek (1986)) we have: 
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 Similarly, we can derive that if 1 ≤ k ≤ n-2, then 
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(3.125) 
 
where: 
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 If N – n + 2 ≤ k ≤ N – 1, 
 

  )k(cA)kK(P 31 ==         

(3.127) 
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where: 
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Finally, the expressions (3.120), (3.125) and (3.127) lead to the following 
one:  
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Particularly, if n = 2,  
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 On the basis of the expression (3.113) the conditional estimator 

)1(
K/Sy~  takes the following particular form: 
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The expressions (3.113) – (3.118) and (3.123) – (3.129) let us derive 
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where P1(K=k,M=m) is given by the expression (3.121).  
Let us introduce the following notation: 
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Hence: 
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This and the result of the derivation (3.132) lead to the following expression: 
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This means that the statistic )1(
K/Sy~  is a conditionally as well as unconditionally 

unbiased estimator of the mean y .  

The variance is as follows:  
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where: 
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The parameter )k(Uh

y  is defined by the expression (3.133). 

The result (3.135) can be rewritten in the following way:  
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It is easy to prove that the unbiased estimator of the conditional vari-

ance ( ))1(
k/S

2
k,m/S y~D  is as follows: 
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 (3.138) 
 
where: 
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( ) ∑∑
∈∈ −

=−
−−

=
)k(Si

i)k(S
)k(Si

2
i)k(S)k(S

2

2

2

22
y

mn

1
y,yy

1mn

1
v .     (3.140) 

 
 
3.6.3. Conditional weighed mean from the sample divided  

by median into sub-samples 

 
Let us assume that the simple sample s is drawn without replacement 

and it is of the size n < N. Moreover, let s = {i1, ..., in} and 
ej ii xx <   

and ij < ie if and only if j < e. The sample s is divided into two subsamples  
s1 (k) = {i 1, ..., k} and s2 (k) = s − s1(k). Let us assume that  k = im if n = 2m  
and k=im+1 if  n = 2m+1. Hence, xk is a value of the sample median  
of the auxiliary variable. The number k identifies the position of the sample 
median in the population.  

Wilks (1962), p. 243, considered the distribution of the order statis-
tic in the simple sample drawn without replacement from a finite population. 
The probability distribution of the random variable K  
is a particular case of this distribution. If m ≥ 1 and n = 2m < N: 
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If m ≥ 1 and n = 2m+1 < N: 
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Particularly if m=1 and n=2, the distribution is reduced to one determined  
by the equation (3.130). If m=1 and n=3, then 
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The sampling design of the sample s can be showed in the following way:  
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Let us consider the following conditional estimator of the population 

average y : 
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where:  s1(K − 1) = s1(K) − {K}, 
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where: m∗=m – 1 if n = 2m and m∗=m if n =2m+1. 
 The expected value of this statistic is derived in the following way: 
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where:  U1(K − 1) = U1(K) − {K}. 
 
Hence: 
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In conclusion, the statistic )2(
K/Sy~  is a conditionally and unconditionally 

unbiased estimator of a population mean. 
The property (3.143) enables us prove that  

 ( ) 0y,yCov )K(S)1K(SK/S 21
=− . 

This  and  the  expressions  (3.117)   and   (3.118)  lead   to  the  following 
expression:   
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The unbiased estimator of the variance ( ))2(
k/S

2 y~D  is showed  

by the equation: 
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where: m∗=m – 1 if n = 2m and m∗ = m if n = 2m+1.  
 
 
 
3.6.4. Conditional weighed regression estimators from the sample di-

vided by median into sub-samples 
 

Let us keep all the assumptions leading to the distribution P2 derived 

in the previous paragraph. Instead of the estimator )2(
X/Sy~  we define  

the following one 
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L=K–1 if h=1 or L=K if h=2. m∗ = m – 1 if n = 2m and h = 1 or m∗ = m  
if n=2m and h=2 or m∗=m if n = 2m+1. Similarly to the previous paragraph, 
we can derive the following approximate expression for the variance  

of the statistic )3(
X/Sy~ . 
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To estimate the variance of the statistic )3(
k/Sy~  we can use the follow-

ing statistic:  
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where: 
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3.6.5. Conditional weighed sample mean obtained through stratifying 

the sample on the basis of an auxiliary variable 
 

Similarly like in the previous paragraph, we assume that the sample 
s = {i1,...,in} and 

n21
iii

x...xx <<< . The sub-samples are: s1(k)={i 1,...,im} 

and s2(k)={i m+1, ..., in}, where im = k. Additionally, we assume that n > 4. 
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Let us define the two following criteria of dividing samples  
into sub-samples: 
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The function q1 is proportionate to the intra-subsample spread of the variable 
under study. The q2(m, k) criterion, considered by Wywiał (2000b),  
is proportional to the estimator of the variance of stratified sample mean22. 
Let m and k = im be such parameters that q1(m, k) = minimum and  

s=s1(k) ∪ s2(k). Similarly, let ( )k̂,m̂q2  = minimum and )k̂(s)k̂(ss 21 ∪= . 

On the basis of such a partition of the sample, we can define  
the following estimators: 
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Without any additional assumption we cannot state if these estimators  
are unbiased or consistent. We can expect that the method of dividing  
the sample s into sub-samples should lead to small mean square errors  
of the estimators. This problem will be studied by means of simulation meth-
ods. 
 
 
3.6.6. Example of simulation study of the estimation efficiency 
 

The distribution of 30 observations (x;y) of a two-dimensional varia-
ble is shown by the figure 3.1. The basic parameters of these variables  
in the population consisting of 30 elements are as follows: the average  
of auxiliary variable x =68.6824, the mean of the variable under study 
y =93.6536, the variances of auxiliary variable and the variable under study 

vx=(89.1094)2, vy=(17.6015)2, respectively and finally the correlation coeffi-
cient between these variables r=0.9940.  
 
 

                                                           
22 See the idea of minimization of the sample estimator of variance considered e.g. by Lehman 

(1991). 



 
III. Stratified sampling 

119

 
Figure 3.1. The scatter plot for variables x and y in the population 
 
Let the population average be estimated by means of the estimators 

)2(
K/Sy~  and )5(

K̂/S
y~  defined in the paragraphs 3.6.3 and 3.6.5, respectively.  

The simple sample drawn without replacement has 5 elements. On the basis 
of all these possible samples, the conditional (and the unconditional) expected 
values and variances of both estimators have been calculated.  

The variance of the simple sample mean is ( )S
2 yD =51.6356. The statistic 

)2(
K/Sy~  is the unbiased estimator of the population mean but 

6536930761965 .y.)y~(E )(

K̂/S
=≠= . The absolute value of the bias is 2.59% of 

the population mean y . The variances of the estimators are: 

( ))2(
K/S

2 y~D =42.9823  and  ( ))5(

K̂/S

2 y~D =36.4320. 

 

 
Figure 3.2. The probability distribution of the variable K in the case  

of the estimator )2(
K/Sy~  
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Figure 3.3. The probability distribution of the variable K in the case  

of the estimator )5(
K̂/S

y~   

 
 

 
Figure 3.4. The conditional expected values of the estimator )5(

K̂/S
y~  
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Figure 3.5. The conditional variances of the estimator )2(

K/Sy~   

 

 
Figure 3.6. The conditional variances of the  estimator )5(

K̂/S
y~   

 
The relative efficiency is defined by the expression: 

( ) ( )S
2)h(

K/S
2

h yD/y~D%)100(e = . In our case: e2=83.24% and e5=70.56%. 

Hence, the precision of conditional estimators )2(
K/Sy~  and )5(

K̂/S
y~  is better  

than the precision of the simple sample mean. 
As it was defined, the outcome k of the random variable K  

is  the  number  of  the  population element dividing  the  sample into two 
subsamples. The probability distribution of the random variable K in the case 

of  the estimators )2(
K/Sy~  and )5(

K̂/S
y~  are presented by the figures 3.2 and 3.3, 

respectively. 
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The conditional values of the estimator )5(

K̂/S
y~  are showed by the fig-

ure 3.4. The conditional variances of the estimators )2(
K/Sy~  and )5(

K̂/S
y~   

are represented by the figures 3.5 and 3.6, respectively.  
 
 
3.6.7. Some generalizations 
 

The above considered conditional method of estimation can  
be generalized in several directions. Wywiał (2001, 2002) considered more 
than two subsamples. 

Similarly to the previous paragraphs let us assume that the elements 
of the population U = {1, ..., N} are ordered in such a way that xi < xj  
for each i < j = 1, ..., N. The simple sample s of the size n is drawn without 
replacement from a fixed and finite population U. Let us divide each sample 
s={i1,..,in}, where ij < ih if i < h, into H following sub-samples of size rh-rh-1: 
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1Hri xx:i
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> . Hence hU ∩ tU =∅ for each h≠t=1,...,H,  

and U
H

1h
hU

=
=U. 

Let K1,...,KH-1 be r1-th,...,rH-1-th order statistics, respectively, in the 
simple sample drawn without replacement from a finite population.  
The kh=

hr
i  is a possible value of the rh-th order statistic Kh, h=1,...,H-1. Wilks 

(1962), p. 252, showed that:  
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where: 1≤k1<k2...kH-1<N-1 or  
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where k0=0, kH=N and r0=0.  
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Let us note (see Fisz (1963, 1967)) that the ri-th order statistic Ki  
is the sample quantile of order λi∈(0;1), if [ ] 1nr ii +λ= .  

We can show that the unbiased estimator of the population mean  
is the following statistic:  

 

Hhh* S
1H

1H

1h
hK

1H

1h
)K(S

1hh
K/S y

N

K
1y

N

1
y

N

1KK
y~ 







 −++






 −−
= −

−

=

−

=

− ∑∑     (3.162) 

 
where K=[K1...KH-1] and { }hhhhh* K)K(S)K(S −= , for h=1,...,H-1 
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 The expected value of this statistic is as follows:  
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 The variance is as follows:  
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The unbiased estimator of the variance ( )k/S
2 y~D  is shown  

by the equation: 
 

( )=k/S
2
S y~d ( ) +

−−−
+−−








 −−
∑

−

= −−

−−−
1H

1h
)k(S

1hh1hh

1hh1hh

2

1hh
hh*

v
)1rr(kk

rrkk

N

1kk
 

 

( )( ) HS
1H1H

1H1H

2

1H v
rnkN

rnkN

N

k
1

−−

−−−

+−
+−−








 −+       (3.166) 

 
where: 
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The statistic, determined by the expression (3.162), was defined by Wywiał 
(2000c) in the case when rh-rh-1=constance for all h-1,...,H. Particularly,  
if H=2, the statistic K1 can be determined as the sample quantile of order λ 
and [ ] 1nr1 +λ= . Moreover, if H=2 and r1=m, where n=2m or n=2m+1, the 

statistic K1 is the sample median while the estimator determined by the ex-
pression (3.162) is reduced to the statistic defined by the expression (3.144).  

The next possible generalizations are as follows. In the case of two 
auxiliary variables,  their sample medians let us divide the population into 
four non-empty  and disjoint subpopulations. This  lets  us  generalize 
straightforwardly the estimator considered in the paragraph 3.6.3 and 3.6.4. 
Secondly, instead of a one-dimensional auxiliary variable  and  a  variable 
under study, the multidimensional ones can be considered because, usually, 
the  vector  of  population means  is  estimated and  the vector of auxiliary 
variables  can  be  a vailable. In this case the sample s can be divided into 
subsamples through minimization of a criterion function dependent  
on   auxiliary  variables  or  a  variable   under   study. Next,  the  disjoint 
subpopulations are selected according to the criterion function in such a way 
that  each  subpopulation  includes  one and only one subsample obtained 
previously. Hence, we have the two-stage process of clustering. At the first 
stage we obtain the subsamples and at the second stage - the subpopulations. 
The second stage  of the clustering procedure can be named a conditional 
procedure  because  it   provides   subpopulations   including  appropriate 
subsamples (see Wywial (1998a, 2000b, 2001, 2002). The criterion function 
can  be  defined  as  the  sum of the intra-subsample (intra-subpopulation) 
variances of all auxiliary variables or the spectral radius23 of the intra-

                                                           
23 See: Rao and Scott (1981). 
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subsample (intra-subpopulation) matrix of variance and covariance of auxiliary 
variables. Next we construct coefficients (dependent on subpopulation sizes) 
of linear combination of estimators (the subsample means or appropriate re-
gression or ratio estimators from the subsamples). 

 
3.7. Classification estimator of population mean 
3.7.1. Introduction 
 

The  problem of estimation of a mean value in a fixed and finite 
population is considered. We assume that the values of auxiliary variables are 
known in the population. The simple sample is selected without replacement 
from the population. The sample is partitioned into homogenous sub-samples 
using observations of a variable under study and the auxiliary variables.  
On the basis of this partition the whole population is clustered into strata  
in such  a  way that each strata includes one and only one sub-sample. The 
estimator of the population mean is the weighed average of the sub-sample 
means. The  weights  are  equal to  the sizes of the strata. The strata can be 
determined by means of a discrimination function. This function is evaluated 
on the basis of observations of the auxiliary variables in the sub-samples. 
Several criteria of clustering the sample or population are presented. The well 
known bootstrap or jackknife methods are suggested to estimate the variance 
of the estimator. The estimator can be useful when we have a census data.  
In this case it is possible to cluster a population in order to evaluate  
the weights of the estimator. The outlined problem has been considered  
in a similar sense by Bethlehem (1988), Huisman (2000) and Wywiał (1999, 
2001). 

Let U={1,...,N} be a fixed population of size N. The non-negative  
i-th observation of a k-dimensional auxiliary variable is denoted by 
xi*=[xi1 xi2 ... xik],  i = 1, ..., N. The matrix of observations of the auxiliary 

variables is denoted by 

















=

*N

*1

...

x

x

x . This matrix is of dimension N×k.  

The vector of observations of a variable under study is denoted by 

















=

N

1

y

...

y

y . 

The sample s of size n is drawn without replacement from the population U. 
The space of the samples is denoted by S. The sampling design is denoted  
by P(s)≥0 where s∈S. The vector of observations of the variable under study 
in a sample s and the matrix of observations of the auxiliary variables in the 
sample s are denoted by ys and xs, respectively. The vector ys is of the dimen-
sions n×1. The matrix xs is of the dimensions n×k. Let a sample s∈S  
be partitioned into the following set of non-empty sub-samples: a(s)={sh, 
h=1,...,H(s)}, where H(s) is the number of the sub-samples and it can depend 
on s. The sub-sample sh is of size nh(s). 
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Let { }as,Us,UU:U))s(a(b)a(bb hhhhh ∈⊆⊂===  be such  

a set of mutually disjoint and non-empty sub-populations (strata) 

that )s(Us hh ⊆  and )s(Us th ⊄  for ht ≠ =1,...,H(s) and U)s(U
)s(H

1h
h =

=
U . Let 

Nh(s) be the size of the stratum Uh(s). The set of all possible sequences  
of type a(s) generated on the basis of a particular sample s is denoted  
by A=A(s)={a(s)}. Similarly, the set of all possible systems of type b(a(s)) 
generated on the basis of a sample s and the population U is denoted  
by B(a)=B(a(s))={b(a(s))}. Let B(A)=B(A(s)) be the set of the all sets of type 
B(a) generated for all a∈A(s). And finally, let B=B(A(S)) be the space  
of all possible sequences b(a(s)) where a∈A(S) and S is the sample space.  

The sets a(s) and b(a) are determined on the basis of a criterion func-
tion f(ys, x), which will be defined later. Usually, the criterion leads  
to simultaneous determination of the systems a(s) and b(a). We postulate that 
the systems a(s) and b(a) should lead to such a set of strata b(a)={Uh} that 
intra-stratum spread of observations of auxiliary variables and the variable 
under study is as small as possible. Moreover, the intra-sub-samples spread of 
these variables should be as small as possible, too.  

In order to simplify the following considerations let us assume that s 
is the simple sample drawn without replacement from the population U.  
The following notation will be useful:  

 

∑ ∑∑
∈ ∈∈

===
Ui Si

i
h

)a(S
Ui

i
h

hi
h

h

h

y
n

1
y,y

N

1
)b(y,y

N

1
y  

 
The  population  average  y  can   be  estimated by  means  of the 

statistic:  

 ∑
=

=
)s(H

1h
Shh))S(a(b h

y)U(wŷ        (3.167) 

 

where wh(Uh) > 0 for each h = 1, ..., H(s) and s∈S and ∑
=

=
)s(H

1h
h 1w . The next 

two estimators are functions of the ratio or the regression estimators. The first 
of them is as follows:  
 

  ∑
=

=
)s(H

1h
Ishh))S(a(Ib h

ŷ)U(wŷ        (3.168) 

 
where the ratio estimator is:  
 

  
h

h

h

h U
S

S

Is x
x

y
ŷ =          

(3.169) 
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 The next estimator is:   
 

  ∑
=

=
)s(H

1h
RShh))S(a(Rb h

ŷ)U(wŷ       (3.170) 

where  
  ( )

hhhhh SUSSRS xxyŷ −β+= ,      (3.171) 
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( )∑
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∈

∈

−

−
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h

Si

2
Si

Si
iSi

S
xx

yxx

       (3.172) 

The statistic 
hRSŷ  is the regression estimator.  

 Let H be the fixed number of strata and {Nh, h=1,...,H}  
be the sequence of stratum sizes and the sequence of the fractions is denoted 

by 






 =

N

N
w h

h . For a fixed partition b={Uh, h=1,...,H} let  

 







 =∅≠⊆===

=
H,...,1hfors,Uswhere,sss:s hhh

H

1h
hb US .  

 
It is obvious that: Sb⊂S. Let M=Card{S} and Mb=Card{ Sb}, Hence,  

the conditional sampling design ( ) b
b

b sfor,)s(P
M

1
s|sP SS ∈=∈ .  

The conditional sampling design can be implemented by the simple rejective 
sampling scheme. Hence, we select the sample s according to sampling design 
P(s). If s∈Sb, then it is the conditional sample. If s∉Sb, the next sample is 
drawn according to sampling design P(s). The probability  

of selecting the conditional sample s for the first draw is 
M

M
p b= ,  

for the second selection p(1-p), for the third selection p(1-p)2 and so on.   
 Under the conditional sampling design the estimator ))S((baS ŷŷ =  

takes the following particular form:  
 

∑
=

=
H

1h
shS h

ywŷ .  

