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Abstract 
 

When comparing performance (of products, services, entities, etc.), 

multiple attributes are involved. This paper deals with a way of weighting 

these attributes when one is seeking an overall score. It presents an objec-

tive approach to generating the weights in a scoring formula which avoids 

personal judgement. The first step is to find the maximum possible score 

for each assessed entity. These upper bound scores are found using Data 

Envelopment Analysis. In the second step the weights in the scoring for-

mula are found by regressing the unique DEA scores on the attribute data. 

Reasons for using least squares and avoiding other distance measures are 

given. The method is tested on data where the true scores and weights are 

known. The method enables the construction of an objective scoring for-

mula which has been generated from the data arising from all assessed en-

tities and is, in that sense, democratic. 
 

 

Keywords: multi-attribute decision making, weighting, ranking, performance measurement, 

composite indices, data envelopment analysis. 

 

1 Introduction: Why have a formula  

for performance or efficiency? 
 

We are often interested in comparing the performance or efficiency of entities, 

be they consumer products, services, people, organisations, etc. We naturally 

prefer results from techniques which are readily comprehensible because this 

provides greater confidence. Furthermore, this allows us to communicate the 

results more easily and to persuade others. Having a simple formula is therefore 
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helpful. It also provides transparency: it clearly shows how the various factors 

are weighted and combined. The challenge that we shall investigate is deciding 

what these weights should be. 

The factors or attributes associated with the entities are often combined to 

produce a multi-dimensional or composite index and the weights chosen for 

these criteria are clearly crucial to the results that follow. A startling illustration 

of this is given by Decanq and Lugo (2013, p. 16) describing the work of Becker 

et al. (1987): 
 

“The authors studied the quality of life in 329 metropolitan areas of the 

U.S. by ordering them according to standard variables such as quality of 

climate, health, security, and economical performance. The authors find 

that, depending on the weighting scheme chosen, there were 134 cities 

that could be ranked first, and 150 cities that could be ranked last. Moreo-

ver, there were 59 cities that could be rated either first or last, using the 

same data, but by selecting alternative weighting schemes”. 
 

Data envelopment analysis (DEA) provides a way of deriving separate  

attribute weights for each entity so as to maximize its score, and thereby over-

comes the issue of subjectivity. An entity assessed with a DEA score would be 

pleased with its allocated weights since no other weights could provide a higher 

score. However, some would argue that this removes a degree of comparability 

because each entity has its own weights and so comparison is not on the same 

basis. Hence, there is a perceived need, at least in some quarters, for a common 

set of weights that can be applied to all the entities being compared (Liu and 

Peng, 2008; Ramon, Ruiz and Sirvent, 2012; Kritikos, 2017). Liu and Lu (2010, 

p. 453) give an example of such a situation: “DEA usually provides a group of 

performance leaders that can be used as benchmarks for those who are outside 

the leading group. The leaders are of equal significance under the original DEA 

methodology. Some applications, however, expect unambiguous, preferably 

ranked, performance leaders. For example, when applying DEA to compare the 

performance of R&D (research and development) organizations, one prefers  

a ranked list in order to correctly reward the R&D organizations and more  

importantly to allocate precious resources to organizations with better perfor-

mance”. Ruiz and Sirvent (2016, p. 8) point out that “The DMUs [decision making 

units] involved in production processes often experience similar circumstances, 

so benchmarking analyses in those situations should identify common referents 

and establish common best practices (...). In particular, this means that input and 

output weights should be common to all units in the evaluations, in contrast to 

DEA”.  
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By having common weights one can produce rankings based on the score 

from the formula. The media are often keen to present results from rankings, and 

so this is one way of gaining public attention, the attention of policy makers, and 

decision makers. Rankings are sometimes based on aggregating expert opinions, 

but these may be heavily influenced by historical reputations which may be less 

relevant today. In this regard Rosenthal and Weiss (2017, p. 136) look at aca-

demic journals in the field of business and notes that “While we believe that 

subjective comparisons and rankings are very important (…) we also believe that 

subjective rankings represent opinions that are often slow to change”.  