 

In this particular case, the conditional estimation of a population 
mean is equivalent to the well known problem of estimation on the basis  
of sample stratified after its selection, see e.g. Bracha (1996), p. 124  
or Särndal, Swenson i Wretman (1992), p. 267. Hence, ( ) yb|ŷE S =   

which means that the statistic Sŷ  is conditionally unbiased estimator of y  

and its conditional variance is as follows:   
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( ) ( ) ( )3
H

1h
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H
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UhS

2 nO)y(vw1
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)y(vw

Nn

nN
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       (3.173)  
where 
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The approximately conditionally unbiased estimator of the variance 

( )b|ŷD S
2  is the statistic:  
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ShS
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where  
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−
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Si
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1
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∈
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h
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y      (3.176) 

 
It can be shown that in the considered particular case the sub-sample size nh is 
approximately proportionate to the stratum size Nh. for each h=1,...,H.  
 In the general case, the systems of sub-samples a(s) and strata b(a) 
depend on a sample s. That is why it is difficult to derive the basic moments 
of the statistic ))S((baŷ , given by the expression (3.167). The variance of this 

estimator can be estimated by means of the well known boostrap or jackknife 
techniques. The properties of these methods are considered e.g. by Efron and 
Tibshirani (1993). In our case the bootstrap method is as follows. The simple 
samples Zt (t=1,...,m) are drawn with replacement from the sample s. Usually, 
the size of each sample Zt is equal to the size of the sample s. Next, each 
sample Zt is partitioned into the system of sub-samples denoted by 

( ) { })z(H,t1,ttt t
z,...,zza =  and the population U is partitioned into the system 

of strata denoted by ( ) { })z(H,t1,ttt t
U,...,Uzb = . These partitions are obtained 

by means of the same method as used to determine the vagues of the estimator 

))S((baŷ . Next, on the basis of the expression (3.167), the following statistics 

are evaluated:  
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The estimators of the variance of the statistic ))S((baŷ  are as follows:   

 

 ( )( )( ) ( )( ) ( )( )( )∑
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or  
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ŷD
~

1

22

1

1 (
, ( )( )∑

=

=
m

t
tZabZ y

m
y

1

1 (
         (3.179) 

 
The suggested jacknife method can lead not only to the estimator of the 

variance of the statistic ))S((baŷ  as well as to a determination of an almost un-

biased estimator of a population mean y .  

 
 

3.7.2. Classification functions  
 

In order to determine the weights of the estimator ))S((baŷ  sizes  

of strata should be evaluated. We are going to show several methods  
of stratification of the sample and population.  

Wywiał (2001b, 2001c) proposed a construction of vague estimators 
of the population mean in situation when non-response are present.  
The weights are functions of sizes of the sub-populations of non-responses 
and responses and they are determined on the basis of auxiliary variables ob-
served in the whole population and by means of a classification function. This 
idea can be applied to evaluate of the weights of the estimator ))S((baŷ . The 

sample s is partitioned into system a(s) on the basis of a variable under study 
and auxiliary variables. This partition can be defined by means of e.g. the k-
means method or the method of Ward (1963). The criterion function  
of the clustering method is as follows:  

 ( )( )∑
=

−+=
)s(H

1h
sssss0 1n)x(v)y(v))s(a,,(f

hhh
xy .     (3.180) 

The sample s is partitioned into homogenous sub-samples 

{ })0(
)s(H

)0(
1

)0( s,...,s)s(a =  on the basis of the data ),( ss xy . This partition leads 

to determining the classification function but is evaluated only on the basis  
of the matrix xs in the following way (see e.g. Krzyśko (2000), p. 255  
or 266): 

  
n

n
q

2

1
)(e h

hh

s
sis +−=x        (3.181) 

 
where xi is the i-th row of the matrix XU and  
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  ( ) ( )T

sissiis
hhhh

)(q xxVxxx −−= − 1
.  

 
where 

hsx  is the row vector of the auxiliary variables' averages from the sam-

ple sh. The matrix of the sample variances and covariances of auxiliary varia-
bles is denoted by 

hsV . Hence, the size 
hsn  of the sample sh has to be at least 

equal to number k of the auxiliary variables. The classification function di-

vides the population U into the set of strata { })0(
)s(H

)0(
1

)0()0( U,...,U))s(a(U =  on 

the basis of the observations xU of the auxiliary variables. The i-th population 

element is classified into the stratum )(
hU 0  if  

 
  { })(emax)(e is

)s(H,...,1t
is th

xx
=

= .      (3.182)  

 

The weights 
N

N
))s(a(w

)0(
h)0()0(

h =  of the estimator ))S((baŷ  are evaluated 

on the basis of the sizes of the strata: { })0(
)s(H

)0(
1

)0()0( N,...,N))s(a(N = . Let  

us note that the elements of the subsample sh cannot necessarily be classified  

to the stratum )0(
hU . In this case we can correct the set of the subsamples 

{ })0(
)s(H

)0(
1

)0( s,...,s)s(a =  to such a set { }(*)
)s(H

(*)
1

(*) s,...,s)s(a = , that )0(
h

(*)
h Us ⊆  

for each h=1,...,H.  
 
 

3.7.3. Stratification on the basis of vector criterion function  
 
Previously, we suggested finding such a partition of a population U 

into a set of homogenous strata b(a(s))={Uh(s)} and homogenous sub-samples 
a(s)={sh(s)} that the criterion function f(ys, xU, b(a(s)), a(s)) takes  
a minimal value. Under this condition and the assumption that sh(s)∈Uh(s)  
for h=1,...,H, we can postulate that a distances between sh(s) and Uh(s), 
h=1,...,H should be as small as possible. More precisely, we look for such set 
of sub-samples a={sh} and the set of strata b={Uh} that are solution to the fol-
lowing optimization problem:  
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(3.183) 
 

where d(...) is the distance function between sets a={sh} and b={Uh}.  
A more general optimization problem is expressed by the following system:  
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Particularly, the criterion function f(...) can be proportionate to the variance 

( )S
2
s ŷD  shown by the expression (3.173). Here, we simplify this function  

to the following form:  

 ( )∑
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Let us note that the function f1 depends on observations of the auxiliary vari-
ables through the partition b of the population into strata.  

Let us consider the following ratio estimator of the variance 
)(v

hU y :  
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After substituting )(v

hs y  for )(v
hIs y in the expression (3.185) we obtain  

the following modification of the criterion f1:  
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The criterion function can be defined independently from a partition  
of the population into strata in the following way:  
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In the case of the estimator ))S(a(Ibŷ , formulated by the expressions 

(3.168) and (3.169), the criterion function is based on the estimator  
of its variance in the following way:  

( )∑
= 



























+−=

)s(H

1h
s

2

s

s

s
s

s

sUs4 )(v
x

y
)(v

x

y
2)(v)a(bw))s(a),a(b,,(f

h

h

h

h

h

h

h
xyx,yxy  

       
 (3.189) 



 
SOME CONTRIBUTIONS TO MULTIVARIATE METHODS... 

132

where  

  ( )( )∑
∈

−−=
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sisis yyxx)(v yx, .      (3.190) 

 
Finally, in the case of the estimator ))S(a(Rbŷ , given by the expression 

(3.170)-(3.172), the criterion can be the following function of the estimator  

of variance ( )))S(a(Rb
2 ŷD :  

 ( )( )∑
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β−=
)s(H
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2
ssUs5 )y(v)a(bw))s(a),a(b,,(f

h
xy      (3.191)  

where sβ  id determined by the form (3.172). 

The particular similarity functions are as follows.  
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The third row of the system (3.184) defines the set of all possible sets of sub-
samples and strata. This set is limited by the next two conditions defined  
in the next two rows. In the fourth row, it is assumed that the size of each sub-
ample has to be proportionate to the size of the appropriate stratum. This as-
sumption is a result of the expression (3.175) which showed the variance  
of the estimator in the case when strata are fixed. In this case the expected 
value of each sub-sample is approximately proportional to the size of the ap-
propriate stratum. Finally, the last row of the system (3.184) shows  
the calibration postulate. It is formulated on the basis of the general definition 
of calibrated estimators proposed by Devill and Särndal (1992).  
Our calibration condition becomes classical when δ=0. Let C be the set of the 
admissible solutions. It is defined by the three last rows of the system (3.184).  
 Our problem is determining such sets a and b that the vector function 

( )
( )






=

)s(a),a(b,d

)s(a),a(b,f
)a,b(g

U

s

x

y
 takes a minimal value in the set C. Only  

in particular cases, the problem (3.184) has one such a solution (b,a)∈C  
that g(b,a)≤g(b,a) for each (b,a)∈C. Usually, we have to look for such a set  
of the non dominated solutions C, that (b,a)∈C and (b*,a*)∈C and (b',a')∈C-C 
if and only if it is not true that g(b,a)≤g(b*,a*) or g(b,a)>g(b*,a*)  
and g(b,a)≤g(b',a') and g(b*,a*)≤g(b',a').  

When the set C consists of at least two elements, the unique solution 
to the problem (3.184) can be determined through minimization of an addi-
tional criterion function denoted by G(b,a) in the set C. Particularly,  
the following function can be considered:  
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( ))s(a),a(b,,f)a,b(G Us1 xy= ,       (3.194) 

 
( ))s(a),a(b,d)a,b(G U2 x= ,       (3.195) 

 
( ) ( ) ( ))s(a),a(b,d1)s(a),a(b,f)a,b(G Us3 xy α−+α= , α ∈(0;1).          (3.196) 

 
When  α=1,  G3  is reduced to G1.  If α=0,  G3  is reduced to  G2.  
 
 
3.7.4. Criterions based on the depth functions  

 
Properties of the depth functions are considered e.g. by Liu (1990), 

Donoho an Gasko (1992), Rousseeuw and Ruts (1996), Struyf and 
Rousseeuw (1999), Wagner and Kobylińska (2000). For the sake  
of simplicity, we consider a two dimensional auxiliary variable. Let 

( )*t*j*i ,, xxx∆  where i≠j=1,...,N, be the triangle whose vertexes have  

the coordinates determined by the vectors {xi* , xj* , xt*}. The number of the 
triangles whose vertexes are determined by the rows of the matrix x, is equal 

to )2N)(1N(N
6
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3

N
−−=








. The measure of the triangle (simplicial) depth of 

a point θθθθ in R2 is the number l(θθθθ) of the triangles including the point θθθθ.  
The normalized variant of the triangle measure is as follows 
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The value of z(θθθθ) is close to one if the point θθθθ is situated near the center  
of the considered set of points whose coordinates are determined  
by observations of the auxiliary variables. 

In our case we consider the depth of an i-th element of a population 
U among the remaining elements of this population with respect  
to observations of the auxiliary variables represented by the elements of the 
matrix x. The i-th row xi* of the matrix x is attached to the i-th element of the 
population U and vice-versa. So, equivalently we can consider the depth  
of a point with coordinates xi* among the remaining points xj*, j=1,...,N  
and  i≠j. Hence, the normal measure of the depth of an i-th population ele-
ment with regard to the auxiliary variables is as follows (see, Wagner  
and Kobylińska (2000), p. 205): 
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The mean measure of the triangular (simplicial) depth of a sample s 
in the population U (with regard to auxiliary variables) is defined as follows: 

 

   ( ) ( ) 1,0z
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xx .               (3.199) 

 
Rousseeuw and Ruts (1996), Wagner and Kobylińska (2000) showed meth-
ods of checking, if a point xi* was included in a triangle ( )*b*t*i ,, xxx∆  or 

not.  
We say that a mean depth of a sample s in the population U with re-

gard to auxiliary variables is high when the value of z(xs) is close to one. Par-

ticularly, ( ) ( )∑
∈

=
Ui

*iU z
N

1
z xx  determines the mean measure of depth of U in 

U. Hence, the mean depth of a sample s in U can be compared with mean 
depth U in U in the following way:  
 

  ( ) ( )
sUs z)(z xxx −=δ        (3.200) 

 
When δ(xs) is negative, the mean depth of s in U is bigger than U in U. In this 
case, the set of points {xi* : i∈s} is situated close to the center of all points 
from the set {xi* : i∈U-s}. When δ(xs) > 0, the sample s has a small mean 
depth in U. In this case, we can expect that the points from the set {xi* : i∈s} 
should be far from the center of the population U. Finally, if δ(xs)=δ(x), we 
can expect that the points from the set {xi* : i∈s} are "uniformly" distributed 
(spread) among the remaining points from the set {xi* : i∈U-s}. 
 We can treat a sample s as representative with regard to auxiliary 
variables if δ(xs)≤0. Especially, it is reasonable when auxiliary variables  
and the variable under study are highly dependent on each others and our 
purpose is an estimation of the average or median of the variable under study.  
 The definitions introduced above lead to the following criterion 
function of clustering a sample into the set of strata b(a(s)):  
 

  ( )∑
=

−=
H

1h
ShU6 h

z)a,b,(f xx        

(3.201) 
 
where ( )

hShz x  is the mean measure of the depth of a subsample sh in the stra-

tum Uh with regard to auxiliary variables. Minimization of the function f6 
leads to such partitions a(s) and b(a) that the points whose coordinates  
are rows of the matrix 

hSx  are close to the center of the points whose coordi-

nates are rows of the matrix 
hsUh −x . 
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 Let us consider the following similarity function:  
 

  ( )∑
=

δ=
H

1h
S

2
hU3 h

)a,b(d xx        (3.202) 

where 
  ( ) ( ) ( )

hhh SUSh zz xxx −=δ .       (3.203) 

 
Minimization of the function d3 leads to such sets of sub-samples a(s) and  
to the strata b(a) that the spreads of observations of auxiliary variables in the 
sub-sample sh and the appropriate strata are similar, h=1,...H.  

We can expect that such stratifications should lead to decreasing  
the mean-square error of the estimator ))S((baŷ , given by the expression 

(3.167).  
The considered problems can be straightforwardly generalized in the 

case when an auxiliary variable has more than two-dimensions. When  
this dimension is denoted by k, the number of all k-dimensional simplexes 

including a point xi*  is equal to 








+
−
1k

1N
. Hence, the number of these simplex-

es increases very quickly even in the case when k and N are not too large. 
This limits the applications of the considered method in practice. 

 
 

3.7.5. Clustering algorithm  
 

We are going to present a clustering algorithm which in some sense 
can be treated as a generalization of the well known k-means clustering algo-
rithm. Let a fixed and finite population U be partitioned into the starting set of 

strata denoted by { })o(
H

)o(
1o U,...,Ub = . Let the set of such samples 

{ })o(
H

)o(
1o s,...s)s(a =  that ≠)o(

hs Ø and H,...,1h,Us )o(
h

)o(
h =⊆  and U

H

1h

)o(
hs

=
  

be arbitrarily determined. Next, the value of a vector criterion function 

( )
( )






=

)s(a),a(b,d

)s(a),a(b,f
)a,b(g

)0()0()0(
U

)0(

)0()0()0(
s

)0(
)0(

x

y
 is evaluated. The size of the sub-

sample )o(
hs  is denoted by )o(

hn . Let )o(
hN  be the size of )o(

1hU  for starting t=0: 

Let us note that the considered variables should be standardized if they  
are observed in several scales.  

We say that the partition (b*,a*) is dominated by (b** ,a** ) if and only 
if g(b*,a*)≥g(b** ,a** ). If this inequality as well as g(b*,a*)<g(b** ,a** ) are not 
true, the vectors g(b*,a*) and g(b** ,a** ) do not dominate each other and we say 
that the partitions g(b*,a*) and g(b** ,a** ) do not dominate each other. It is ob-
vious that the solution to our problem is such a subset of admissible partitions 
of the population that vectors of values of the criterion function attached to 
them appropriately are non dominated. In order to explain  
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this problem more precisely let us denote the set of non-dominated values  
of the vector criterion function obtained during the t-th iteration  
by Lt={g(t)(b(t),a(t))}. Let Pt={(b (t),a(t))} be the set of the non-dominated parti-
tions obtained at the end of the t-th iteration. During the t-th iteration, ele-
ments of the population are moved from one stratum to another. This leads to 
new partitions of the population and values of vector of criterion function de-
noted as follows:  

( )( ) ( )( )
( )( )






=+

)t(
k

)t(
k

)t(
kU

)t(

)t(
k

)t(
k

)t(
ks

)t(
)t(

k
)t(

k
)t(

k
)1t(

a,ab,d

a,ab,f
a,abg

x

y
,k=1,...,N     (3.204) 

 

where: 1) if the element 2nands}k{ )t(
z

)t(
z ≤∈ , the partition is not admis-

sible,  

2) when 2nands}k{ )t(
z

)t(
z >∈ , then 

{ }}k{s},k{s;rh,zh;H,....,1h,sa )t(
r

)t(
z

)t(
h

)t(
k ∪−≠≠==      (3.205) 

 
Here, other conditions of partition admissibility can be added, e.g. those de-
fined by thew expression (3.184).  
 

3) if 2nNandsU}k{ands}k{ )t(
z

)t(
z

)t(
z

)t(
z

)t(
z ≥>−∈∉  then 

 

{ }}k{U},k{U;rh,zh;H,....,1h,Ub )t(
r

)t(
z

)t(
h

)t(
k ∪−≠≠==          (3.206) 

 
Next,  

1) when for each ( ) tLa,bg ∈  the inequality ( ) ( )a,bga,bg )t(
k

)t(
k

)t( >   

is fulfilled, the partition ( ))t(
k

)t(
k a,b  is dominated by the set  

of the partitions Pt, and ( ))t(
k

)t(
k a,b  is rejected as the solution  

to our problem,  

2) if for each ( ) tLa,bg ∈  the inequality ( ) ( )a,bga,bg )t(
k

)t(
k

)1t( <+  is true, 

the partition ( ))t(
k

)t(
k a,b  dominates each partition belonging to the set Pt 

and we state that Pt= ( ))t(
k

)t(
k a,b ,  

3) when it is not true that for each ( ) tLa,bg ∈  ( ) ( )a,bga,bg )t(
k

)t(
k

)t( >   

and ( ) ( )a,bga,bg )t(
k

)t(
k

)t( < , the partition ( ))t(
k

)t(
k a,b  does not dominate 

any partition from the set Pt and none of the  partitions from the set Pt 

dominates the partition ( ))t(
k

)t(
k a,b . Hence, the partition ( ))t(

k
)t(

k a,b   

is added to the set Pt.  
 