In magazines and newspapers, journalists will discuss shifting rank positions 

and comment on possible causes. Examples include the annual Human Devel-

opment Index ranking of countries produced by the United Nations Develop-

ment Programme, and the various national and international ‘league tables’ of 

universities which exist around the world. Despite being roundly criticised by 

academics, the latter attract a great deal of interest because of the power that 

they wield: potential students are influenced by them when selecting where to 

study, and academics seeking a position may also be guided by them. For their 

part, university executives scour these tables to see if they can trumpet recent 

successes when their position rises, or try to see which factors they need to im-

prove if it falls. Another example is the Multidimensional Poverty Index, which 

is produced by the Oxford Poverty and Human Development Initiative (OPHI). 

They point out that a dashboard showing multiple measures does not reflect the 

multiple deprivations that some people face at the same time, whereas a single 

index can combine such information. 

Other reasons for using a common set of weights relate to issues regarding 

the direct use of DEA. Perhaps the most serious issue from a managerial perspective 

is attaching zero (or epsilon) weights to criteria, thereby effectively hiding that factor 

from the assessment of that entity. Hence it is not unusual to have many DMUs with 

a score of 100%. It can be proved that if a unit has (uniquely) the largest value of  

a particular output then it is automatically efficient in some DEA models (e.g. the 

BCC or Additive DEA models) – and this is irrespective of how large (and possibly 

wasteful) its consumption of inputs! (Ali, 1993; Jahanshahloo et al., 2005). Similar-

ly, if a unit has (uniquely) the smallest value of an input then it is automatically 

100% efficient in some DEA models – irrespective of how low its output levels are! 

So, if there are m inputs and s outputs, up to m + s units could be efficient in this 

way, which is an unfortunate artefact of such models.  

Roll and Golany (1993, p. 99) point out that “it is usually deemed inappropri-

ate to accord widely differing weights to the same factor, when assessing differ-

ent DMUs”. Indeed, it is this weight flexibility that leads to poor discrimination 
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between entities following a DEA analysis, with many achieving a 100% score. 

This is especially true when the number of DMUs being compared is small, 

and/or the number of factors (inputs, outputs, performance measures) is large.  

A graphical representation may assist in understanding how DEA may accord 

widely differing weights. In Figure 1 all units are assumed to have the same 

input value; the four upper DMUs all produce more than 20 units of the output 

on the vertical axis, whereas the fifth DMU produces one unit only. Neverthe-

less, it is rated 100% under DEA due to the fact that it has the highest level of 

the output on the horizontal axis. Such units are sometimes referred to as maver-

icks. Moreover, any DMUs just behind this one will have scores close to 100%. 

The relative weights accorded to the two outputs will clearly differ greatly as 

indicated by the slope of the line-segment on the right compared to the slopes of 

the other sections of the frontier. 

 

 
 

Figure 1: Frontier units in output space 
 

2  Common weights and DEA  
 

Perhaps the first paper to propose a common set of weights (CSW) in the DEA 

context is Cook, Roll and Kazakov (1990), which mentions it as a direction for 

further analysis. This was followed by Roll, Cook and Golany (1991, p. 6), who 

motivate their work by pointing out that using a single set of weights “(…) is the 

usual approach in all engineering, and most economic, efficiency analyses. In 

these cases it is assumed that all important factors affecting performance are 

included in the measurement system, and there is no need (nor wish) to allow for 
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additional, individual, circumstances”. However, they point out that in reality 

some factors will not have been included in the analysis, and that there may also 

be differences in goals and missions. Roll, Cook and Golany (1991, p. 6) then 

propose an interesting interpretation:  
 

“A possible meaning of efficiencies computed with a CSW, in the context 

of DEA, is that such values represent the part of a DMU’s performance 

which can be explained when assuming uniformity of circumstances. The 

difference between the efficiency measured with an »individual« set of 

weights and that obtained with a CSW may indicate the effects of special 

circumstances under which a DMU operates”. 
 

Among the approaches that they suggest is to run a conventional DEA and 

then take the average weight attached to each factor across all the DMUs, or to 

take some average of the highest and lowest weight. This is a move away from 

DEA as ‘self-appraisal’, and towards ‘peer appraisal’. This is the philosophy 

behind ‘cross-efficiency’; here the evaluation of an entity is some ‘average’ of 

the evaluations arising from applying the optimal weights of all the entities to 

the one being assessed. The problem with this is that DEA weights are not 

unique – one can obtain the same DEA score using different weights. To quote 

Thompson, Dharmapala and Thrall (1993, p. 383) “Zero values in optimal solu-

tions for the primal or dual LP programs are indicators of degeneracy and multi-

ple optimal solutions. Some analysts misleadingly use »the« instead of »a« or 

»an« for a DEA solution; and accordingly, they may fail to recognize the exist-

ence of multiple optimal solutions”. The non-uniqueness of DEA weights is  

a long-running issue with the cross-efficiency method (Wu, Sun and Liang, 

2020), and has led to a plethora of sophisticated devices for dealing with them. 

Indeed, Table 1 in Contreras, Lozano and Hinojosa (2021) lists 44 cross-

efficiency approaches. For the sake of simplicity we choose to avoid this route. 

Roll and Golany (1993) presented further ideas for determining common 

weights. One suggestion was to choose the CSW which maximizes the average 

score of the DMUs. Another was to determine the CSW which maximized the 

number of efficient DMUs. We shall not attempt here to review the extensive 

literature on CSW, as this has been carried out by Aldamak and Zolfaghari 

(2017), which contains 113 references − there is also a review of ranking models 

in DEA by Lotfi et al. (2013) with 104 references, see also Adler, Friedman and 

Sinuany-Stern (2002), and Moghaddas and Vaez-Ghasemi, 2017. Nevertheless, 

we now mention those papers which bear some similarity to the work we shall 

present. 
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Kao and Hung (2005) treated the DEA scores as the ideal solution to be used 

in a compromise programming formulation to identify the common weights: this 

involves finding a solution which is as close as possible to the ideal point. The 

three most common distance measures were used: city-block (or Manhattan), 

Euclidean, and Chebyshev (L1, L2, and L∞ metrics). They recommended investi-

gating all three of these and then to make a subjective judgement. Surprisingly, 

they reported that replacing all the DEA scores by 100% led to the same CSW 

for the L1 metric. We now explain why this happens: The objective in the L1 

metric is to find a common set of weights (u,v) so as to minimize the sum of 

absolute differences between the DEA scores (Ei*) and those from the CSW 

formula:  

 Min Σ Ei* − Ei (u,v) (1) 
 

The DEA scores are optimal and therefore should not be exceeded by using 

any other set of weights, so Ei* ≥ Ei (u,v), which implies that the objective sim-

plifies to:  

 Min Σ[Ei* − Ei (u,v)] i.e. Min [constant – Σ Ei (u,v)]  (2) 
 

Thus the actual DEA scores are removed from the problem and do not affect 

the resulting common set of weights. This is rather disheartening and leads us to 

reject this L1 approach. (The objective function also simplifies to maximising the 

sum of scores.)  

Zohrehbandian, Makui and Alinezhad (2010) adapted Kao and Hung’s  

approach to avoid nonlinearities by restricting attention to the L1 and L∞ metrics, 

and by considering an additive DEA model. Pre-dating both of these papers is 

Despotis (2002), who combines the L1 and L∞ distance measures using  

a weighting parameter which is left to the user to set. This was later applied to 

the Human Development Index (Despotis, 2005). 