The (t+1)-th iteration of the clustering algorithm is terminated when k=N.  
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Let us underline that at the end of a t-th iteration t1t PP ⊂−   

or the one element set of non-dominated partitions can be obtained,  
so t1t PP ≠− . In this case the next iteration can be started. The clustering algo-

rithm is terminated at the t-th iteration if t1t PP =+ . The iteration process can 

be stopped when t=T where T is an admissible number of iterations, usually 
determined by the efficiency and speed of computer systems.  
 The presented algorithm leads to the set of partitions PT optimal only 
in the local sense. Moreover, the obtained set PT is not necessarily the set  
of non-dominated partitions. It can be only the locally an optimal set.  

The set of non-dominated solutions Pt can include more than one 
partition but in practice we need only one of them. In order to find the unique 
partition, the next criterion should be defined. Sometimes such a criterion 
function is called the super-criterion. For instance, minimization of the func-
tion fi or di in the set PT leads to the unique partition. Of course,  
the clustering algorithm is simplified when instead of the vector criterion 
function a scalar function is considered.  

Let us suppose that one of the variants of the presented clustering al-
gorithm leads to the following partition of a population into the set of strata 

{ }#
H

#
1

# U,...,U)s(P =  and the partition of a sample s into the system  

of subsamples { }#
H

#
1

# S,...,S)s(a = . The estimator ))S(a(bŷ  defined by the ex-

pression (3.167) takes the form 
 

 
))S(a(b ##ŷ

N

N
w,yw

#
h

h#

H

h
sh# #

h

== ∑
=1

.                  (3.207) 

 

where:  #
hN  is the size of the stratum #hU . 

The variance of the statistic 
))S(a(b ##ŷ  can be estimated e.g. by means  

of the methods of bootstrap or jackknife as we mentioned earlier.  
The proposed estimator can be useful in the case when values  

of auxiliary variables are known in all population. Such data can derived from 
administrative registers or a census. Moreover, the estimators can be applied 
in the second phase of two-phase survey sampling when in the first phase 
sample values of auxiliary variables are observed. A similar situation  
is in the case of some rotation sampling designs when surveys are represented 
on at least two occasions.  

Let  us  note  that  some  other  methods of clustering a population 
can be applied in order to make up reasonable partitions of a sample as well 
as of the population.  



 
 
 
 

IV. CLUSTER SAMPLING 
 
 
4.1. Basic definitions and notation 
 

A fixed population of the size N is denoted by Ω={1,2,...,N}. Let  
us assume that the population Ω is divided into G such mutually disjoint clus-

ters Ωp (p=1,...,G) that Ω=Ω
=
U
G

1p
p . If each cluster is of the same size  

denoted by M, the population Ω  is of the size N = GM. Let S be the cluster 
sample of the size g. The random sample  S is drawn according to the follow-
ing design:  
 

1

g g

G
)s(P

−









= .  

 

A k-th outcome of an i-th variable is denoted by yik. The sum of observations 
of an i-th variable in a p-th cluster is as follows: 
 

∑
Ω∈

=
pk

ikip yz .  

 
The mean value of an i-th variable in a p-th cluster is: 
 

ipip z
M

1
y = . 

 

The mean value of  an i-th variable per cluster is:  
 

∑
=

=
G

1p
ipi z

G

1
z . 

 
The population mean of an i-th variable takes the following form: 
 

∑
=

=
G

1p
ipi z

N

1
y . 

 
The variance-covariance matrix is denoted by: C*  = [c* (yi ,yj)], where: 
 

( ) ( )( )∑ ∑
= Ω∈

−−
−

=
G

1p k
jjkiikj*

p

yyyy
1N

1
c y,yi . 
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The variance-covariance matrix of cluster sums is denoted by: 
C*(z) =[c*(zi,zj)], where: 
 

( ) ( )( )∑
=

−−
−

=
G

1p
jjpiipji zzzz

1G

1
,c zz* . 

 
The estimator of the vector [ ]m1 yy K=y  is defined as the vector 

[ ]mgSgS1gS yy K=y , where:  

 

  ∑ ∑∑
∈ ∈Ω∈

==
Sp Sp

ip
k

ikigS z
gM

1
y

gM

1
y

p

.        (4.1)  

 
The vector gSy  is the unbiased estimator of the mean vector y .  

A covariance of the estimators jgSigS y,y  (i≠j=1,...,m) can be derived 

similarly to a variance of the statistic igSy  (i=1,...,m)24 : 

 

  ( ) ( )ji*2jgSigS c
GgM

gG
y,yCov z,z

−=           (4.2)  

 
The variance-covariance matrix of the gSy  can be written down in 

the following way:  
 

  ( ) )(
GgM

gG
Py *2ggS z, CV

−=            (4.3) 

where: C*(z)=[ c*(zi ,zj)]. 
 

The unbiased estimator of the covariance is obtained through  
substitution of the following statistic for the parameter c*(zi ,zj): 
 

( ) ( )( )∑
∈

−−
−

=
Sp

jjpiipjiS* zzzz
1g

1
,c zz .  

 
 
4.2. The matrix of coefficients of within-cluster correlation 
 

The covariance c* (zi ,zj ) can be decomposed in the following way25: 
 

( ) ( ) ( ) ( ) ( )[ ]w
ijijjiji* r1Mrvv

1G

1N
,c −+

−
−= yyzz **           (4.4) 

                                                           
24  See e.g. Cochran (1963), Konijn (1973).  
25  See e.g. Cochran (1963), Konijn (1973), Zasępa(1972).  
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where:   
( )

( ) ( )j*i*

ji*
ij

vv

,c
r

yy

yy
= , 

 

   ( )
( ) ( )
( ) ( )j*i*

ji
w

w
ij

vv

,c

yy

yy
r = ,           (4.5) 

 

( ) ( ) ( )( )∑ ∑∑
= Ω∈≠

−−
−−

=
G

1p 1k
jjliiki

p

yyyy
)1)(M1(N

2
,c j

w yy           (4.6) 

 

The parameter ( )w
iir  is the coefficient of the within-cluster correlation  

of the i-th variable. Similarly, the parameter ( )w
ijr  can be named the coefficient 

of the within-cluster correlation of the i-th and j-th variables.  

The coefficient ( )w
iir  takes values from the interval26: 1;

1M

1

−
− .  

On the basis of the expressions (4.4) and (4.2), we have: 
 

( ) ( )[ ]w
ijijj*i*2jgSigS )r1(Mr)()v(v

Gg)M1(G

g))(G1(N
y,yCov −+

−
−−= yy .         (4.7) 

 

Let ( ) ( )[ ]w
ijr=wR  be the matrix of the coefficients of within-cluster correlation 

and let [ ]ijr=R  be the matrix of the correlation coefficients. The diagonal 

matrix of the variances of the variables is: D∗=diagC∗. Hence,  
the expression (4.7) leads to the following covariance matrix of the vector 

gSy : 

 

( ) ( ) ( )( ) 2
1

*DRRDyV w
*2ggS 1M

Gg)M1(G

g))(G1(N
,P 2

1 −+
−

−−= .          (4.8) 

 
If  N and G are large, then: 
 

 ( ) ( ) ( )( ) 2
1

2
1 w, DRRDyV 1M

Mg

1
PggS −+≈            (4.9) 

 

where:  *N

1N
DD

−= .  

 
 

                                                           
26

 See e.g. Cochran (1963), Konijn (1973). 
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The standardized value of the outcome yik is as follows: 
 

 
( )y*

iik
ik

v

yy
h

−= .          (4.10) 

 
Hence, on the basis of the expressions (4.5) and (4.6), the coefficient  
of within-cluster correlation can be rewritten in the following way:  

 

( )
( )( )∑ ∑∑

= Ω∈≠−−
=

G

1p 1k
jlik

w
ij

p

hh
1M1N

2
r                          (4.11) 

 
Let h=[hij] be an N×m matrix of data, where hij is an i-th observation  
of a j-th variable.  The first M rows of the matrix h consist of observations  
of the standardized variables in the first cluster, the next M rows  
of this matrix consist of observations of variables in the second cluster  
and so on. Let Jb be the column b×1 vector, consisting of b elements,  
all equal to one. The Kronecker matrices' product is denoted by ⊗. Hence,  
the expressions (4.10) and (4.11) lead to the following formula: 
 

  ( )
( )( ) ( )hIBBhR N

TTw

1M1N

1 −
−−

=         (4.12) 

 
where: 

   2
1−= AyDh ,         (4.13) 

 

T
NNN N

1
JJIA −= ,  T

MN JIB ⊗= . 

 

Let P be such an orthogonal matrix that ( )
R

wT DPRP = , where DR  

is the diagonal matrix which consists of the eigenvalues of the matrix R(w). 
They are denoted by dRi (i=1,...,m). Hence, on the basis of the expression 
(4.12), we have: 
 

 ( )( ) ( )uIBBuD N
TT

R 1M1N

1 −
−−

=         (4.14) 

 
where u = hP. The expression (4.13) leads to the following one:  
 

   PAyDu 2
1−= .          (4.15)  

 
Hence, the diagonal element dRi of the matrix DR is the coefficient of within-
cluster correlation of an i-th variable. Their observations create the i-th  
column of the matrix u. The matrix u is the linear transformation (expressed 
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by the formula (4.15)) of the data matrix y. The well known properties  
of the coefficient of within-cluster correlation (see. e.g. Konijn  (1973)) lead 
to the conclusion:  
 

 m,,1i,1d
1M

1
Ri K=≤≤

−
−          (4.16)  

 
where:  
 

   
( )

( )i

iw
Ri v

v
1d

u

u
−= ,         (4.17)  

 

( ) ∑ ∑∑ ∑
= Ω∈= Ω∈

=−=
G

1p k
ik

G

1p
i

k

2
iiki

pp

u
N

1
u,uu

N

1
)(v u ,       (4.18) 

 

( ) ∑∑ ∑
Ω∈= Ω∈

=−
−

=
pp k

ik

G

1p
ip

k

2
ipikiw u

M

1
u,uu

)1M(G

1
)(v u .       (4.19) 

 
The within-cluster variance is denoted by vw(ui). Hence, the coefficient dRi  

is the ratio of the within-cluster variance and the order variance. Similarly  
to the one-dimensional case (see e.g. Konijn (1973), p. 225-227), the follow-
ing properties can be derived: 
 

 ( ) 2
1

2
1

wm
w

M

1 −−







 −= DCCDR          (4.20)  

or:    

  ( ) ( ) 2
1

2
1

w
w −− −= DCCDR          (4.21) 

 or:  

  ( ) ( ) 2
1

2
1

m
w M

1M

1 −− −
−

= DCCDR         (4.22)  

 

where *N

1N
CC

−=  and ( )[ ]jmm c y,yi=C is the between-cluster matrix  

of the covariances, where: 
 

 ( ) ( )( )∑
=

−−=
G

1p
jjpiipjm yyyy

G

1
c y,yi .        (4.23)  

 
The within-cluster matrix of the covariances is denoted by ( )[ ]jww c y,yi=C , 

where: 
 

( ) ( )( )∑ ∑
= Ω∈

−−
−

=
G

1p k
jpjkipikjw

p

yyyy
)1M(G

1
c y,yi . 
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The well known properties of the matrix determinant and the expressions 
(4.21), (4.22), (4.14) let us prove the following theorem:  

Theorem 4.1: Let the matrices C and Cw be positive semi-definite. 
Hence, a) if the matrix R(w) is positive semi-definite, then detC≥≥≥≥detCw and 
dRi≥0, for i=1,...,m; b) if R(w) is negative semi-definite, then detC≤detCw and 
dRi≤0 for i=1,...,m. These inequalities become sharp if the matrix R(w)  
in the case a) is positive definite and in the case b) is negative definite. 

We can say that the within-cluster spread of observations of a multi-
dimensional variable is less than their population spread if the matrix R(w)  
is positive definite. When R(w) is negative definite, then we say that the popu-
lation spread of values of a multidimensional variable is less than their within-
cluster spread.  
 
 
4.3. Homogeneity coefficient of a multidimensional variable 
 

Similarly to the one-dimensional case27, the variance-covariance ma-
trix C* can be decomposed in the following way: 
 
  (N-1)C*=GCm+(N-G)Cw.         (4.24) 
 
The matrix C*(z) can be rewritten as follows:  
 

  mz CC
1G-

MG
)=(* .                       (4.25) 

 
This expression and the equation (4.24) lead to the following result:  
 

( )w** -(N-G))1(N-
1G-

M
)=( CCC z . 

 
Provided the matrix C is nonsingular, we have:  
 

  








−
−+ ∆∆∆∆

1G

GN
M)( ** ICC =z          (4.26) 

where:  

  ∆∆∆∆=I - 1
*
−C Cw.              (4.27) 

 
In the case of a one-dimensional variable yi, when C* is reduced  

to the variance v and Cw  is the within-cluster variance vw, the matrix ∆∆∆∆  
is reduced to the homogeneity coefficient28: 
 

                                                           
27 See e.g. Cochran (1963), p. 240. 
28 See Särndal, Swenson, Wretman (1992), p. 130. 
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 ( ) ( )
( ) ( ) 1y

GN

1G
,

yv

yv
1y i

i*

iw
i ≤δ≤

−
−−−=δ         (4.28) 

 
where:  

( ) ( ) ∑ ∑∑ ∑
= ∈= ∈

=−
−

=
G

1p k
ik

G

1p
i

k

2
iiki*

pp

y
N

1
y,yy

1N

1
v
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y ,       (4.29) 

 

( ) ∑∑ ∑
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=−
−

=
pp k

ik

G

1p
ip

k

2
ipikiw y

M

1
y,yy

)1M(G

1
)(v

ΩΩΩΩΩΩΩΩ
y .        (4.30) 

 
Then, the matrix ∆∆∆∆ can be treated as a generalization of the homo- 

geneity coefficient δ. That is why the matrix ∆∆∆∆ can be named homogeneity  
matrix of a multidimensional variable. 

Theorem 4.2.: If the variance-covariance matrix C* is non-singular, 
the eigenvalues λi (i=1,...,m) of the matrix ∆∆∆∆ fulfill the following inequalities:  
 

 1
GN

1G
i ≤λ≤

−
−− , for each i=1,...,m        (4.31) 

 
Proof: The characteristic equation for the matrix ∆∆∆∆ can be trans-

formed as follows:  
 
   |∆∆∆∆-λI|=0,          (4.32) 
 

   |I- 1
*
−C Cw-λI|=0, 

 

   | 1−
*C Cw-κI|=0          (4.33) 

 

where κ=(1-λ). Since the matrix 1
*
−C Cw is positive semi-definite, its eigen-

values κi≥0 for each i=1,...,m. Hence, the eigenvalues of the matrix ∆∆∆∆  
are: λi≤1 for each i=1,...,m. 

Since the matrix Cm is positive semi-definite, the equation (4.24) 
leads to the matrix 
 

A1=(N-1)C*-(N-G)Cw 

 
which is positive semi-definite, too. Because the matrix C* is positive  
definite the following matrix is positive semi-definite:  
 

w
1

1
1

2 GN

1N

GN

1
CCIACA −− −

−
−=

−
= . 
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After several simple algebraic transformations we have: 
 

  IA
GN

1G
2 −

−+= ∆∆∆∆ .          (4.34) 

 
Let us do the following transformations:  
 

|∆∆∆∆-λI|=0, 
 

−
−
−+ I
GN

1G∆∆∆∆ II λ−
−
−
GN

1G
=0, 

 
   |A2-ςI|=0          (4.35) 
 
where: 
 

   λ+
−
−=ς
GN

1G
.          (4.36) 

 
Since the matrix A2 is positive semi-definite, the eigenvalue ςi≥0 for each 

i=1,...,m. Hence, on the basis of the expression (4.36) we have: 
GN

1G
i −

−−≥λ  

for i=1,...,m. This completes the proof. 
We can say that the within-cluster spread of observations  

of a multidimensional variable is less than their population spread  
if the matrix ∆∆∆∆ is positive definite. When ∆∆∆∆ is negative definite, then we say 
that the population spread of values of a multidimensional variable is less 
than the within-cluster spread. 
 
 
4.4. Accuracy of cluster sample mean vector in relation  

to simple sample mean vector 
 

Let Sy be the vector of the mean from the simple random sample  

of the size n, selected without replacement from a  population of the size N. 
Its variance-covariance matrix is of the following form: 
 

 ( ) 2
1

2
1

***3S Nn

nN

Nn

nN
P, RDDCyV

−=−=          (4.37) 

 
where P3 is defined by the expression (1.28).  

If the number of clusters gM   and  n=G ∞→ , then, on the basis  

of the expression (4.9), we have: 
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 ( ) ( ) ( ) 2
1

2
1

*
w

*3SggS gM

1M
P,P, DRDyVyV

−=− .        (4.38) 

 

This result leads to the following property.  
Theorem 4.3: Let a fixed population be divided into mutually dis-

joint clusters and let each cluster be of the same size. Hence, if  ∞→G , 

 ∞→N , 
G

N
=const and the matrix R(w) is negative semi-definite (positive 

semi-definite), the strategy ( )ggS P,y  is not worse (not better) than  

the strategy ( )3S P,y .  

This theorem as well as the expressions (4.38) and (4.8) lead  
to the following conclusions: 
 

( )
( ) ( ) ( )( )w

ii
3Si

2

ggSi
2

i0 r1M1v
P,yD

P,yD
e −+== , i=1,...,m ,       (4.39) 

 

( )
( )

( ) ( )( )
R

RR
yV

yV

det

1Mdet

P,det

P,det
e

w

3S

ggS
1

−+== ,        (4.40)  

 

 
( )
( )

( ) r~ar
P,q

P,q
e

m

1i
i

w
ii

3S
2

ggS
2

2 === ∑
=y

y
          (4.41)  

 

where: 
 

( )
( )∑

=

=
m

ai
i

i
i

v

v
a

y

y
, 

 

  
( )
( )3S1

ggS1
3 P,

P,
e

y

y

λ
λ

= .          (4.42) 

 

where λ1(.,.) is the maximal eigenvalue of a variance-covariance matrix  
of a strategy. Hence, on the basis of the theorem 4.3, we conclude that  
if the matrix R(w) is positive definite (negative definite), the strategy ( )ggS P,y  

is less (more) accurate than the strategy ( )3S P,y  in the sense  

of the above defined coefficients of relative efficiency. Particularly, if R(w)  
is negative definite, then ek<1 for k=1,2,3 and e0i≤1 for i=1,...,m and e0j<1  
for at least one index j=1,...,m. The strategy ( )ggS P,y  can be better than  

the strategy ( )3S P,y  if it is possible to cluster a population in such a way  

that the within-cluster spread of values of the multidimensional variable (un-
der research) is bigger than the population spread of observations  
of these variables.  
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Let Sy be the vector of the mean from the simple random sample  

of the size n, selected without replacement from a population of the size N. Its 
covariance matrix is of the following form: 
 

( ) *3S Nn

nN
Py CV

−=, . 

 
On the basis of the equations (4.3) and (4.26) we have:  

 

 ( ) 








−
−+−= ∆∆∆∆

1G

GN

GgM

gG
Py *ggS ICV , .         (4.43) 

 
Under the assumption that GM=N and gM=n:  

 

( ) 








−
−+−= ∆∆∆∆

1G

GN

Nn

nN
Py *ggS ICV , . 

Hence:  

 ( ) ( ) ∆∆∆∆*ggS3S 1G

GN

Nn

nN
P,P, CyVyV

−
−−−=− .  

or 

( ) ( ) )(
1G

GN

Nn

nN
P,P, w*ggS3S CCyVyV −

−
−−−=−  

 
This leads to the following theorem:  

Theorem 4.4. If the matrix (C*-Cw) is negative semi-definite (posi-
tive semi-definite) then the strategy ( )ggS P,yV  is not worse (better) than the 

strategy ( )3S P,yV . Particularly, if the matrix C* is nonsingular  

and the ∆∆∆∆ is negative semi-definite (positive semi-definite) then the strategy 
( )ggS P,yV  is not worse (better) than the strategy ( )3S P,yV .  

Hence, the strategy ( )ggS P,yV  is not worse than the strategy 

( )3S P,yV , if the within-cluster spread of a multidimensional variable repre-

sented by the matrix Cw is larger than its population spread represented by the 
matrix C. 

The relative efficiency coefficients are as follows:  
 

( )
( ) ( )i

3Si
2

ggSi
2

i0 y
1G

GN
1

P,yD

P,yD
e δ

−
−+== , i=1,...,m.        (4.44) 

 
where δ(yi) expresses the formulas (4.28)-(4.30). 
 

 
( )
( ) 
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
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GN
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1 I
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.         (4.45) 
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( )
( ) δ
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1
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e

3S
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2 yV

yV
.         (4.46) 

 
where: 

∑
=

δ=δ
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1i
ii a)y( ,  

( )
( )∑
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m
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i

v

v
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, 

 

  
( )
( )3S1

ggS1
3 P,

P,
e

y

y

λ
λ

= .          (4.47) 

 
Hence, on the basis of the theorem 4.4 and the well known matrix properties, 
we conclude that if if the matrix C* is nonsingular and the matrix ∆∆∆∆  
is negative definite, then ek<1 for k=1,2,3 and e0i≤1 for i=1,...,m and e0j<1  
for at least one index j=1,...,m.  

On the basis of the expression (1.57) we evaluate the deff-coefficient:  
 

( ) ( ) ( )1S
1

ggSggS P,P,P,deff yVyVy −=  

 

  ( ) =ggS P,deff y ρ 



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
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


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−
− ∆∆∆∆
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GN

1N

nN
I         (4.48) 

 
Hence, the ( )ggS P,deff y  is equal to the maximal eigenvalue of the matrix 










−
−+

−
− ∆∆∆∆

1G

GN

1N

nN
I . The eigenvalues of this matrix are evaluated  

in the following way:  
 

0
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nN =κ−
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

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

−
−+

−
−

II ∆∆∆∆  

 
This equation is equivalent to the following  
 

0=λ− I∆∆∆∆  

where:  
 


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This and the theorem 4.2 lead to the following inequalities: 
1G

1N
0

−
−≤κ≤ . 

Hence:  

   ( )
1G

1N
P,deff0 ggS −

−≤≤ y         (4.49) 

 
The strategy ( )ggS P,y  can be better than the strategy ( )3S P,y  

if it is possible to cluster a population in such a way that the matrix (C*-Cw) is 
negative definite. It means that the within-cluster spread of values of the mul-
tidimensional variable (under research) should be bigger than the population 
spread of observations of those variables. Hence, if it is possible  
a population should be clustered into such clusters that intra-cluster spread  
of variables under study is large as possible. The clustering algorithm pro-
posed by Wywiał (2002a) can lead to realisation of this postulate.  
 
 
4.5. Prediction of population average under the regression 

superpopulation model 

 
Let us consider the regression superpopulation model defined  

by the equations (1.19)-(1.21). In the case of a one-dimensional variable un-
der study this model is defined by the vector: Y=[Y

1
...Y

N
], where Y

k
  

is attached to the k-th element of a population Ω={1,...,N}. The probability 
distribution of the vector Y has the following properties :  
 

 Y
k
=β

o
+x

k
ββββ+U

k
, k=1,...,N         (4.50) 

 
where: xk=[xk1...xkm] is a vector of observations of auxiliary variables.  

It is attached to the k-th element of a population. Let ββββT=[β1...βm]  

be the vector of regression parameters. Let us assume that: 
 
  E(Y

k
)=µ

k
=β

o
+ x

k
ββββ,  E(U

k
)=0, 

 

 D
2
(Y

k
)=D

2
(U

k
)=σ

2
,  Cov(Y

k
,Y

l
)=Cov(U

k
,U

l
)=0 

 
where:  k≠l=1,...,N. 

The problem is the prediction of the population mean defined  
by the following expression:  

∑=
=

N

i
iY

N
Y

1

1
. 

 
It is predicted by means of the strategy ( )ggS P,Y , where: 
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∑
∈

=
Sp

pgS Z
Mg

1
Y          (4.51) 

 
where:  

∑
Ω∈

=
pk

kp YZ . 

 

Wywial (1993) proved that ( )ggS P,Y  is p-ξ unbiased predictor  

of the mean Y  and  
 

EE ( ) 


 +−=− ∗ ββββββββ )(
M

1
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gG
YY T2

gS aC )2
σ         (4.52) 

 
where:  
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1
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iki a

M

1
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E(.) is the expected value evaluated on the basis of probability distribution 
determining the superpopulation model and E(.) is determined by sampling 
design. 
 

If  
ββββββββ

ββββ
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=e , EE ( ) 



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ββββββββ )2
σ .  

 

This and the property:  
 

λ1= { }eaCeeaCe
eeT

)(max)( T

1
1

T
1 ∗

=
∗ =  

 

lead to the following inequality:  
 

 EE ( ) 


−≤−
MgN

gG
YY

T
2

gS

ββββββββ



+ 2
1 σλ .                     (4.53) 

 

Let us consider the regression model for h-variables under study.  
It is described by the expression (1.20)-(1.21) for ρ=0. Let us additionally as-

sume that Cov(Uij,Utk)=0 for i≠t=1,...,N and j,k=1,...,h and D2(Uij)=
2
jσ   

for i=1,...,N. Our purpose is prediction of the average vector [ ]m1 Y...Y=Y   

by means of the vector [ ]mgSgS1gS Y...Y=Y , where jgSY , j=1,...,h,  

is determined by the expression (4.51) for the j-th variable under study.  
The strategy ( )ggS P,Y  is p-ξ unbiased for the vector Y  and  
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EE ( ) 

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and 

EE ( )





−≤− ∗∗

MgN

gG
YY j

T
j2

gS

ββββββββ



σ+λ 2
j1         (4.55) 

 
for j=1,...,h. Hence a population should be clustered into G clusters (each  
of the size M) in such a way that the maximal eigenvalue of the variance-
covariance matrix C*(a) is minimal. Let us note that Wywiał (1991) consid-
ered the problem of the prediction in the particular case when  
an auxiliary variable is one-dimensional.  
 
 
4.6. Clustering algorithm  
 

Let W={Ωp} be a set of such G disjoint clusters of a fixed population 

that Ω Ωp
p

G

=
=

1
U . Each cluster consists of the same number M of elements. Our 

purpose is to find such a set W where a criterion function f(W)=minimum. 
Particularly:  
 

f1(W)=trC∗∗∗∗ (z), f2(W)=detC∗∗∗∗ (z) or f3(W)=λ1(C∗∗∗∗(z))       (4.56) 
 
where C∗∗∗∗ (z) is expressed by the beginning of the paragraph 4.1. It is easy  
to demonstrate that if fi(W)=minimum, the relative efficiency coefficient 
ei=minimum, i=1,2,3, too. To determine the set W, we can construct  
the following iterative algorithm. Let W0={Ω10,...,ΩG0} be an arbitrary start of 
divisions of the population. Let Wt={Ω1t,...,ΩGt} be the set of clusters result-
ing from the t-th iteration of the clustering algorithm. Let h-th and k-th popu-
lation elements belong to the clusters Ωi,t and Ωj,t, respectively. So, h∈Ωi,t and 
k∈Ωj,t. Cluster created during the (t+1)-th iteration are denoted by Ωi,t+1(h,k) 
and Ωj,t+1(k,h). They are obtained in the following way:  
 
Ωi,t+1(h,k)= Ωi,t -{h} ∪{k}, Ωj,t+1(k,h)= Ωj,t -{k} ∪{h}.       (4.57) 
 
Hence, the h-th population element is moved from the cluster Ωi,t  
to the cluster Ωj,t and the k-th (k≠h) element is moved from the cluster Ωj,t  
to the cluster Ωi,t. Let us introduce the following set:  
 

Wk+1(h,k)={Wt -Ωi,t -Ωj,t, Ωi,t+1(h,k), Ωj,t+1(h,k)}.        (4.58) 
 

Hence, at the end of the (t+1)-th iteration, the optimal set of clusters  
is obtained through the minimization of the criterion function in the following 
way:  
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Wk+1= Wk+1(h,k): fa(Wk+1(h,k))= ( ){ })k,h(Wfimumminimummin 1ta
N,...,1hhk;N,...,1k

+=≠=
 

 (4.59) 

where the criterion function fa can be chosen according to one of the functions 
defined in the expression (4.56). The iterative clustering algorithm should  
be continued until the time when any two elements of a population  
are not moved from one cluster to another or the number of the iterations 
reaches the admissible level which is usually assigned arbitrarily.  

Sarndal, Swenson and Wretman (1992) considered the population 
which consists of 284 municipalities in Sweden. They considered the data  
on three variables observed in this population: revenues from the 1985 munic-
ipal taxation (in millions of kronor), number of municipal employees  
in 1984, real estate values according to 1984 assessment (in millions  
of kronor). We denote them by  y1, y2, y3,  respectively.  

The mean value of these variables can be estimated on the basis  
of the vector of a simple sample mean or the vector of the simple cluster sam-
ple. Both samples are drawn without replacement. We are going  
to compare the accuracy of these strategies on the basis of the above results.  

The population means of the variables y1, y2, y3  
are [ ]321 yyy=y = [245.3415   1774.1585   3073.6585]. The correlation 

matrix of these variables is as follows: 
 

















=

1.0000    .9395     .9356     

.9395     1.0000    .9988     

.9356     .9988     1.0000    

R  

The population was divided into 71 clusters. Each cluster consists  
of 4 elements. Let us consider two divisions of this population into clusters. 
The first division is quite arbitrary because the clusters consist of elements 
which are usually neighbours (see: Särndal at al (1992)). This division  
is denoted by W0. The second division will be called an optimal one because 
it was obtained in the following way: the population is divided according  
to the criterion expressed by the equation (4.59) where fa=f3 is given  
by the expression (4.56). Hence, clusters are selected in such a way  
that the maximal eigenvalue of the variance-covariance matrix C(z) ap-
proaches the minimum. The optimal division of the population is denoted by 
W. The table 4.1 represents the results of the estimation of the mean value on 
the basis of the strategies ( )3S P,y  and ( )ggS P,y . The second strategy  

is considered for two divisions of the population into clusters. They have been 
denoted by W0 and W, respectively. In the last two columns  
of the table 1 there are values of the relative efficiency coefficients defined  
by the expressions (4.44)-(4.47) in the cases of the divisions W0 and W, re-
spectively. The simple sample strategy without replacement ( )3S P,y   

is considered for the sample size n=40. The strategy ( )ggS P,y  is studied under 

the sample size g=10 and the size of clusters M=4. Then n=Mg. 
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Table 4.1 
 

accuracy 
parameter 

3S P,yT =  0ggS W,P,yT =  W,P, ggSyT =

 
ei(W0) ei(W) 

D(T1) 87.4 91.8 76.7 90.6 129.9 

D(T2) 623.5 654.7 544.1 90.7 131.3 

D(T3) 695.8 766.4 533.9 82.4 169.8 

q(V(T)) 938.3 1012.2 766.1 92.7 122.5 

det(V(T)) 3.83E+11 6.072E+11 2.522E+11 63.1 152.0 

λ1(V(T)) 854056.8 992954.4 563846.8 86.0 151.5 

 
The analysis of accuracy of estimation results, recorded in the table 

4.1, leads to the following conclusions. In the case of the division W0  
of the population, the strategy ( )3S P,y  is better than the strategy ( )ggS P,y .  

In the case of the optimal division W, the strategy ( )ggS P,y  is better than  

the strategy ( )3S P,y . Then, the special clustering method, introduced here, 

leads to an increase in the relative efficiency of the simple cluster sampling 
strategy.  
 
 
4.7. Two phase sampling for clustering 
 
 A simple sample w of the size n is selected without replacement  
from a population Ω of size N. In this sample, auxiliary variables are ob-
served. The space of these samples is denoted by W. On the basis of the aux-
iliary variables, the sample w is divided into G clusters: Ωh(w), h=1,...,G. The 
clusters are disjoint and each of them is of the same size m. The problem  
of a clustering criterion will be considered later. Next, the simple cluster 
sample s of the size g is selected from the set of clusters {Ωh(w), h=1,...,G} 
Finally, values of the variable under study are observed in the sample s.  
Let us note that s,w are outcomes of random samples S and W, respectively.  

 The population mean ∑
=

=
N

1i
iy

N

1
y  is estimated by means of the sta-

tistic:  
 

  ∑∑ ∑
∈∈ Ω∈

==
Sp

p
Sp )w(k

kS z
gm

1
y

gm

1
y~

p

    (4.60) 

 
where:  
 

∑
Ω∈

=
)w(k
kp

p

yz . 
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The sample mean is denoted by:  

∑
∈

=
wk

kw y
n

1
y .    (4.61) 

 
The expected value of the statistic Sy~  is derived as follows:  

 
 ( ) ( ) ( ) yyEy~EEy~E WWSW/SWS === .    (4.62) 

 
Hence, the statistic Sy~  is a p-unbiased estimator of the average y . Its mean 

square error is derived in the following way:  
 

( ) ( ) ( )[ ] =−+−=− 2
WSW/SW

2
S yyyy~EEyy~E  

 

( ) ( )W
2
WS

2
W/SW yDW|y~DE += .    (4.63) 

 
The conditional variance and its expected value can be expressed  
as follows29: 

( ) ( ) )w|z(v
Ggm

gG
wW|y~Dw|y~D S

2
w/SS

2
w/S ∗

−===                 

(4.64) 
where:  
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1
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1
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2
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N
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It is well known that the variance of the simple sample mean is as follows:  
 

   ( ) )y(v
Nn

nN
yD W

2
W ∗

−=     (4.67) 

 

where:  

( ) ∑∑
Ω∈Ω∈

∗ =−
−

=
k

k
k

2
k y

N

1
y,yy

1N

1
)y(v .   (4.68) 

 
Then on the basis of the expression (4.63), we have:  
 

 ( ) ( ) )y(v
Nn

nN
)w|z(vE

Ggm

gG
y~D WS

2
∗∗

−+−= .   (4.69) 

                                                           
29

 See e.g. Särndal, Swenson, Wretman (1992).  
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 The following statistic is an unbiased estimator of the variance 

( )S
2 y~D :  

 ( ) )W|y(v
Nn

nN
)W|z(v

Ggm

gG
y~D̂ S

2
∗∗

−+−=    (4.70) 

where:  

 ( )∑
∈

∗ −
−

=
wk

2
wk yy

1n

1
)w|y(v .     (4.71) 

Let us denote a simple sample of the size mg by A. The sample mean is as 

follows:  

  ∑
∈

=
Ak

kA y
mg

1
y .      (4.72) 

Its variance expressed by the following formula:  
 

  ( ) )y(v
Nmg

mgN
yD A

2
A ∗

−= .                 (4.73) 

 
Then, the expressions (4.69), (4.73) and the assumption that N=mH lead  

to the result:  
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Hence, the estimator Sy~ is more precise than the estimator Ay  if  

 

( ) )y(v)w|z(vEW ∗∗ κ< , where: 111
1

>−−=κ 



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g
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In conclusion, each sample w should be divided into such clusters of the same 
size m that )w|z(v∗  takes a minimal value.  

 The well known regression superpopulation model is being consid-
ered. This model is defined by the expressions (4.50). It is determined as vec-
tor Y=[Y1...YN], where Yk is attached to the k-th element  

of a population Ω={1,...,N}.  
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 The problem is the prediction of the population average ∑
=

=
N
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iYY  

by means of the statistic:  
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The expected value of the statistic gSY
~

 is derived as follows:  

 

E( gSY
~

)=EWES/W( gSY
~

)=EW( WY )= Y , 

 

 EE( gSY
~

)=E( Y )= ∑
=

µ
N

1k
kN

1
=µ.    (4.76) 

 
where E(.) is the expected value evaluated on the basis of probability distribu-

tion determining the superpopulation. Hence, the statistic gSY
~

  

is a p-unbiased and p-ξ unbiased predictor of the average Y . Its mean square 
error is derived on the basis of the expressions (4.50) and (4.63)  
in the following way:   
 

EE( gSY
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- Y )2= EEWES/W[( gSY
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- WY )+( WY - Y )]2 
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−+∗  E ))y(v( ∗ .   (4.78) 

 
 The expected value of the conditional variance v∗(z|w) (computed  
on the basis of the superpopulation distribution) can be expressed  
in the following way30: 

 

E ( )( ) += ∗∗ ββββββββ )a(
m

1 T ww|Zv C σ2                           (4.79) 

 
where a is an m-dimensional auxiliary variable whose a k-th observation  
is as follows:  

∑
∈

=
kUi

ixka , 

 

E ( ) ββββββββ )X()Y( T
∗∗ = Cv +σ2    (4.80) 

                                                           
30

 See Wywiał (1993).  
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The variance-covariance matrix of the variable a in the sample w  
is as follows: 
 

)]w|aa(c[)w|a( ji∗∗ =C  

 
where:  

( )( )∑
∈

∗ −−
−

=
Sp

wjjpwiipji aaaa
1g

1
)w|a,a(c , 

 

 ∑
∈

=
Sp

ipwi a
g

1
a . 