Cook and Zhu (2007) consider the view that one should minimize the devia-

tion for the unit whose final score is furthest from its original DEA score. This is 

an L∞ or Chebyshev metric and so we have a minimax approach. This view 

could be supported on the grounds that this unit is the most disadvantaged. 

However, one needs to ask why there is a large deviation in score. It may be that 

this unit is a maverick as in Figure 1 and is using weights which differ consider-

ably from the rest of the data set, or even had zero weights on a number of vari-

ables and so was able to hide the extent of its inefficiency; thus the more realistic 

(common) weights caused its score to decline the most. It therefore becomes 

highly questionable whether such a poor performing unit should be so influential 

in determining the weights for all other units. It also appears to be ‘undemocrat-

ic’ that a single unit should hold such power over the others. It is for these rea-

sons that we do not adopt the L∞ metric. 
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3  The automatic democratic method 

 

In this paper we propose applying least squares regression to the DEA scores 

(Ei) as the dependent variable. For reasons stated above we do not use the L1 and 

L∞ fitting approaches. The underlying attribute data are used as the explanatory 

variables in a functional form that reflects the efficiency measure used in DEA 

when finding the optimal score for each assessed entity. We shall allow for both 

input (more is worse) and output (more is better) variables. One way of measuring 

performance efficiency is the ratio: sum of weighted outputs (y) to sum of 

weighted inputs (x), which is the original CCR model for DEA (Charnes, Cooper 

and Rhodes, 1978). We emphasise that any other functional form (additive, mul-

tiplicative etc.) can be used as the performance metric – our approach is not  

restricted in this way. For our ratio form the following least squares objective 

function would apply: 

 Minimize ∑ [
∑ 𝑢𝑟𝑦𝑟𝑖

𝑠
𝑟=1

∑ 𝑣𝑗
𝑚
𝑗=1 𝑥𝑗𝑖

𝑛
𝑖=1 − 𝐸𝑖]2  (3) 

 

where ur is the coefficient for output r and vj is the coefficient for input j, these 

are the common weights to be determined by the regression, and the Ei are the 

numerical scores previously obtained from DEA for each unit i. The idea is to 

produce a handy compact formula for the scores. This can be described as an 

Automatic Democratic Approach since each entity is initially represented by its 

own optimal score, with individual weights emphasising its best aspects, with 

the final set of weights and scores being deduced objectively from these initial 

scores by regression. 

Given that DEA scores are designed to show each entity in the best possible 

light, and are therefore optimistic, we feel that such scores ought to be treated as 

upper bounds, and not exceeded. We thus take measures to deal with this issue. 

Two ways will be considered: 

1. Use constrained regression with one-sided residuals. The constraints which 

force all residuals to have the same sign guarantee that DEA scores (as the 

dependent variable) will not be exceeded. 

2. Use ordinary regression followed by an adjustment which ensures the formula 

score does not exceed the DEA score. This can be done by subtracting a con-

stant (equal to the largest over-estimate) from all scores; however, this runs 

the risk of making very low scores become negative. A better approach is to 

rescale i.e. divide the formula scores by a factor which ensures our  

requirement. The factor will be the largest instance of the ratio (DEA score)/ 

(Formula score). This approach also has the benefit of retaining proportion-

ality between the formula scores. 
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It should be noted that the regression we are discussing here differs from the 

commonly used second stage regressions where DEA scores are related to other 

variables (e.g. environmental, contextual, or otherwise explanatory) not used in 

estimating the DEA scores. Such models sometimes employ a censored normal 

Tobit specification to deal with the fact that there is a concentration of observa-

tions with a 100% score. Such points are an artefact of the DEA method of iden-

tifying a frontier: attaching a score of 100% to some observations should  

not make us think there is anything absolute or fixed about them, since DEA is 

always an indication of ‘relative’ performance.  

We stress that we are using regression for descriptive purposes – to provide  

a formula which approximates a set of scores. There is no assumption regarding 

the underlying probability distribution of the scores, and no statistical inference 

is being made.  