 
The population variance-covariance matrix of auxiliary variables is defined 
by the expression:  

)]xx(c[)( ji∗∗ =XC  

where:  

( )( )∑
Ω∈

∗ −−
−

=
p

iipiipji xxxx
1N

1
)xx(c ,  ∑

Ω∈
=

p
ipi x

N

1
x . 

 
The formulas (4.63)-(4.69), (4.79) and (4.80) lead to the following mean 
square prediction error:   
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where:  
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w
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Hence:  
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where:  

ββββββββ

ββββεεεε
Τ

= . 

 
Let κ1(w) be the spectral radius (the maximal eigenvalue) of the matrix 

( )wK . Hence, the well known properties of matrix eigenvalues lead  

to the following inequality: 
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The conclusion is: the sample w should be clustered in such a way that ( )w1κ  

takes the minimal value. In the previous paragraph we considered  
the clustering algorithm which, in our case, can be implemented to find  
the optimal division of the sample w into disjoint and of the same size clus-
ters.  
 
 
4.8. Conditional intra-cluster coefficient of correlation 
 
 In the paragraph 4.2, the matrix of coefficients of within-cluster cor-
relation of a multidimensional variable X=[x1...xm] is considered. In our case, 
when auxiliary variables are observed in the sample w, it is denoted  

by: [ ])w|(r)w|( )w(
ij

)w( XX =R  where the coefficient of within-cluster corre-

lation between variables xi and xj (i,j=1,...,m) is defined by the following ex-

pression: 

 
)w|(d)w|(d

)w|(c
)w|(r

ji

)w(
ij*)w(

ij XX

X
X

∗∗

=    (4.84) 

 

where the within-cluster covariance of the variables in the sample w  
has the form: 

( )( )∑ ∑
= ∈≠

−−
−−

=
G

1k Uhp
wjjhwiip

)w(
ij*

k

xxxx
)1m)(1n(

1
)w|(c X .    (4.85) 

 

The variance of the variable xi is defined by the expression:  

 

∑
∈
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−

=
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2
iwip

2
i )xx(

1n

1
)w|(d X . 

 

Let [ ])w|(d)w|( 2
i XX ∗∗ =D  be the diagonal matrix of variances of auxiliary 

variables from the sample w and let R(X|w)=[rij (X|w)] be the correlation ma-

trix of these variables, where:  
( )

)w|(d)w|(d

w|d
r

ji

ij
ij XX

X
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∗= , 

 

( ) ( )( )∑
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=
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wjjpwiipij xxxx
1n

1
w|d X ,   

iii
dd ∗∗ =2 . 
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 Under the assumption (see the paragraph 4.2) that 
 

  ( )w|Xi*

wiik
ik d

xx
h

−
= ,                   

(4.86)  
 
we have:  

( )
( )( ) ( )hIBBhR n

TTw

1m1n

1
)w|( −

−−
=X ,   (4.87) 

 
where: 

  [ ] )w|(h 2/1
ij X−

∗== AxDh ,    (4.88) 

 

T
nnn n

1
JJIA −= ,  T

nn JIB ⊗= . 

 
Let P be such an orthogonal matrix that  
 

( ) )w|()w|( )w(wT XX DPRP =  

 

where )w|()w( XD  is the diagonal matrix which consists of the eigenvalues 

of the matrix R(w)(X|w). They are denoted by )w|(d )w(
i X  (i=1,...,m). Hence, 

on the basis of the expression (4.87), we have: 
 

 ( )( ) ( )tIBBtD n
TT)w(

1m1n

1
)w|( −

−−
=X                  

(4.89) 
where: 

   PAxDt 2
1−= .     (4.90)  

 

Hence, the diagonal element )w|(d )w(
i X  of the matrix )w|()w( XD   

is the coefficient of within-cluster correlation of  an i-th variable, whose ob-
servations create the i-th column of the matrix t. Then, 

)w|(r)w|(d )w(
ii

)w(
i XX = . The matrix t is the linear transformation (ex-

pressed by the formula (4.90)) of the data matrix x. The well known proper-
ties of  the coefficient of within-cluster correlation (see. e.g. Konijn (1973)) 
lead to the conclusion:  
 

 m,,1i,1d
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1 )w(
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−
−                   

(4.91) 
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where:  
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The within-cluster variance is denoted by vw(ti). The coefficient )w(
id   

is the function of the within-cluster variance and the ordinary variance. 
Hence, it assesses the degree of within-cluster homogeneity of observation  
in the sample w.  
 Similarly to the one-dimensional case (see e.g. Konijn (1973),  
p. 225-227), the following properties can be derived: 
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      (4.93) 
or: 
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   (4.94) 
or:  
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where )w|(
n

1n
)w|( * XX CC

−= , )w|(
n

1n
)w|( * XX DD

−=  and 

( )[ ]w|c)w|( jmm x,xX i=C  is the between-cluster matrix of the covariances, 

where: 
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The within-cluster matrix of the covariances is denoted by 
( )[ ]w|c)w|( jww x,xX i=C , where: 
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The well known properties of the matrix determinant and the expression 
(4.94) allow us to derive the following conclusion. Let the matrices C(X|w) 
and Cw(X|w) be nonnegative definite. Hence, if the matrix R(w)(X|w)  
is nonnegative definite, then C(X|w) -Cw(X|w) is nonnegative definite  

and )w|(d )w(
i X ≥0, for i=1,...,m. If R(w)(X|w) is nonpositive definite,  

then C(X|w) -Cw(X|w) is nonpositive and )w|(d )w(
i X ≤0 for i=1,...,m.  

If the matrix R(w)(X|w) is positive (negative) definite, then 0)w|(d )w(
i ≥X  

( 0)w|(d )w(
i ≤X ) for all i=1,...,m and there exists at least one index k=1,...,m 

that 0)w|(d )w(
i >X  ( 0)w|(d )w(

i <X ). 

 We can say that the within-cluster spread of observations  
of a multidimensional variable is less than their spread in the sample w  
if the matrix R(w)(X|w) is positive definite. When R(w)(X|w) is negative defi-
nite, we say that the spread of values of a multidimensional variable  
in the sample w is less than their within-cluster spread.  
 The following expressions can be derived31:  
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)w|a( XX (w)
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−= CCC ,   (4.96) 
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        (4.98) 
This result and the expressions (4.81)  and  (4.82) lead  to  the  following 
formula:  
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mgN −+ σ2       (4.99) 

Hence, each sample w has to be clustered in such a way that the quadratic 

form ββββββββ )w|()w(T XC  is negative definite and its value is as short  

as possible. It is similar to dividing the sample w into such clusters that all 

eigenvalues of the matrix )w|()w( XC  are negative and they take values  

as short as possible.  
                                                           
31 See Wywial (1992, 1995).  
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 Let u be a simple random sample selected without replacement  
from a fixed population. The statistic  
 

  ∑
∈

=
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ka Y
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Y                  (4.100) 

 
is a p-unbiased and p-ξ-unbiased predictor of the average Y  and  
 

E ( ) ββββββββ )((
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This formula and expressions (4.97) and (4.99) lead to the following: 
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where:  
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If n and G are sufficiently large, 
G

n

1G

1n ≈
−
−

. Under this assumption,  

we have:  
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Hence, if 
G

n

1G

1n ≈
−
−

 and the expected value of the matrix of within-cluster 

covariances is negative definite, then the predictor gSY
~

 is more precise than 

the predictor AY . Then, each sample should be divided into such clusters  

of the same size that all eigenvalues of the matrix C(w)(X|w) are as short  
as possible.  
 
 
 



 
 
 
 
V. TWO-STAGE SAMPLING 
 
 
5.1. Basic properties 

 
 A fixed population of the size N is denoted by Ω={1,2,...,N}. Let  
us assume that the population Ω is divided into G such mutually disjoint clus-

ters Ωh (p=1,...,G) that Ω=Ω
=
U
G

1h
h . Let Nh be the size of the cluster Ωh. The 

mean size of the clusters is denoted by: ∑
=

=
G

1h
hN

G

1
N .  

Let S be the two-stage sample. At the first stage, g clusters are drawn 
without replacement with a constant probability of inclusion of the first  
and second degrees. Next, the simple sample Sh of size nh is drawn  
from a selected cluster Ωh, where h∈S.  The sampling design is as follows:  
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 Let us consider the strategy ( )dgS P,~y , where ]y~...y~[~

gmSS1ggS =y  
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where: 

∑
∈

=
h

h
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k
h

S y
n

1
y . 

 
 It is well known that the strategy ( )dgS P,~y  is unbiased for the popu-

lation vector of averages y .  The variance-covariance matrix is as follows:  
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−
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−
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where the elements of the matrix C*(z) = [c* (zi, zj)], are determined  
on the page 138 and the elements of the variance-covariance matrix 
C∗h = [c∗h(yi, yj)] are defined by the expression:   
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 The estimator of the matrix )P,~( dgSyV  is as follows:  
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where the elements of the matrices C*S = [c*S(zi, zj)] and C*hS = [c*hS(yi, yj)] 
are defined by the expressions:   
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 Let the two-stage sample S be automatically balanced. So, it means 
that for each h=1,...,G:  
 
    nh = fNh        (5.5)  
 
where 0<f<1 
 

The estimator of the population mean vector is the vector 
]y~...y~[~

gmSS1ggS =y  where:  
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h

y
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Let the sampling design of the two-stage balanced sample be denoted by P'd. 
The expressions (5.2) and (5.5) lead to the following one: 
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The matrix C∗w will be named the intra-cluster variance-covariance matrix. 
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 Let us introduce the following notation y=[y1##...ym##] is the matrix 

of dimensions N×m of variable observations, where 




= T

Gi#

T
1i##i#
...yyy  

is the column vector of dimensions N×1 of observations of an i-th variable  

in the population, where the vector  [ ]T
hiNh1ih#i h

y...y=y  is the sub-vector  

of dimensions Nh×1 of observations of an i-th variable in an h-th cluster. Let 
Ja be a unit vector of dimensions a×1. The sum of the observations of an i-th 

variable in an h-th cluster will be denoted by 
hN

T
h#ihiz Jy= . Let z=[z#1...z#m] 

be the matrix of dimensions G×m, where: [ ]Gii1
T
i# z...z=z . Finally, let DJ  

be the following matrix of dimensions G×N:  
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Hence:  
 z = DJy.           (5.10) 

 The vector ]z...z[ G1=z  is defined as the following function  

of the matrix  z: 

   zJz T
GG

1
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This leads to the following expression  
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On the basis of (5.10) and (5.11), we have:  
 

   yDAzJz JGG =−     (5.13) 

where:  
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GGGG G

1
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2
G AA = .  (5.14) 

The matrix AG is idempotent. This and the expressions (5.12), (5.13) lead  
to the following one:  

    AyyC T=∗ )(z     (5.15) 

where:  
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 The covariances defined by (5.3) can be expressed in the following 
way:  
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This leads to the following expression:  
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where:  
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This derivation can simplify the expression (5.3) in the following way:  
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This lets us rewrite an element of the variance-covariance matrix shown  
by the expression (5.8) in the following way:  
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 Let us define the following matrix:   
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where:  
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This lets us rewrite the expression (5.19) as follows:  
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Hence, the matrix C∗w defined by (5.8) can be determined by the following 
expression:  
 

   ByyC T
w =∗ .     (5.21)  

 

This and (5.15) and (5.7) let us derive the following expression  
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 where: 
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 Let the matrix C∗(z) be positive definite. Let H be such an ortho- 
gonal matrix of degree m that HTH = Im  and 
 

   HTC∗(z) H=Dm.      (5.24) 
 

where: Dm is the diagonal matrix of degree m and consists of the eigenvalues 
dmi>0 (i=1,...,m) of the matrix C∗(z). Let F be such an orthogonal matrix  
of degree m that FTF = Im  and:  
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1/2
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T DFHDHCDF =∗     (5.25)  
 

where: Dw=[di] is the diagonal matrix of degree m consisting of eigenvalues 

of the matrix 1/2
mw

1/2
m HDCHD ∗ . Let  

 

   FHDG 2/1
m= .     (5.26) 

 

This and the equations  (5.24), (5.25) lead to conclusion that [see e.g. Rao 
(1982)]:  
 

 
m
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This leads to the following expression: 
 

( ) 1
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This result lets us rewrite the expression (5.7) in the following way: 
 

  ( ) ( ) ( ) 1
wm

1T'
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where a and b are defined by the expression (5.23).  
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 Let us transform the data matrix y into the matrix u of dimensions 
N×m in the following way:  
 
   u = yG.      (5.30) 
 
The columns of the matrix u can be treated as outcomes of new variables. 
This and the expressions (5.15), (5.21), (5.27), (5.30) lead to the equations: 
Im= uTAu, Dw = uTBu. This lets us rewrite the expression (5.29) in the fol-
lowing way:  
 

  ( ) ( ) ( ) 1TT1T'
dwS baP,~ −− += GBuuAuuGyV .   (5.31) 

 
The diagonal matrix Dw = uTBu is the intra-cluster variance-covariance  
matrix of the variables. Then the diagonal element di of the matrix Dw   

is the intra-cluster variance of the i-th variable whose outcomes are elements 
of the i-the column of the matrix u.  
 When C∗(z) is non-singular, it is possible to make such a decomposi-

tion of the matrix ( )'
dwS P,~yV  that the matrix C∗(z) is transformed  

into a diagonal matrix and the matrix Cw into the unit one.  
 The well known properties of the matrix determinant and the ex- 
pressions (5.23), (5.28), (5.29) lead to the following expressions:  
 

( ) ( )∏
=

∗ +=
m

i

i
'
dwS bda)(detP,~det

1

zCyV , 

 

( ) ∏
=

∗ 







−+

−
=

m

i

ii'
dwS Ggf

dN

g

dN
)(detP,~det

1

11
zCyV .           (5.32) 

 
 Let us assume that elements of the diagonal matrix Dw fulfill  

the inequalities: 
N

d
i

1
0 ≤≤ . Let v∗(zi) and v∗w(yi) be the diagonal elements 

of C∗(z) and C∗w, respectively. Then, the expression (5.7) leads  
to the following one: 
 

 

( ) ( ) ( ) ( )∑∑
=

∗
=

∗

−
+

−
==

m

1h
iw

m

1h
i

'
dwS

'
dwS

2 vN
gf

f1
v

Gg

gG
P,ytrP, yz~~q Vy .  (5.33) 
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Let us introduce the following notation: 
 

   
( )
( )

i

iw
i# v

v
d

z

y

∗

∗= .     (5.34) 

 
If  C∗(z)  is positive definite, then  
 

 ( ) )(tr
G

d
f

f
N)(tr

g
P,y~q #

'
dwS zz ∗∗ −

−
+= 








CC

11
1

12    (5.35) 

 
where:  
 

  ∑
=

=
m

1i
i#i# dwd ,  

( )
( )z

z

∗

∗=
Ctr

v
iw i .    (5.36) 

 
Hence, we can say that #d  determines the mean degree of intra-cluster spread 

of an m-dimensional variable. This spread is larger and larger when the value 

of the coefficient #d  increases. Moreover, the mean radius of the strategy 

( )'
dwS P,~y  is the increasing function of the coefficient #d .  

 
 
5.2. Minimization of the expected costs under fixed accuracy  

of estimation 
 
 Let k1 be the unit cost of preparing the first stage sampling design. 
The unit cost of observations of variables in the second stage sample  
is denoted by k2. In the case of the automatically balanced two stage design, 
the expected total cost function is as follows (see e.g. Konijn (1973), p. 322):  
 
   ( ) gfNkgkf,gk 21 += .    (5.37) 

 
 
5.2.1. Fixed level of risk function  
 
 Let the risk function be the following linear combination  
of the variances of the elements of the vector estimator igS

~y :  
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  (5.38) 
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or if   v∗m(yi) > 0  for each  i=1,...,m:  
 

  ( )








−





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G

1
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1
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1
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where:  
 

( )
i

m

i
im
vaq z∗
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∑=
1

,                 (5.40) 

 

  
( )

m

ii
ii

m

i
i# q

va
w,wdd

~ z∗

=

=′′= ∑
1

.    (5.41) 

 
The coefficient d#i is explained by the expression (5.34).  
 The problem is such a determination of g (the size of the first stage 
simple sample) and of the fraction f that the expected cost function takes  
the minimal value under the fixed risk function. So:   
 

   

( )
( )









≤<≤<
≤
=

Gg1,1f0

hf,gh

minimumf,gk

d     (5.42) 

  
It is easy to prove the following lemmas.  

 Lemma 5.1 [Wywiał (1992)]: The cost function k(g,f) explained  
by the expression (5.37) has the positive derivative in the direction of each 
vector attached to the point (g=1,f=0) and having the end point (go,fo ), where 
go > 1 and fo > 0.  

 Lemma 5.2 [Wywiał (1992)]: If 1Nd
~ −< , the function h(g,f)  

is strictly convex for f >0 and g>0.  
 Proof: Let Q(t,z) be the quadratic form of the Hessian of the function 
h(g,f). After some transformation we have:  
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for t≠0 and z≠0 

Hence, if 1Nd
~ −<  and f>0 and g>0, the function h(g,f) is strictly convex.  

Let us introduce the following notation: 
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dm** hqg −= ,     (5.44) 
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1d

~
NGg

d
~

N
f

1
**

** −+
=

−
,    (5.46) 
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~
Ng

d
~

N
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1
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=

−
.    (5.47) 

 
The optimal solution to the problem is denoted by (g,f).  

When 
~
d

N
< 1

 and 

a) if g∗ ≤ G and f∗ ≤ 1, then (g,f) = (g∗,f∗),  
b) if f∗>1 and g<G, then (g,f) = (g∗∗,1), 
c) if g∗>G and f∗<1, then (g,f) = (G,f∗∗), 
d) if g∗ <1 and f∗ <1, then (g,f) = (1,f∗∗∗). 
 