 

3.1  Illustrative application 

 

It has been claimed that “Data Envelopment Analysis (DEA) is the most com-

monly used approach for evaluating healthcare efficiency” (Hollingsworth, 

2008; Gajewski et al., 2009; Matawie and Assaf, 2010), and we shall use an  

example from this field to illustrate our method. The data (Cooper, Seiford and 

Tone, 2006, p. 169) cover 14 general hospitals and have two inputs: nurses and 

doctors. The two outputs are inpatient and outpatient numbers (see Table 1). 

Applying DEA using the CCR model we obtain the scores shown in Table 2. 

Also shown are those weights which are zero or extremely small. What is dis-

turbing is that half of the hospitals have a zero weight on the number of outpa-

tients! Also, four hospitals place zero weight on doctors. These variables are 

effectively being ignored in assessing those hospitals. Commenting on this, 

Cooper, Seiford and Tone (2006, p. 169) state: “This means that the inefficient 

hospitals are very likely to have a surplus in doctors and a shortage of outpa-

tients”. There are even three hospitals which place zero weights on both doctors 

and outpatients, and so are being assessed purely on the ratio of inpatients per 

nurse, with the other variables ignored. This highlights how DEA, when used on 

its own, can be problematic when evaluating performance. 
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Table 1: Data on 14 general hospitals 
 

Hospital Doctors Nurses Outpatients Inpatients 

A 3008 20 980 97 775 101 225 

B 3985 25 643 135 871 130 580 

C 4324 26 978 133 655 168 473 

D 3534 25 361 46 243 100 407 

E 8836 40 796 176 661 215 616 

F 5376 37 562 182 576 217 615 

G 4982 33 088 98 880 167 278 

H 4775 39 122 136 701 193 393 

I 8046 42 958 225 138 256 575 

J 8554 48 955 257 370 312 877 

K 6147 45 514 165 274 227 099 

L 8366 55 140 203 989 321 623 

M 13 479 68 037 174 270 341 743 

N 21 808 78 302 322 990 487 539 
 

Table 2: DEA scores based on the CCR method applied to 14 hospitals 
 

Hospital DEA score Doctor weight Nurse weight Outpatient weight Inpatient weight 

A 0.955 

 

0 

  B 1 

    C 1 

    D 0.702 

  

0 

 E 0.827 0 

 

0 

 F 1 

    G 0.844 

  

0 

 H 1 

 

4.6 E-08 1.1 E-08 

 I 0.995 0 

   J 1 

    K 0.913 

 

7.4 E-08 0 

 L 0.969 

  

0 

 M 0.786 0 

 

0 

 N 0.974 0 

 

0 

 
 

The table also shows those weights on inputs and outputs that turn out to be zero or extremely small. 
 

We now apply the proposed automatic democratic method. We regress the 

DEA scores as the dependent variable on the underlying input and output data, 

as explanatory variables. The ordinary least squares (OLS) regression model is: 
 

DEA score = [u1 Outpatients + u2 Inpatients]/[v1 Doctors + v2 Nurses] + residual  (4) 
 

This is a nonlinear regression in the coefficients (or weights u, v), but is easi-

ly solved using standard statistical software such as SPSS.  

The resulting formula is: 
 

 E = [Outpatients + 4.94 Inpatients] / [52.18 Doctors + 24.56 Nurses]  (5) 
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where we have set the coefficient for Outpatients to be 1 for ease of interpreta-

tion; there is no loss of generality as the scores remain unchanged when all coef-

ficients are divided by the same number. 

First we are pleased to observe that there are no zero weights. Inspecting the 

output weights shows that an inpatient has a greater weight than an outpatient, 

which is as expected. Likewise, for the inputs, a doctor has a greater weight than 

a nurse; again this is what we would expect.  
 

Table 3: Comparing ranks using DEA, OLS (Ordinary Least Squares),  

and a constrained regression formula 
 

Hospital A B C D E F G H I J K L M N 

OLS rank 10 6 2 14 12 3 11 7 4 1 8 5 13 9 

DEA rank 9 1 1 14 12 1 11 1 6 1 10 8 13 7 

Constrained 

regression 
11 9 2 14 12 3 10 6 5 1 7 4 13 8 

 

DEA-efficient hospitals are underlined. 
 

In Table 3 we compare the ranks based on DEA with those arising from the 

formula. Most of the hospitals have the same or similar rank, which is reassur-

ing. However, we need to look at those cases where there is a marked difference 

and see if this makes sense. The largest change occurs with hospital H which 

was 100% efficient under DEA but is now ranked 7
th
 under OLS. To explain this 

decline let us compare it with C which has rank 2. Note that the CCR model 

assumes constant returns to scale. H treats 15% more inpatients and just 2% 

more outpatients, but H is outperformed by C because H uses 45% more nurses 

to achieve this. Inspection of the weights in Table 2 shows that H has placed  

a negligible weight on nurses, thereby downplaying this high resource usage.  

Next consider hospital B which was DEA efficient, but now has rank 6. Let 

us try and understand this by comparing it with C (ranked second). C has 5% 

more nurses and 8.5% more doctors than B, and so we would expect its pro-

cessing of inpatients to be greater by this order, but it is actually processing 29% 

more inpatients than B. This disproportionate difference helps explain why C 

now outperforms B.  

Next we turn to the (unconstrained) OLS scores provided by the formula. 

Given that it is an approximation based on regression, it is inevitable that some 

scores will be above or below their DEA scores, as can be seen in Table 4. As 

DEA scores are viewed as an optimistic upper bound, there is no requirement 

with formula scores which are below these. However, something needs to be 

done if the formula provides a score higher than the corresponding DEA value. 

This is fixed by a simple rescaling. For each hospital we calculate the ratio 

(DEA score)/(Formula score), then find the maximum ratio. We then divide all 
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the formula scores by this maximum ratio. This ensures that DEA scores are 

never exceeded whilst also maintaining proportionality: all scores remain the 

same in relative terms, so that ratios of scores are unchanged. 
  

Table 4: Comparison of DEA and formula scores 
 

Hospital A B C D E F G H I J K L M N 

DEA score 0.96 1.00 1.00 0.70 0.83 1.00 0.84 1.00 1.00 1.00 0.91 0.97 0.79 0.97 

OLS Formula score 0.89 0.93 1.09 0.67 0.85 1.05 0.86 0.90 1.01 1.09 0.89 1.00 0.78 0.89 

OLS Formula score  

(rescaled) 
0.81 0.85 0.99 0.61 0.78 0.96 0.79 0.83 0.93 1.00 0.82 0.92 0.72 0.82 

Constrained 

regression score 
0.80 0.83 1.00 0.65 0.77 0.96 0.82 0.84 0.92 1.00 0.83 0.94 0.75 0.83 

 

Our alternative approach for ensuring that formula scores do not exceed DEA 

scores is to use regression with constraints to ensure the residuals are one-sided, 

i.e. all have the same sign. The resulting formula for this is:  
 

 E = [Outpatients + 60 Inpatients] / [628 Doctors + 279 Nurses] (6) 
 

We note the relative weights for inpatients and outpatients are now 60 to 1, 

which is much higher than before. For doctors and nurses the relative weights 

are only slightly altered. From the bottom two rows of Table 3 we see that all but 

one of the ranks are the same or differ by one from the earlier formula; and the 

bottom two rows of Table 4 indicate similar scores using the two formulae. It is 

interesting to compare the constrained regression results with those from the 

earlier formula by looking at deviations from the DEA scores. Note that all the 

deviations have the same sign. The largest residual was 0.175 in both cases. 

More interesting was that the mean deviation using constrained regression was 

0.0725, whereas it was higher, at 0.082, using the OLS formula with rescaling. 