 
5.2.2. Fixed level of the generalized variance  
 
 Let us assume that the sample size G is so large that the quantity G-1 
can be neglected in the expression (5.32). In this case the generalized vari-
ance of the vector gSy  is as follows: 

 

( ) ∏
=
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


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i
iim

dN
f

dN)(det
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where  di is the diagonal element of the matrix Dw defined by the expressions 
(5.25)-(5.27).  
 The problem is such a determination of g and f that the expected to-
tal cost takes the minimal value under the fixed level of the generalized vari-
ance. The m-th root of the generalized variance is as follows:  
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where:  
 

   m
o (detc )z∗= C ,     (5.50) 

 

   1
dN

1
b

i
i −= .     (5.51) 

 

The solution to the problem does not change when the m-th root  
of the generalized variance is substituted for the generalized variance. Hence,  
the problem can be specified as follows:  
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 Lemma 5.3 [Wywiał (1992)]: The function u# defined by the expres-
sion (5.49) is strictly convex for g≠0 and f≠0.  
 Proof: The quadratic form of the Hessian of the function u#(g,f)  
is as follows:  
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for t≠0 and v≠0 where zi=bif
2+f>0 because f>0 and bi≥0. Hence, the function 

u#(g,f) is strictly convex for g≠0 and f≠0.  
 Let f∗ be the root of the following equation:  
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where:  
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Let f' be the root of the equation u#(1,f)=ud and let g' be the root  
of the equation u# (g,1)=ud.  
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 Under the asumption:  
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2
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>     (5.56) 

 
where: 
 

    ∑
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=
m

1i
id

m

1
d .    (5.57) 

 
the lemma 5.3 leads to the following optimal solution (g,f) to the problem 
(5.52):  
a) if f∗∈(0,1> and g∗>1, (g,f)=(g∗,f∗), 
b) if f∗>1, (g,f)=(g',1), 
c) if g∗<1, (g,f)=(1,f').  
 The root f∗ of the equation (5.53) should be obtained by means of the 
appropriate method of solving a nonlinear equation.  
 
 
5.3. Maximization of estimation accuracy under fixed ex-

pected total costs 
 

5.3.1. Minimization of squared risk function  
 
 Our problem is determining such a size g of clusters and such  
a fraction f that the risk function defined by the expression (5.39) takes  
the minimal value under the fixed expected value of the total costs defined  
by the expression (5.37). Hence:  
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    (5.58) 

 
 The following transformation is considered:  
 
   x=gf,  g=g.    (5.59) 

 
This lets us form the following problem equivalent to the problem (5.58): 
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where:  
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   ( ) xNkgkx,gk 21$ += .    (5.62) 

 

 Lemma 5.4: If 
~
dN < 1 , the function h$ is strictly convex for x>0  

and g>0.  
 Let us introduce the following notation:  
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 On the basis of the lemma 5.4 and under the assumptions that: 

gG and 1Nd
~ ′><      , the following solution (g,f) can be derived:  

a) if ( ) ,
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b) if g∗ <g', (g,f)=(g',1),  
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

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where the coordinates of the ends of the segment AC  are as follows A(g',g') 
and B(G,x'').  
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5.3.2. Minimization of generalized variance 
 
 Let us assume that the number of cluster G → ∞. The problem  
is to determine such a size of the selected clusters g and such a fraction f  

that the generalized variance of the strategy )P, '
dgSy(  takes the minimal value 

under the fixed expected total costs of observation of population elements se-
lected to the sample. This problem is equivalent to the following problem  
of minimization of the root of the m-th degree of the generalized variance: 
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where the functions u#, and k are defined by the expressions (5.49)  
and (5.37), respectively. Let us introduce the notation:  
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When f∗ >1, then f=1 and the above equation leads to the following:  
 

   
21 kNk

K
g

+
=′ .     (5.69) 

 
 When KNkk 21 <+  and the inequality (5.56) is fulfilled,  

the optimal solution (g,f) to the problem (5.67) is as follows:  
a) if f∗≤1, (g,f)=(g∗,f∗), 
b) if f∗>1, (g,f)=(g',1).  
 The root f∗ of the equation (5.53) should be obtained by means  
of an appropriate numerical method.  
 
 
 



 
 
 
 

VI. VECTOR OF REGRESSION ESTIMATORS 
 
 
6.1. Basic properties  
 
 In the one-dimensional case, properties of regression estimator  
are considered e.g. by: Bracha (1978, 1982, 1983, 1987), Cochran (1963), 
Greń (1969, 1970), Konijn (1962, 1973), Murthy (1977), Sarndal, Swensson, 
Wretman (1992), Tripathi (1973) and Wywiał (1992,1995). We are going  
to generalize their results on a multidimensional case.  
 Let A be a real matrix of dimensions z×m, where: m is the number  
of estimated population averages: ]y...y[ m1=y . The number of elements  

of the vector of auxiliary means ]x...x[ z1=x  is denoted by z. Let S  

be the simple sample drawn without replacement. The vectors of the sample 
means of variables under study and auxiliary variables are denoted by Sy  and 

Sx , respectively. The vector of difference estimators is defined by the equa-

tion:  

   Axxyt )( SSAS −+= .      (6.1) 
 

The strategy (tAS,P3) is the unbiased estimator of the mean vector y  and  

its variance-covariance matrix is as follows:  
 

V(tAS,P3) = 
Nn

nN −
(C*yy + C*yxA + ATC*xy + ATC*xxA).    (6.2) 

 

where  C*yy, C***  and  C*xy = C*yx  are the covariance matrices of the vector 
of variables. 
 Let us substitute the following matrix for the matrix A in the equa-
tions (6.1) and (6.2): 
 

 ,xy
1

xxCCB −−=  det(Cxx)>0.       (6.3) 
 

This determines the vector of regression estimators:  

 tBS = Bxxy )( SS −+         (6.4) 

and the variance-covariance matrix:  

 V(tBS,P3) = ( )*xy
1

*xx*yx*yyNn

nN
CCCC −−−

.                   (6.5) 

The vector (tBS,P3) is the unbiased estimator of the mean vector y .  
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Let A be the set of vectors of difference estimators tAS  
where A∈Rm+z

.  Hence:  
 Theorem 6.1 [Wywiał (1988)]: If S is a simple sample drawn with-
out replacement, tBS is the effective estimator of the mean vector y   

in the class A.  
 Proof: The matrix  
 

V(tAS,P3)-V(tBS,P3)= ( ) ( )BACBA −−−
xx*

T

Nn

nN
 

 
is the Gramma matrix. Hence, it is non-negative definite.  
 The relative efficiency index of the estimator tBS to the simple  
sample Sy is as follows: 
 

( ) ( ) ( )
)(det

)(det
,PdetPdet

yy

xy
1

xxyxyy
3S3BS C

CCCC
yVtVyt

−
− −

== 1
SBSw ,/e . 

(6.6) 
 

 Let rqi, i=1,...,p=min(m,z), be the coefficients of the canonical  
correlation. They measure the linear dependence between the vector  
of the variables under study y=[y1...ym] and the vector of auxiliary variables 

x=[x1...xz]. The coefficient  1r 2
qi ≤  (i=1,...,p) is obtained as the eigenvalue  

of the matrix xy
1

xxyx
1

yy CCCC −−  [see e.g. Anderson (1958) or C.R.Rao (1982)]. 

This leads to the following equations:  
 

  detV(tBS,P3)  = det(C*yy) )r1(
p

1i

2
qi∏

=
− , 

 

 )r1()/(e
p

1i

2
qiSBSw ∏

=
−=yt .                    (6.7) 

 
 The precision of the vector of regression estimators tBS is high  
in relation to the simple sample mean Sy  when the variables under study  

are highly correlated with the auxiliary variables in the sense of canonical  
correlation.  
 The theorems 1.7 and 6.1 lead to the inequalities: 
q(tBS,P3)≤ ( )3P,Sq y  and ρ(tBS,P3) ( )3S P,yρρρρ≤ . 

 Let v*i
2
ir  (i=1,..,m) be the i-th diagonal element of the matrix 

xy
1

xxyx CCC −  where 0≤ri≤1 is the well known multiple correlation coefficient 

between the i-th variable yi under study and auxiliary variables x=[x1...xz]. 

The parameter 2
ir  is named a determination coefficient. This and the ex- 

pression (6.5) lead to the following results:  
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  21 r̂)(q)(q SBS −= yt      (6.8) 

where: 
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22 ,                      (6.9) 
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
= ∑ , i=1,...,m. 

 

The mean determination coefficient will be denoted by 2r̂  and 0≤ 2r̂ ≤1.  
The inequality 0≤q(tBS,P3)≤q( Sy ,P3) and the expression (6.9) lead  

to the following conclusion. The mean radius of the estimator tBS decreases 
when the mean determination coefficient increases. 
 On the basis of the expressions (1.57) and (6.5) we evaluate  
the deff-coefficient:  
 

( ) ( ) ( )

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
 −ρ=

1S3BS3BS
P,P,P,deff yVtVt 1  

 

  ( )
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*xx*yxI −−− CCCC   

or  

 ( ) ( )2
qp3BS r1

1N

nN
P,deff −

−
−=t       (6.10) 

 

where 2
qpr  is the lowest coefficient of canonical correlation between the auxiliary 

variables and variables under study. More precisely, the coefficient 2
qpr   

is equal to the lowest eigenvalue of the matrix 1
yyxy*

1
xx*yx

−−= ** CCCCQ .  

The expression (6.10) is derived on the basis of the following expressions:  
 

0=λ−− IQI , 

 
which is equivalent to the following:  
 

0=γ− IQ  

 

where γ=1-λ and eigenvalues 0r...rr1 2
qp

2
2q

2
1q ≥≥≥≥≥  of the matrix Q  

are the coefficients of canonical correlation.  



 
SOME CONTRIBUTIONS TO MULTIVARIATE METHODS... 

182

 Let us assume that the vector of auxiliary variables x  is known.  
The matrix of the regression parameters B can be estimated on the basis  
of the simple sample drawn without replacement by means of the following 
matrix:  
 

   xyS
1
xxSS ** CCB −−=    (6.11) 

 
where: xyS*C =[c*S(xi,yk)] and xxS*C =[c*S(xi,xj)], k=1,...,m; i,j=1,...,z:  
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Substituting the matrix SB  for B in the expression (6.4), we have:  

 
   SSSBS )( Bxxyt −+= .   (6.12) 

 
The statistic BSt  is an asymptotically unbiased estimator of the vector  

of population means y  and its variance covariance matrix is approximately 

determined by the expression (6.5). The estimator of this matrix is as follows:  
 

 V(tBS,P3)= ( )xyS*
1
xxS*yxS*yyS*Nn

nN
CCCC −−−

.                 (6.13) 

 
Let us note that the problems of estimation on the basis of a vector  

of ratio or product estimators are considered e.g. by: John (1969), Lynch 
(1978), Olkin (1958), Tripathi (1976) and Wywiał (1992).  
 
 
6.2. Vector of regression estimators from double sample 
 
 Usually the matrix B as well as the vector x  are not known. In this 
situation, the two-phase simple sample S={S1 ,S2} can be selected from  
a population in order to determine those parameters. The simple sample S1  
is drawn without replacement from a population. In this sample, values  
of auxiliary variables are observed. The simple sample S2 is selected  
from the outcome of the sample S1. Additionally, in this sample the values  
of variables under study y are observed. The samples S1 and S2 are of sizes n1 
and n2, respectively and n1 > n2. The sampling design of the double  
sample is as follows:  
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The matrices yx∗C , xx∗C  are estimated by the following unbiased estimators 

( )[ ]ji x,y∗∗ = cyxC , ( )[ ]jxx c x,xi∗∗ =C , respectively, where: 

 

( ) ( )( )
2

2

2 uSuk
Sk

iSik
2

u xxxx
1n

1
c −−

−
= ∑

∈
∗ x,xi , ∑

∈
=

2

2
Sk

ik
2

iS x
n

1
x , 

 

( ) ( )( )
2

2

2 uSuk
Sk

iSik
2

u xxyy
1n

1
c −−

−
= ∑

∈
∗ x,yi , ∑

∈
=

2

2
Sk

ik
2

iS y
n

1
y . 

 

Under the assumption that ( ) 0det xx >∗C , the estimator of the matrix 

B is as follows:  
 

   xy
1
xx ∗

−
∗ CCB -=     (6.14) 

 
Let [ ]

222 zSS1S x...x=x , [ ]
111 zSS1S x...x=x , [ ]

222 zS1SS y...y=y  where:  
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Substituting the matrix B  and the vectors 
1Sx , 

2
Sy , 

2Sx  for B  

and x , y , Sx , respectively, in the expression (6.4) we have the following 

estimator of the vector y : 

 
  ( )Bxxyt

122 SSSBS −+= .    (6.15) 

 
 
 The parameters of the vector tBS  are as follows (see Wywiał (1988 

and 1992)): 
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2

1
1d3BS n0n0P,E −− ++= yt ,   (6.16) 
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 This and the definition of the mean radius of a vector estimator lead 
to following  expression:  
 

( ) ( ) ( )
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











−

−
+==

N

1

n

r1

n

r
trP,trP,q

2

2

1

2
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CtVt    (6.18) 

 
where r  is defined by the expression (6.9).  
 
 
6.3. Optimization of sample sizes  
 
 Let k1 be the per observation cost of auxiliary variables and let k2  
be the per observation cost of variables under study. The admissible total cost 
will be denoted by K. Usually, the following linear cost function  
is considered:  
 
  k(n1,n2) = k1n1 + k2n2.    (6.19) 

 
This function is involved in all optimization problems formed below. 

 
 
6.3.1. Minimization of square risk function  
 
 The variance of the i-th element of the vector BSt  can be obtained  

on the basis of the expression (6.17) and it is as follows:  
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2 yt , i=1,...,m.                 (6.20) 

 
 Let us consider the following risk function:  
 

  u1(n1,n2) = )P,(Da
m

1i
5BiS

2
i∑

=
t    (6.21) 

 
where a = [a1...am] ∈ Rm - {om}. This and the expression (6.20) let us rewrite 
the risk function in the following way: 
 

 u1(n1,n2) = q2
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   (6.22) 
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where: 
 

  )(vaq
m

1i
ii

2 ∑
=

∗= y ,    (6.23) 

 

 ∑
=

=
m

1i
i

2
i

2 ,wrr   wi = q-2aiv∗(yi).   (6.24) 

 

The parameter 2r  is the weighed mean of the squared multiple correlation 
coefficients ri (i=1,...,m). The coefficient ri measures a linear dependence be-
tween the i-th variable under study yi and auxiliary variables x. The determi-

nation coefficients 2
ir  is equal to the i-th diagonal element of the matrix 

C∗yx
1
xx

−
∗C C∗xy. The inequalities 0≤ r ≤1 result from the fact that 0≤ri≤1  

and 0≤wi≤1 for each i=1,...,m. Let us note that the parameter 2r   

can be treated as the weighed mean of the determination coefficients 2
ir  

(i=1,...,m).  
 Let us determine such optimal sizes of sample S1 and S2 that the risk 
function takes a minimal value under a fixed total cost of variable observa-
tion:  
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 Wywiał (1992) showed that if 3k1+2k2≤K  and ,
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k
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the optimal solution is as follows:  
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 The vector of the regression estimators BSt  from the double simple 

sample is not less precise than the vector of means Sy  from a simple sample 

drawn without replacement if:  
 

 ( ) ( ) ( ) 211
22211 qNKknun,nu −− −=≤ .  (6.27) 

 
This inequality is true 
 

a) for the pair ( ) ( )∗∗= 2121 n,nn,n , if:  
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b) for the pair ( ) ( )221 n,Nn,n ′= , if:  
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c) for the pair ( ) ( )n n n1 2 1 2, ,= ′ , if:  
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r r
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2 2
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1 2

    (6.30) 

 

 The necessary condition for ( )BS
2D t ≤ ( )S

2D y  is that k2>k1  

and  0rr ≤ , where ro is determined by (6.28).  

 Let us note that if all the elements of the vector a=[a1 ...am ] are equal 
to one, the risk function is equal to the trace of the variance-covariance matrix 

of the estimator BSt . Moreover, if ( )m,,1iya 2
ii K== − , the risk function 

is equal to the sum of variation coefficients of the elements of the vector BSt .  
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6.3.2. Minimization of generalized variance 
 
 Let us denote the generalized variance of the estimator BSt   

as a function of the sample sizes in the following way u5(n1,n2)=detV ( )BSt  

where the matrix V ( )
d, 3BS Pt  is defined by the equation (6.17). Our problem  

is to determine such sample sizes that the generalized variance of the estimator 

BSt  takes the minimal value under fixed total costs of observation  

of variables. More precisely this problem is explained by the equation 
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 where the cost function k(n1,n2) is defined by the expression (6.19). 
 Let us assume that the covariance matrix C∗yy is positively definite 
The well known theorems of linear algebra, see e.g. Rao (1982), let us find 

such a matrix Q of degree m that QTQ=C∗yy  and QTRQQ= xy
1
xxyx ∗

−
∗∗ CCC , 

where RQ is the diagonal matrix with diagonal elements denoted  

by m,,1i,r 2
Qi K= . The determinant u5(n1,n2)=detV ( )BSt  can be written  

as follows:  
 

( ) ( )




















−−+= QIRIRQ mQm

2
Q

1

T
215 N

1

n

1

n

1
detn,nu . 

 
The well known properties of the matrix determinant let us rewrite the deter-
minant in the following way: 
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where: 
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The diagonal elements of the matrix RQ can be determined as the solution  
to the following equation, see e.g. Rao (1982): 
 

det(C*yx 0)r yy*
2
Qxy*

1
xx* =−− CCC . 
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 The parameters 1r0 2
Qi ≤≤ (i=1,..,m) are the squared coefficients  

of canonical correlation. They measure the degree of linear dependence  
between the vectors y and x.  

Lemma 6.1 [Wywiał (1992)]: The function u5(n1,n2) is strictly  
convex in the field D={(n1,n2):0<n2<n1≤N}. 

Proof: Let 







=

z

w
)n,n(]zw[)z,w(a 21H  be the quadratic form, 

where H(n1,n2) is the hessian of the function u5. After appropriate operations 
we have:  
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The function u5(w,z) is convex in D because a≥0 for all z,w∈R-{0}.   
 Let us introduce the following notation:  
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Let ( , )* *n n1 2  be the solution to the following system of two equations:  
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where: 
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Wywiał (1992, 1995) showed that the solution to the problem (6.31) 
is as follows:  
 
 

 
{ }
{ }




′=
′=

*
222

*
111

n,nmaxn

n,nminn
     (6.36) 

 

 The solution ( , )* *n n1 2  of the set of two nonlinear equations, given by 

the expression (6.35), can be obtained only approximately by means of an ap-
propriate numerical method like Newton, gradient or iteration method.  
We are using the last one but under some additional assumptions.  
 If N → ∞, f*i  → fi for i=1,...,m, where the functions f*i  and fi  
are defined by the expression (6.33). Next, in the first equation of the set 
(6.35), the transformation n2 =wn1 is implemented. After dividing the second 
equation of the set by the first one we have:  
 

  w = p(w)     (6.37)  
 
where: 
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 2
Qi

2
Qii r1wrh −+= ,   i=1,...m.    (6.39) 

 
Theil (1979) proposed the average of squared coefficients of canonical corre-
lation to asses the degree of linear dependence between two vectors  
of variables. In our case we have:  
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where: m' = min{m,z}. Hence, 0≤ 2
Qr ≤1 and we say that the degree of linear 

dependence between the vector of variables under study y and the auxiliary 

vector x increases when the value of the coefficient 2
Qr  increases.  

 Lemma 6.2 [Wywiał (1992)]: If 
2

12
Q k

k
r

m

m >
′

, then 0<w<1 and 

n1>n2. 
 The following iteration process leads to the solution to the equation 
set (6.37):  
 
  wj+1= p(wj), j = 0,1,2,...   (6.41) 

 
Wywiał (1992) proved that this iteration process is convergent on the true so-
lution denoted by w∗ and it is not dependent on the start solution 0<w0 <1. 
 Demidowicz and Maron (1965) explain how to estimate the accuracy 
of an approximated solution from the iteration process:  
 

| w∗ - wj | ≤ 21-j | w1 - w0 |. 
  
This lets us determine the necessary number of iteration steps. The sufficient-

ly accurate solution w∗ leads to the optimal sample sizes ( ,* *n n1 2 ).  

On the basis of the equations: n2 = wn1  and k1n1+k2n2=K we have:  
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6.3.3. Goal optimization of sample sizes 
 
 Let us consider two types of problems. The first of them leads  
to finding a compromising solution which is close (in some sense) to all  
the optimal sample sizes obtained as a solution to particular problems.  
The second problem: for particular problems, the optimal values of the crite-
rion functions are determined. Next, a purpose function is formed  
in such a way that it measures the distance between particular criterion func-
tions and its optimal values, respectively. The solutions to these problems are 
treated as compromising sample sizes.  
 Let (n1i, n2i), i=1,...,m, be optimal sizes of the samples obtained  
as a solution to the following problem:  
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where u6i(n1,n2)=D2( BiSt ,P5) are defined by the expression (6.20). This opti-

mal solution is a particular case of the solution to the problem (6.25)  
for m=1, and k2=k2i, given by the expression (6.26) where k2i and ri should be 
substituted  for k2 and r , respectively. The parameter ri is the multiple corre-
lation coefficient between the variable under study yi and auxiliary variables 
x. 
 In order to find the compromising solution to the problem, the fol-
lowing additional criterion can be introduced:  
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=
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1
1 and whi > 0 for each i=1,..,m, h=1,2. This leads  

to the following optimization problem:  
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where: k2 = k i
i

m

2
1=
∑ . Hence, we are looking for such pair of sample sizes 

(n1,n2) that it is close to all the particular solutions  (n1i, n2i ), i=1,..,m. 
 Wywiał (1992) showed the solution to the problem (6.45),  

when  nn*
1 ′<  and nn*

2 ′> , where:  
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In this case the solution to the problem (6.45) is determined by the expression 

(6.26) and the parameters ( *
2

*
1 n,n ).  

 Let u6i (n1i ,n2i )=u6, i=1,...,m, be the minimal value of the purpose 
function defined in the problem (6.43). Let the coefficient of the relative es-
timation efficiency be defined by the expression: 
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The optimization problem is shown by the expression:  
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where: 

  u7(n1,n2) = ∑
=

m

1i ie
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.   (6.49) 

 
 This problem is a particular case of the problem (6.25) for 

a= 








m661 u

1
...

u

1
. Hence, the expression (6.26) lets derive the solution to this 

problem.  
 
 

6.4. Minimization of observation costs under fixed risk  

function  

 
6.4.1. Fixed squared risk function  
 
 Let uo be an admissible level of the risk function u1(n1,n2) defined  
by the expressions (6.20)-(6.24). Hence: u1(n1,n2)≤uo. This inequality  
is equivalent to the following one:  
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where: r  is defined by the equation (6.24) and u∗= 2

o

q
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1 +  where: q2  

is determined by the formula (6.23). Let us consider the following optimiza-
tion problem: 
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where: 
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6.4.2. Fixed standard errors of estimation of averages  

in a population  
 
 The problem is such a determination of samples sizes that the cost 
function k(n1,n2), given by the expression (6.19), takes the minimal value  

under the restriction that the variances ( ) ,dP,tD i3diBS
2 ≤  i=1,...,m and 

1<n2<n1≤N. On the basis of the expression (6.20) we have: u1i(n1,n2)≤d∗i, 
i=1,...,m, where:  
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Hence, the optimization problem is as follows: 
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The set of the admissible solutions D can be obtained as a product D= ∏
=

m

1i
iD , 

where Di is the intersection of the simplex determined by the inequalities 
2≤n2<n1≤N and the convex area determined by the expression u1i(n1,n2 )≤d*i . 
The set D is convex because it is the intersection of the convex sets Di 
i=1,...,m.   

Let Pij(n1ij,n2ij) be the intersection point of the hiperboloids 
u1i(n1,n2)=d*i , u1j(n1,n2)=d*j  (i≠j=1,...m).  Its coordinates are as follows:  
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 We assume that the set D is non-empty. The solution to the problem 
is on the edge of the set D because it is convex and the purpose function 
k(n1,n2) is linear. The optimal solution is equal to the coordinates of the apex 
of the set D or to the coordinates of the tangence point of the plain given  
by the equation k1n1+k2n2=km and the plain given by u1i(n1,n2)=d*i  (i=1,..,m) 
in the set determined by the inequality  2≤n2<n1≤N. The coordinates of one  
of the defined points are optimal sample sizes, if the value of the purpose 
function denoted by km takes a minimal value.  
 
 
6.4.3. The admissible fixed generalized variance  
 
 Let the volume of the confidence ellipsoid for the vector population 
means be fixed. If the ellipsoid is determined on the basis of the vector of the 
regression estimators BSt , its volume is proportionate to the generalized  

variance of BSt . The admissible level of the volume is proportional to d, 

where d is the admissible level of the generalized variance of the strategy 
( BSt ,P3d). Hence: detV( BSt ,P3d)=u5(n1,n2)≤d, Our purpose is to determine 

such sizes (n1,n2) of the samples that the cost function k(n1,n2), given  
by the expression (6.19), takes a minimal value. Hence:  
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where u5 is defined by the equation (6.32).  
 Wywiał (1992) derived the following optimal solution: 
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where 21 nandn ′′′′  are determined by the expression (6.51) and (*
2

*
1 n,n )  

is the solution to the following system of the equations:  
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where: 

 ( )
)n,n(F

)n,n(F
n,n

212

211
21 −=αααα .         (6.62) 

 

The first partial derivatives in respect to n1 and n2 of the function 
F(n1,n2)=u5(n1,n2)-d=0 are denoted by F1 and F2, respectively.  
 The solution to the problem exists if Nn2 <′′ and  n1 > n2. 

 When N→∞, the solution to the system (6.61) can be simplified  
in the following way: let n2=wn1. The first equation of the system (6.61)  
can be transformed into the form shown by the expression (6.37) and  
the second equation - into the following one:  
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The solution w∗ to the equation (6.37) can be obtained by means of the itera-
tive process determined by the expression (6.41). This and the equations 
(6.63) and n2=wn1 lead to the following optimal solution:  
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    (6.64) 

 

Let us note that the conditions of existence of the inequalities 0<w<1  
are determined by the lemma 6.2.  
 
 
6.5. Minimization of total risk  
 
 The total risk function is defined by the expression:  
 

 u8(n1,n2)=u1(n1,n2) + k(n1,n2) 
 

where the functions k(n1,n2) and u1(n1,n2) are determined by the expressions 
(6.19) and (6.20)-(6.24), respectively. Let us consider the following problem:  
 

 




≤<≤
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218       (6.65) 

Let us introduce the following notation:   

 
2

2
*
2

1

*
1 k

r1
qn,

k
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−== . 

where r  is defined by the expressions (6.23) and (6.24). 
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Wywiał (1992) showed that the set of admissible solutions L is the triangle 
determined by the points A1(N,2), A2(N,N) and A3(2,2) without the side 

.AA 32  If the point *
2

*
1* n,n(A ) ∈ L, its coordinates are the optimal solution 

A(n1,n2). If A∗  ∉ L then  

a) A  = )2,n( *
1  if 2nandNn2 21 <≤≤ ∗∗  

b) A = Nn2andNnif)n,N( *
2

*
1

*
2 <≤>  

c) A = (N,2) if  2nandNn *
2

*
1 ≤≥  

d) A do not exist if  NnandNnor,2nand2n *
2

*
1

*
2

*
1 >><< . 

 
 
6.6. Unbiased regression strategies  
 
6.6.1. Sampling strategy I  
 
 Let U be a population consisting of N distinct and identifiable units. 
The vector yT = [y1 ... yN] consists of all the values of a variable under study. 
Let x = [xij] be the matrix of the dimensions Nxk. The matrix x consists  
of all the values of a k-dimensional auxiliary variable. The element xij  
is an i-th value (i=1,...,N) of a j-th auxiliary variable (j=1,...,k≥1). Let JN  
be the column vector of the dimensions Nx1. Each element of the vector JN is 
equal to one. Let us define: 
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The population mean of the variable under study is denoted by y . The row 

vector x  consists of the population means of the auxiliary variables.  
The population covariance matrix of the auxiliary variables is denoted by V. 
The vector v consists of the population covariances between the auxiliary var-
iables and the variable under study. 
 Let s be the sample of the size n drawn without replacement from  

a population U. Let [ ]
n1 ii

T
s y...y=y  be the vector of values of the variable 

under study observed in the sample. Similarly, the matrix 
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consists of the values of the auxiliary variables observed in the sample s. 
Moreover, let us define: 
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Hence, [ ]sijS v=V  is the sample covariance matrix between the auxiliary var-

iables and vs is the column vector of the sample covariances between  
the auxiliary variables and the variable under study.  
 Let S be the sample space of the unordered sample s of the size n se-
lected without replacement from the population U. 
 In the paragraph 2.3.10 sampling design P16(s) ∝ detVs  
is considered. The sample s is selected with a probability proportionate to the 
sample generalized variance of the auxiliary variables:  
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where: 

 
1k1

1 N

n

1kn

1kN
c

+−


















−−
−−

= . 

 
When k=1, the sampling plan P16(s) is reduced to the one proportional  
to the sample variance of Singh and Srivastava (1980). Let sk+1 be the subset 
of the sample s. The size of the subset sk+1 is equal to k+1< n.  

Let us define the following quantity: 
 

  ( ) [ ]
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+++ = xJ     (6.67) 

 

where:  
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Let [ ]ki1ir rr

x...x=∗x  be the r-th row of the matrix 
1ks +

x . After eliminating  

the row ∗+1kx  in the matrix 
1ks +

x we obtain the matrix 
ksx . After subtracting 

the last row of the matrix [ ]
1ks1k ++ xJ  from the previous rows of this matrix  

we have:  
 

[ ] 
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∗+
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−
=

+
1k

k1ks
s1k 1

detdet k

1k x

Jxxo
xJ . 

 

This lets us rewrite the expression (6.67) in the following way: 
 

 ( ) [ ]
k1ks

2
1k1 k

detsq Jxx ∗++ −= .         (6.68) 

 
 Let us note that q1(sk+1) is the k-dimensional measure (volume)  
of the parallelotop spanned by the vectors with their origins at the same point 

∗+1kx  and the end points ∗∗ k1 ,...,xx , see e.g. Borsuk (1969). 

The following sampling scheme (implementing the sampling design 
P16(s)) consists of the two following steps. 

Step 1: Select k+1 units { }1k211k i,...,i,is ++ =  with their pro-

bability of joint selection being proportional to ( ).sq 1k1 +  

Step 2: Select (n-k-1) units from the remaining units of the po-
pulation by the simple random sampling without re-
placement. 

The sampling design proportional to ( )1k1 sq +  is as follows:  
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 Particularly, if k=1, this sampling scheme is reduced to the sampling 
scheme proposed by Singh and Srivastava (1980). In this case 

( ) ( )2
ii2 12

xxs −=1q . 

 The well known regression estimator of the population mean y   

is as follows: 
 

  ( ) SSSRS yy Bxx −−=      (6.71) 

where: 

 S
1
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 Let us introduce the following matrix 
 

 






 −−
=Α

SS

SS
S

yy

Vv

xx
.         (6.73) 

 
 Wywiał (1999), on the basis of well-known property of the determinant 
of a block matrix rewrote, the estimator RSy  in the following way: 
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 The determinant of the matrix As can be transformed into  
the following forms: 
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The strategy ( ))s(P,y 16RS  is the unbiased strategy of the population mean .y  

When the sample size n → ∞ and the population size N → ∞ in such a way 
that N-n → ∞,  
 

 ( ) ( )vVv 1T
yy16RS

2 v
n

1
)s(P,yD −−≈ .    (6.76) 

 
 Let R be the correlation matrix of auxiliary variables and 

[ ]yk1y
T r...r=r , where ryj is the correlation coefficient between the j-th auxilia-

ry variable and the variable under study. This lets us rewrite  
the expression (6.76) in the following way: 
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where: 

 rRr 1T
wr
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is the multiple correlation coefficient between the auxiliary variables  
and the variable under study. Hence, in the asymptotic case, the precision  
of the strategy ( ))s(P,y 16RS  increases when the value of the multiple correla-

tion coefficient rw increases, too. 
 Singh and Srivastava (1980) derived the unbiased estimator of the 
variance D2 ( ))s(P,y 16RS  in the case when k=1. Generalizing their result  

for k≥1, we can construct the following unbiased estimator of this parameter. 
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6.6.2. Sampling strategy II 

 
In the paragraph 2.3.9 the sampling design S#14 det)s(P V∝   

is considered, where  
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is the sample variance-covariance matrix defined on the basis of the population 
means of the auxiliary variables. We can prove that 
 

 
V

V

det

det
c)s(P S#

214 =           (6.80) 

 
where: 
 

  
k

2 N

n

kn

kN

1
c 


















−
−

= . 

 
When k=1, the defined sampling design is reduced to the one proposed  
by Singh and Srivastava (1980). 
 Let sk be a subset of the sample s and k < n. Let us define  
the following: 
 

 ( ) 







=

kSk

2
k2

1
detsq

xJ

x
.         (6.81) 

 



 
VI. Vector of regression estimators 

201

 From the geometrical point of view q2(sk) is the k-dimensional meas-
ure (volume) of the parallelotop spanned by the vectors with their origins at 
the same point x  and the end points which determine the rows  
of the matrix 

kSx ,see, e.g., Anderson (1958) or Borsuk (1969). The expres-

sion (6.81) can be transformed into the following one: 
 

 ( )
kS

2
k2 det)s(q X=       (6.82) 

 
 It can be shown that the following sampling scheme implements  
the sampling design P14(s): 

Step 1: Select k units sk={ i1, ..., ik} with their probability of joint 
selection being proportional to q2(sk). 

Step 2: Select (n-k) units from the remaining units of the population 
by simple random sampling without replacement. 

 When k=1, the introduced sampling scheme is reduced to one pro-

posed by Singh and Srivastava (1980). In this case ( ) ( ) .2
j12 xxsq −=  

 Wywiał (1999) considered the following estimator: 
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where: 

  S#
1
S#S# vVB −= ,  S

T
SS# n

1
yXv = . 

 
The statistic S#y  can be transformed into the following one: 
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 In the case when k = 1, the statistic S#y  is reduced to the estimator 

proposed by Singh and Srivastava (1980). 
 We can prove that ( ))s(P,y 14S#  is the unbiased strategy of the popu-

lation mean y . The approximate variance of the strategy ( ))s(P,y 14S#   

is expressed by the right side of the equation (6.77). The unbiased estimator 
of the variance of the sampling strategy ( ))s(P,y 14S#   is as follows: 
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6.6.3. Sampling strategy III 
 
 Let us assume that a population U is divided into disjoint and non-

empty clusters Ug, g=1,...,G, and U
G

1g
gUU

=
= . The size of the sample gU   

is denoted by 1N g >  and U
G

1g
gNN

=
= . A multivariate auxiliary variable  

of the dimension k is observed in all first-stage units. The sample S, consist-
ing of clusters, is selected at the first stage. The sampling design  
is proportional to the sample generalized variance of the auxiliary variables 
and it is determined by the expression (6.66). At the second stage, simple 
samples 

n1 g,...g Q,Q  are drawn without replacement from the clusters 

n1 g,...g U,U , selected at the first stage, respectively. The size of the sample 

jgQ  is denoted by 
jj gg Nm1 ≤< . The two-stage sample will be denoted  

by Q={S,Q1,...,Qn} and its outcome by q={s,q1,...,qn}. The sampling design  
is as follows:  
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where the sampling design P16(s) is determined by the equation (6.66).  

 Let us introduce the following notation:  
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 Let us consider the following estimator of the parameter z  
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The regression estimator RQz  from the two-stage sample  

is the unbiased estimator of the parameter z . The variance of the strategy  
is as follows:  
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where:  
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The approximate value of the variance ( )19RS
2 P,zD  is as follows: 
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where rw is the multiple correlation coefficient between the auxiliary variables 
and the variable z. 
 Let us consider the following statistic:  
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The following statistic is the unbiased estimator of the variance ( )
19RQ

2 PzD , :  
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 Finally, the unbiased estimator of the population total is as follows:  
 

 RQRQ zGt = ,                    (6.96) 

 

The unbiased estimator of population average is determined by the expres-
sion:  
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The variances of these estimators can be easily derived on the basis of the ex-
pression (6.92). The equation (6.95) leads to construction of the estimators of 
these variances.  
 Let us note that the statistics RQt , defined by the expression (6.96), 

can be treated, in some sense, as a particular case of the regression estimator 
of the total value from two stage sample considered by Särndal, Swensson, 
and Wretman (1992).  
 