To understand why this should be the case provides a useful insight which ena-

bles us to choose between these approaches. We expect the unconstrained OLS 

‘predictions’ to be scattered above and below the DEA values in a roughly 

symmetric random manner. However, the effect of the subsequent adjustment by 

rescaling will extend the deviation associated with those points which were al-

ready under-predicted, i.e. they will be dragged down even further. This effect 

will, in general, cause constrained regression to provide a closer fit than OLS 

followed by rescaling because it takes into account the one-sided condition at the 

same time as the optimal fitting process. 

Another way to improve the fit is to include a constant or intercept in the model 

formula. For the constrained regression this causes the mean deviation to fall to 

0.039, which is quite a drop from 0.0725. The largest residual was 0.169. For OLS 

with rescaling the mean deviation was 0.066 and the largest deviation was 0.157. 
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We point out that whilst we have assumed a formula which is similar in form 

to that used to assess the units in DEA, this does not have to be the case. One 

could achieve an even closer fit using a more flexible form. A ratio of linear 

forms assumes constant rates of marginal substitution, and no curvature in the 

frontier. But a ratio of quadratics (or other nonlinear forms) would allow for 

non-constant substitution rates and curved frontiers. 

 

3.2  Testing the method where the true weights and scores are known 

 

In general, we would not know the ‘true’ weights or ‘true’ scores. However, one 

can set up a situation where there is an assumed pre-specified relationship and 

then generate data. An example of this is given by Bowlin et al. (1985), where 

they considered hospitals being assessed on three outputs: the number of regular 

patients (RP), number of severe patients (SP), and number of teaching units (TU; 

student nurses, interns, etc.), while the input was the total cost (in $’000), which 

was assumed to be related to the outputs according to:  
 

 Efficient Cost = 0.5TU + 0.13368 RP + 0.17474 SP (7) 
 

assuming the hospital is operating efficiently. They generated data for seven 

efficient hospitals and eight hospitals operating inefficiently (Table 5). The true 

score or efficiency can be found from the ratio Efficient Cost/Actual Cost, i.e.: 
 

 True Score = [0.5TU + 0.13368 RP + 0.17474 SP]/ Cost  (8) 
 

Table 5: Test data on 15 hospitals with true scores compared with estimated scores 
 

HOSPITAL 
Teaching 

units 

Regular  

Patients 

Severe  

Patients 

Cost 

$’000 

True 

Score 

Automatic-Democratic 

Score 

H1 50 3000 2000 775.5 1 0.995 

H2 50 2000 3000 816.6 1 0.992 

H3 100 2000 3000 841.6 1 0.992 

H4 100 3000 2000 800.5 1 0.995 

H5 50 3000 3000 950.3 1 0.994 

H6 100 2000 5000 1191.05 1 0.990 

H7 50 10000 2000 1711.3 1 1.000 

H8 100 3000 2000 884.75 0.91 0.900 

H9 50 2000 3000 841.6 0.97 0.963 

H10 100 10000 2000 2036.3 0.85 0.852 

H11 50 5000 3000 1362.6 0.89 0.890 

H12 100 3000 3000 1070 0.91 0.905 

H13 50 4000 5000 1491.1 0.96 0.955 

H14 100 3000 3000 1070 0.91 0.905 

H15 50 3000 2000 898.7 0.86 0.859 
 

Source: Bowlin et al. (1985). 
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DEA was applied to the data in Table 5 to maximise the score (u1TU + u2RP +  

+ u3SP) / Cost, for each hospital. We then applied constrained least squares regres-

sion to obtain common weights. The resulting scoring formula was found to be:  
 

Automatic Democratic Score = [0.488 TU + 0.13420 RP + 0.17243 SP] / Cost.  (9) 
 

We immediately notice that the weights are very close to those in the True 

Score formula above. The associated scores are shown in the last column of 

Table 5 and can be seen to be extremely close to the true values. 