 
6.6.4. Example of simulation analysis of accuracy 
 
 Let us consider the example of average estimation by means 
 of regression strategies: ( ))s(P,y 3RS , ( ))s(P,y 16RS , ( ))s(P,y 3S#  and 

( ))s(P,y 14S# , where P3(s) is the sample design of the simple sample drawn 

without replacement determined by the equation (1.28). The variable under 
study is: the revenues from 1985 municipal taxation (in millions of kronor)  
- y, the auxiliary variables are: the number of Conservative seats in municipal 
councils –x1, the number of Social Democratic seats in municipal councils - x2 
and the real estate values according to 1984 assessment (in millions  
of kronor) - x3. These variables are observed in the population of Swedish 
municipalities. The population is divided into eight strata according  
to geographical regions of Sweden. The data are published by Sarndal Swens-
son, Wretman (1992). We are going to consider only the data consisting of 15 
municipalities in the seventh stratum. The tables 4.1-4.6 let compare the accu-
racy of the estimation of the mean of the revenues from 1985 municipal taxa-
tion. The relative efficiencies are determined by the expression:  
 

( )
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e
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2

16RS
2

=  or 
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( ) %100

P,yD

P,yD
e

3S#
2

14S#
2

= . 

 
Table 6.1 

The accuracy of strategies ( ))s(P,y 3RS  and ( ))s(P,y 16RS .  

The auxiliary variable x2 

The size of the sample 3 4 5 6 7 

The bias under the plan P3 -45 -28 -20 -16 -11 

The variance under the plan P3 14867 5508 33230 2415 1785 

The variance under the plan P16 6814 4288 2976 2160 1606 

The relative efficiency e 45.8 77.9 89.4 89.5 90.0 

 
 Analysis of the tables 6.1-6.3 leads us to the following conclusions: 
absolute value of the bias of ( )(s)P,y 3RS  decreases when the number  

of variables increases. Similarly, the absolute value of the bias decreases 
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when the size of the sample increases for particular sets of auxiliary variables. 
The variances of both strategies ( ))s(P,y 16RS  and ( ))s(P,y 3RS  decrease when 

sample size becomes greater and greater. In all the cases  
the precision of the ( ))s(P,y 16RS  strategy is better than the precision  

of the ( ))s(P,y 3RS  strategy. 

Table 6.2 
The accuracy of ( ))s(P,y 3RS , ( ))s(P,y 16RS  strategies. 

The auxiliary variables: x1, x2 

The size of the sample 4 5 6 7 

The bias under the plan P3 -16 -12 -6 -5 

The variance under the plan P3 6021 2847 2537 1561 

The variance under the plan P16 2780 1739 1434 1020 

The relative efficiency e 46.2 61.1 56.5 65.3 

 
 

Table 6.3 

The accuracy comparison of 
( ))s(P,y 3RS  and 

( ))s(P,y 16RS  strategies.  
The auxiliary variables: x1, x2 and x3 

The size of the sample 5 6  7 

The bias under the plan P3 0 -4 -3 

The variance under the plan P3  33769 3214 1499 

The variance under the plan P16 2036 1242 855 

The relative efficiency e 6.0 38.6 57.0 

 
The relative efficiency coefficient increases when the sample size increases. 
Hence, we can expect that the accuracy of the ( ))s(P,y 16RS  strategy  

is not much better than the accuracy of the ( ))s(P,y 3RS  strategy in the large 

sample. 
Table 6.4 

The accuracy of ( ))s(P,y 3S#  and ( ))s(P,y 14S#  strategies. 

The auxiliary variable: x2 

The size of the sample 2 3 4 5 6 7 

The bias under the plan P3 -39.2 -29 -22 -18 -14 -12 

The variance under the plan P3 29508 14355 8689 5778 4045 2912 

The variance under the plan P14 42285 17499 9727 6104 4084 2831 

The relative effic. e 143.3 121.9 112.0 105.7 101.0 97.3 
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Table 6.5 
The accuracy of ( ))s(P,y 3S# , ( ))s(P,y 14S#  strategies. 

The auxiliary variables x1, x2 

The size of the sample 3 4 5 6 7 

The bias under the plan P3 -39 -32 -26 -21 -16 

The variance under the plan P3 33461 15014 8846 5813 4003 

The variance under the plan P14 33912 14026 7692 4717 3051 

The relative efficiency e 101.4 93.4 87.0 81.1 76.2 

 
 
 

Table 6.6 
The accuracy comparison of ( ))s(P,y 3S#  and ( ))s(P,y 14S#  strategies.  

The auxiliary variables: x1, x2 and x3 

The size of the sample 4 5 6 7 

The bias under the plan P3 -60 -45 -34 -25 

The variance under the plan P3 34551 16940 10380 6764 

The variance under the plan P14 41342 16663 8844 5191 

The relative efficiency e 119.7 98.4 85.2 76.7 

 
 The analysis of the tables 6.1-6.6 lets us infer that in small samples 
the regression estimator s#y  from the simple sample can be more precise than 

the ( ))s(P,y 14s#  strategy. In all the cases the variance of the ( ))s(P,y 16RS  

strategy is smaller than the variances of the ( ))s(P,y 14S# , ( ))s(P,y 3S#   

and ( ))s(P,y 3RS  strategies. The same is with their mean square errors.  

 Simulation analysis of the accuracy of the considered strategies  
was evaluated by Gamrot and Wywiał (2002). 
 
 
 



 
 
 
 

SUMMARY IN POLISH 
 
 
 W praktyce badań reprezentacyjnych zwykle mamy do czynienia  
z problemem wnioskowania o wielu parametrach analizowanych cech popu-
lacji. Rzadko celem takiego badania jest ocena wartości jednego parametru, 
chociaż temu właśnie przypadkowi jest głównie poświęcana większość prac  
z metody reprezentacyjnej. Bynajmniej nie oznacza to, iż te prace mijają się  
z praktycznymi potrzebami badań statystycznych, ponieważ otrzymywane 
wyniki dotyczące wnioskowania o pojedynczym parametrze jednowymiaro-
wej cechy można w wielu zagadnieniach bezpośrednio uogólnić na przypadek 
wielowymiarowy. W tej dziedzinie są jednak problemy jednoczesnego wnio-
skowania o wielu parametrach, które wymagają szczególnego podejścia. Na-
leżą do nich problem sposobu oceny dokładności estymacji wektora parame-
trów oraz interpretacja używanych do tego celu wskaźników. Kluczowe zna-
czenie ma także usystematyzowanie podstawowych wiadomości pozwalają-
cych na porównywanie dokładności estymatorów wektorowych. Następna 
kwestia dotyczy optymalizacji badań próbkowych, a zwłaszcza optymalizacji 
rozmiarów prób złożonych, gdy występują ograniczone nakłady na badania 
reprezentacyjne oraz żądania spełnienia wymaganej dokładności oceny para-
metrów.  
 W ogólności właśnie wymienionym problemom jest poświęcona ni-
niejsza praca. Prezentowano w niej głównie zagadnienia dotyczące jedno- 
czesnej estymacji wielu parametrów cech w populacji. Nacisk położono na 
prezentację wyników otrzymanych przez autora.  
 W pracy ograniczono się głównie do analizy problemu estymacji 
wektora wartości średnich w populacji. Otrzymane na tym polu wyniki można 
jednak łatwo przenieść na zagadnienie oceny innych ważnych z punktu wi-
dzenia praktyki parametrów, takich jak suma wartości cechy w populacji, 
ilość elementów z cechą wyróżnioną w populacji, częstość względna wystę-
powania określonego zjawiska w populacji.   
 W pierwszym rozdziale przedstawiono podstawowe definicje zwią-
zane z rozkładami cech w populacji ustalonej, jak i w tzw. nadpopulacji. 
Szczegółowiej potraktowano problem interpretacji miar zróżnicowania war-
tości wielowymiarowej zmiennej. Przedstawiono podstawowe wiadomości  
o własnościach planów, schematów losowania oraz strategii losowania. Po-
nadto, są prezentowane definicje i twierdzenia, które zwykle są bezpośredni-
mi uogólnieniami na przypadek wielowymiarowy odpowiednich określeń 
znanych z przypadku wnioskowania o jednowymiarowym parametrze. Szcze-
gólny nacisk położono na problem porównywania dokładności estymatorów 
wektorowych. 



 

SOME CONTRIBUTIONS TO MULTIVARIATE METHODS... 

210

 Podstawowe parametry rozkładu wektora znanych estymatorów 
Horvitza-Thompsona są prezentowane w drugim rozdziale. Wyznaczano tu 
również w przybliżony sposób wariancje tego estymatora dla wybranych pla-
nów losowania zależnych od cech pomocniczych. Uwzględniono również 
plany losowania prób z populacji przestrzennych zależne od położenia 
względem siebie elementów populacji. 
 W trzecim rozdziale prezentowano podstawowe własności rozkładu 
wektora estymatorów z próby warstwowej. Konstruowano i rozwiązywano 
zadania optymalnej lokalizacji prób w warstwach. Zagadnienie optymalnego 
tworzenia warstw w populacji ograniczono do problemu wykorzystania for-
malnych metod grupowania na podstawie obserwowanych cech w populacji 
do wyodrębniania w niej warstw. Wskazano także na możliwość wykorzysta-
nia takich metod do warstwowania próby prostej wylosowanej z populacji.  
Z tak utworzonych warstw w następnym kroku są losowane próby proste,  
w których już obserwuje się cechy badane. Problem ten jest podobny do zna-
nego zagadnienia warstwowania próby po jej wylosowaniu. Przedstawiono 
również estymację wartości średniej na podstawie kombinacji liniowej prze-
ciętnych z podprób wyróżnianych w pierwotnie wylosowanej próbie prostej  
z populacji. Te podpróby również są używane do wyodrębniania jednorod-
nych warstw w populacji na podstawie cech dodatkowych. Liczebności tych 
warstw prowadzą do wyznaczenia współczynników kombinacji liniowej. Do 
tworzenia warstw są wykorzystywane m.in. odpowiednie metody klasyfikacji 
danych. Wprowadzono tutaj również kryterium reprezentatywności próby 
konstruowane na podstawie definicji zanurzenia punktu w zbiorze punktów.  
 Podstawowe parametry rozkładu wektora średnich z próby grupowej 
prezentowano w rozdziale czwartym. Parametry te przedstawiono jako funk-
cje tzw. współczynników korelacji wewnątrz-grupowej. Wprowadzono rów-
nież współczynnik jednorodności rozkładu wartości wielowymiarowej 
zmiennej. Podjęto problem optymalnego wyróżniania grup w populacji bądź 
w wylosowanej próbie prostej na podstawie obserwacji cech pomocniczych. 
Podobnie jak w uprzednim punkcie, do tego celu wykorzystano formalne me-
tody grupowania zbiorów. Analizowano problem estymacji przeciętnej cechy 
badanej na podstawie próby dwufazowej, przy czym w pierwszej fazie próbę 
prostą racjonalnie dzielono na równoliczne grupy na podstawie obserwowa-
nej w niej cech pomocniczych. Potem w drugiej fazie spośród tych grup lo-
sowano już próbę, w której obserwowano zmienną badaną.  
 Rozdział piąty dotyczy estymacji wektora średnich w populacji na 
podstawie wektora średnich z próby dwustopniowej. Oprócz podstawowych 
własności rozkładu wektora tych estymatorów zaprezentowano rozwiązania 
zadań optymalizacji rozmiarów prób składowych próby dwustopniowej.  

Szósty rozdział jest poświęcony wektorowym estymatorom różnico-
wym i regresyjnym. Prezentowane są ich macierze wariancji i kowariancji  
w przypadkach, gdy losowana jest próba prosta bądź podwójna. Gdy estyma-
tory te są wyznaczane na podstawie obserwacji cech badanych i pomocni-
czych w próbie podwójnej, formułowano i rozwiązywano zadania optymalne-
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go ustalania liczebności obu prób składowych próby podwójnej. Ponadto 
przedstawiono własności trzech strategii będących uogólnieniami regresyj-
nych strategii Singha i Srivastawy. Strategie te uwzględniają więcej niż jedną 
zmienną dodatkową oraz jedna z nich zależy od dwustopniowego planu loso-
wania próby.   
 Rezultaty otrzymane w pracy powinny przyczynić się do racjonaliza-
cji badań reprezentacyjnych populacji. Prezentowane własności estymatorów 
wektorowych i planów losowania prób winny ułatwić wybór najodpowied-
niejszych spośród nich w praktyce badań statystycznych. Celem optymalnego 
tworzenia warstw bądź grup w populacji jest w konsekwencji zwiększenie 
dokładności oceny parametrów na podstawie prób warstwowych bądź grupo-
wych. Zastosowanie tych procedur przyczyni się również do oszczędności 
nakładów przeznaczanych na badania reprezentacyjne. W tej kwestii zwłasz-
cza mają bezpośrednie znaczenie analizowane w pracy zagadnienia optymal-
nego ustalania liczebności prób złożonych z uwzględnieniem kosztów bada-
nia i żądanej dokładności ocen parametrów.  



 
 
 
 

INDEX OF EXPRESSIONS 
 
 

T
m1 ]y...y[=y , N= JYy T1-N : the vector of mean values from a population; 

~y = yN : the vector of global values from a population;  

C*yy = C*(y)=[c*tj ] (t,j=1,...,m),   where:  

c*tj=c*(yt, yj) = )y)(yy(y
1N

1
j

N

1i
ijtit −−

− ∑
=

: the matrix of variances 

and covariances of variables  

v*(yj)=c*(yj, yj): the variance of a variable yj ; 

R = R(y) = [rtj] (t,j=1,...,m), where 
( ) ( )jt

jt

yy

yy

∗∗

=
vv

),(c
rtj

: the correlation matrix; 

)((
*

q yy ∗Ctr=) : the mean radius of an m-dimensional; 

g(y) = det(C*(y)): the generalized variance of an m-dimensional variable; 

ρ(y) = 1λ : the spectral radius is equal to the square root of the maximal 

eigenvalue λ1 of the covariance matrix C*(y),  

P(s): sampling design of an ordered sample s,  

P(s): sampling design of an unordered sample s,  

πk: inclusion probability of order one,  

πkl: inclusion probability of order two, 

P1(s):the sampling design of the simple and ordered sample, see  
the expression (1.26),  

P2(s): the sampling design of the simple and ordered sample with a fixed 
effective size, see (1.27), 

P3(s): the sampling design of the simple and unordered sample with a fixed 
effective size, see (1.28),  

E(.), D2(.) and Cov(.): expected value, variance and covariance determined  
on the basis of a sampling design, 

E(.), D2(.) and Cov(.): expected value, variance and covariance evaluated  
on the basis of superpopulation model,  

tS: an estimator of a parameter θθθθ∈ΘΘΘΘ, where ΘΘΘΘ is a parameter space,  

ts: a value of the estimator tS,,  

(tS, P(s)): the sampling strategy,  
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( Sy ,P3(s)): the vector of simple sample means where 

 ]  y... y[= Sm1SSy , ∑
∈

=
Sk

kiiS y
n

1
y , i=1,...,m,  

V(tS)=E(tS-E(tS))
T(tS-E(tS)): the covariance matrix of an estimator tS,   

VSR(tS)= E(tS-θθθθ)T(tS-θθθθ): the matrix of the second mixed moments of esti-
mation errors,  

)(tr)(q SSRS
2
SR tVt = , the mean square radius,  

q(tS)= )(tr StV : the mean radius of the estimator tS,   

gSR(tS) = detVSR(tS): the generalized mean square error,  

g(tS) = detV(tS): the generalized variance of the estimator tS,   

ρSR(tS): spectral radius of the matrix: VSR(tS),  

ρ(tS)= spectral radius of the covariance matrix: V(tS), 

))s(P,y(D

))s(P,t(v
))s(P,t(deff

1S
2

SSR
S = : the deff coefficient,  

=))s(P,(deff St ρ ( )))s(P,())s(P,( 1S
1

SSR yVtV − : generalized of the deff 

coefficient into the multivariate case,  

V(Ts)=E(Ts-E(Ts)]
T[(Ts-E(Ts)]: a ξ-covariance matrix of prediction errors, 

)()( SSRS TVT EqSR = : the mean square radius of a strategy (TS,p),  

E[VSR(TS)] = EE(TS - ΘΘΘΘ)T(TS - ΘΘΘΘ): the matrix of mixed second moments  
of prediction errors,  

∑
= π

=
N

1k k

kk
HTS

ya

N

1
t : the Horvitz and Thompson estimator,  

P4(s): Lahiri 's sampling design, see expression (2.24),  

P5(s): the sampling design proportional to total of values of auxiliary variable 
which are not observed in sample, see (2.38),  

P6(s): Singh and Srivastava's sampling design, see (2.43),  

P7(s): the sampling design proportional to function of sample variance  
of an auxiliary variable, see (2.49),  

P8(s): the sampling design proportional to squared estimation error  
of auxiliary variable mean, see (2.59),  

P9(s): the sampling design proportionate to decreasing function of squared 
estimation error of auxiliary variable mean, see (2.64), 

P10(s),...,P13(s): space sampling designs, see the expressions (2.70), (2.71), 
(2.72), (2.75),  

P14(s),...,P18(s): Sampling designs dependent on the determinant of sample 
covariances matrix, see the expressions (2.78), (2.81), (2.82), (2.85), 
(2.86),  
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P19(s): the two stage-Singh-Srivastava's sampling design, see the expression 
(6.86),  

Pw(s): the sampling design of the stratified sample, see the expressions (3.1), 
(3.2), 

,
wP : the sampling design of the stratified sample in the case of proportional 

allocation of the samples in strata, 

( gSy , gP ): the cluster sample strategy, see the chapter 4.1,  

∑
=

=
H

1h
hwS w hSyy : the vector of stratified sample means,  

the regression model, see the expressions: (1.19)-(1.21), (3.64), (3.65), 

( ) ( )[ ]w
ijr=wR : the matrix of the coefficients of within-cluster correlation, see 

the expressions (4.5), (4.6), (4.12),  

( )[ ]jmm c y,yi=C : the between-cluster matrix of the covariances, see 

expression (4.23), 

( )[ ]jww c y,yi=C : the within-cluster matrix of the covariances,  

∆∆∆∆: the homogeneity coefficient of multidimensional variable, see expression 
(4.27),  

( )dgS P,~y : the two stage sampling strategy, see the chapter 5.1,  

(tBS,P3): the simple regression strategy, see the chapter 6.1,  

2r̂ : the mean determination coefficient, see the expression (6.10), 

( )d3BS P,t : the vector of regression estimators from double sample, see  

the chapter 6.2, 

( ))s(P,y 16RS : the first generalised Singh-Srrivastava's regression strategy, see 

the expressions (6.66), (6.71)-(6.74), 

( ))s(P,y 16RS : the second generalised Singh-Srrivastava's regression strategy, 

see the expressions (6.80), (6.83), (6.84), 

 ( ,tRQ P19(s)): the two stage-Singh-Srivastava's sampling strategy, see  

the expression (6.86)-(6.97).  
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