Thanassoulis (1993) applied regression directly to the above data using the 

cost as the dependent variable, and found: 
 

 Cost = 1.1054 TU + 0.14811 RP + 0.16198 SP  (10) 
 

These coefficients are further away from those in the underlying equation (7). 

This is to be expected because regression, when used alone, will model average 

behaviour, not relative performance. It is also worth noting that applying regres-

sion directly to the data is restricted to situations where there is a single depend-

ent variable, and so cannot be applied when there are both multiple input and 

multiple output variables. By contrast, in our two-step approach we have used 

DEA to assess performance (a single variable score), and then used regression to 

model this performance (Tofallis, 2013). 

 

4  Conclusion 

 

Our aim has been to provide a straightforward method for producing a formula 

for performance when there are no agreed weights on the underlying criteria. 

Initially, scores are obtained using DEA (which, by itself, does not generate  

a scoring formula). These are scores that each entity would be pleased with, 

since DEA uses the weights which maximizes its score. Consequently, DEA 

scores are sometimes felt to be unrealistically high, so we view these as optimis-

tic, and treat them as upper bounds when constructing the scoring formula. The 

DEA scores are regressed on the underlying attribute data in order to objectively 

generate a common set of weights (the regression coefficients). We thus have an 

‘automatic democratic’ approach in that data from all entities being assessed 

play a part in obtaining the weights.  

Whilst the DEA literature contains much work on obtaining common 

weights, the method presented here is simpler and more direct. For example, 

much research has been done using cross-efficiency (see Wu, Sun and Liang, 

2020, for a review), which involves aggregating scores using weights from self 

and peer perspectives; however, the fact that such weights are not unique re-

quires additional methodological complications, such as secondary goals, in 
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order to deal with this issue. By focusing on DEA scores (which are unique) 

rather than the associated weights (which are not) we avoid complications aris-

ing in many other approaches. Furthermore, using least squares regression brings 

the benefits of a well-known and widely used technique to provide a way of 

generating a compact formula for performance. Use of a formula also helps 

overcome the lack of discrimination associated with DEA, where many units 

have unreasonably high or even 100% efficiency as a result of DEA’s extreme 

weight flexibility. 

Our view is that the DEA scores are optimistic upper bounds, and so we have 

ensured this condition is upheld. Two ways were investigated for achieving this. 

We compared results using constrained regression with those from OLS  

followed by rescaling, and found that the former provides a closer fit. An expla-

nation was provided for this effect: Constrained regression, by definition, fits as 

close as possible while maintaining the required condition; whereas making an 

adjustment after OLS does not carry the same ‘best fit’ property because the 

optimisation and constraints are not dealt with simultaneously. This insight  

allows us to reject the rescaling approach. We also considered the Manhattan 

and Chebyshev distance metrics as alternatives to least squares for regression 

and identified reasons for not adopting them.  

The method we have presented has the attractive property of allowing a ranking 

of entities without requiring the imposition of arbitrary choices or restrictions on 

weights. Some of the DEA ranking literature is focused on achieving what is 

called a ‘full ranking’, that is one in which there are no ties. But it has to be real-

ised that, if a formula is to be used, there will always be the possibility of two 

units with different attribute levels achieving an equivalent overall score.  

The functional form of the scoring formula is not restricted by our approach. 

Although we have used a ratio of weighted outputs to weighted inputs as our 

illustrative example, it is of course possible to apply regression to scores gener-

ated by other models. For example, the BCC (Banker, Charnes, Cooper) model 

has an additional parameter to model variable returns to scale, and so the associ-

ated regression equation would provide a closer fit to the DEA scores. There are 

also additive and multiplicative DEA models which can be used for generating 

additive (linear) and multiplicative scoring formulae. 

Finally, a valuable benefit of the proposed approach is the transparency of us-

ing a simple, and objectively constructed formula, for performance evaluation.  
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