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Abstract 
 

In this paper we provide two axiomatic characterizations of the proba-

bilistic max-min extended choice correspondence support, for a decision 

maker who has state-dependent preferences (represented by a linear order) 

over the set of alternatives and a (subjective) probability vector over states 

of nature, where both preferences and probability vectors are variable.  
 

 

Keywords: state-dependent preferences, extended choice correspondence. 

 

1 Introduction 
 

A (fixed agenda) extended choice correspondence assigns to each profile of sta-

te-dependent strict rankings over the set of alternatives and probability vector 

over a non-empty finite set of states of nature, a non-empty (not necessarily pro-

per) subset of alternatives, from a given non-empty finite and fixed set of alter-

natives. The genesis of this concept and a fairly detailed mathematical discus-

sion of it can be found in Lahiri (2020/2021). With a different interpretation, 

Denicolo (1985) refers to a special case of the same mathematical entity as  

a social choice correspondence. The special case corresponds to equiprobable 

states of nature, but since the interpretation in the paper by Denicolo cited above 

is one of group decision-making under certainty, there is a point at which the 

analysis in our paper would remain incomplete, had we interpreted the frame-

work differently. The different states of nature could be interpreted as different 

criteria and the probability vectors as weights, thus reducing it to a multi-criteria 
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decision making (MCDM) problem with a weight for each criterion (“MCDM 

with weights”). However, we don’t want to push that interpretation further and 

would rather root for interpreting “MCDM with weights” as decision-making 

under probabilistic uncertainty.  

The framework introduced in Lahiri (2020/2021) is an extension of the semi-

nal model of social choice theory developed by Kenneth J. Arrow. A decision 

maker is faced with making a choice under probabilistic uncertainty (risk) in 

which uncertainty is with regard to a future state of nature, which is realized 

after the decision has been made. The decision maker is provided with (or aware 

of) a data profile, which is a pair whose first component is a profile of state-

dependent rankings over (the consequences) a non-empty finite set of alternatives 

and whose second component is a probability distribution over a non-empty finite 

set of states of nature. A decision support system (DSS) or decision aid is required to 

choose a non-empty “desirable” set of alternatives from which the final choice has to 

be made. The decision aid or DSS has no bias in favor of any one or more alterna-

tives that it suggests. Such a decision support system is called an extended choice 

correspondence, i.e., a rule which associates with each data profile from a given set 

of data profiles a non-empty finite set of desirable alternatives.  

The problem of choosing one or more alternatives from a given set of alterna-

tives was raised and rigorously formulated for the first time in a seminal contribution 

on majority voting by Pattanaik (1970). For the classical theory of decision making 

under uncertainty in the state dependent case − which is the other and major motiva-

tion behind Lahiri (2020/2021) − one may refer to Karni (1985).  

The initial concern that led to the frameworks discussed in this paper is that  

Arrowian voting theory framework does not have anything to say about the role of 

negotiations in group decision making and may therefore be very inadequate for our 

understanding of decision making in society. In view of this, slight extensions of 

voting models as models of choice under risk may serve a useful purpose. 

The reasons for our interest in state-dependent preferences are precisely the 

same as the ones discussed in Karni (1985), i.e., it is so obviously true that it 

does not need justification beyond citing trivial day-to-day examples as Karni 

has done in his book. However, Karni focuses on state-dependent utility func-

tions and it is our contention here that the informational requirements for (state-

dependent?) utility of state-dependent monetary surplus derived by decision 

makers from consuming alternatives, may prove prohibitive and a significant 

reason for “bounded rationality”, thus leading to “useable” preferences being 

represented by rankings instead of utility functions. Knowledge of the exact 

state-dependent monetary surplus (and not necessarily the state-dependent utility 

functions) is not easy to obtain for the purpose of decision making, not only 
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because the cost of obtaining such information is often exorbitant, but also  

because the knowledge of the monetary benefit from the chosen alternative may 

only be available on conditions prevailing at a future date that are neither  

accessible nor can be experienced at the time the decision has to be made. 

Hence, the major justification for the framework and the investigation in  

Lahiri (2020/2021) is that the classical theory of decision making under uncerta-

inty that rests on the assumption of maximization of expected utility (state-

dependent or not) has an important limitation − i.e. the decision maker’s prefe-

rences may not be “useable” in the form of cardinal utility functions, but only as 

rankings. That leads to a departure from the classical theory and opens up the 

possibility of decision makers using other algorithms (decision aids) for the pur-

pose of decision making under risk. That is the line of investigation pursued in 

this paper. A full-fledged application using components of this framework to 

prove the existence of “preferred with probability at least half winners” has been 

provided in Lahiri (2020; 2021). This however, is not meant to be a denial of the 

worth of the huge literature based on utility functions that uses procedures other 

than expected utility maximization, to explain paradoxes that arise if the latter 

criterion is used to explain decision making under uncertainty. One such is the 

work of Gilboa (1988) which suggests that decision makers maximize a function 

that is increasing in both expected utility of an alternative and the worst utility of 

the alternative, in arriving at optimal choices. Such procedures would require 

information about the state-dependent utility of each alternative, and it is our 

contention here − as observed earlier − that such information may not be as easi-

ly available as expected utility theory presupposes. The ordinal equivalent of the 

procedure suggested by Gilboa (1988) would require maximizing a function of 

the Probabilistic Borda Score of an alternative (see Lahiri (2020/2021) and the 

worst rank that the alternative attains with positive probability, where the func-

tion is “increasing” in the first variable and “decreasing” in the second.  

Here we begin by setting up the model for extended choice correspondences. 

In this framework we provide two axiomatic characterizations of the probabili-

stic max-min extended choice correspondence. This extended choice correspon-

dence is based on the max-min choice correspondence due to Campbell, Kelly 

and Qi (2018). The max-min choice correspondence of Campbell, Kelly and Qi 

(2018) selects for each preference profile those alternatives which have the best 

“worst rank”. In our framework, for a data profile − a pair comprising a strict 

preference profile and a probability vector (for the states of nature) − a “max-

min alternative” is an alternative whose worst rank among states of nature that 

occur with probability is the best. The worst rank of a max-min alternative is 

said to be the “max-min rank”. Our probabilistic max-min extended choice cor-
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respondence selects for each data profile those max-min alternatives which have 

the least positive probability of attaining the “max-min rank”. We ignore those 

states of nature that occur with probability zero, since if an alternative attains its 

worst rank with probability zero, it is improbable (though not impossible) that it 

will attain such a rank. Furthermore, if a max-min alternative attains the max- 

-min rank with lowest probability, then it attains a superior rank with the highest 

probability among all max-min alternatives. It is very unlikely that a risk-averse 

individual, to whom the probabilistic max-min extended choice correspondence 

would be recommended, could wish for anything better. A related earlier paper 

is the one by Congar and Merlin (2012), where the main concern is with axioma-

tic characterization of max-min “social welfare function”. The domain of the 

probabilistic max-min extended choice correspondence, whose axiomatization 

we provide, is the set of all data profiles, such that for any non-empty subset of 

probability vectors, all strict preference profiles can be associated with any pro-

bability vector in the subset. The strict sub-domain where the data profiles are 

such that those states of nature that occur with positive probability have equal 

probability of occurrence is said to be one with equiprobable support. On the 

domain with equiprobable support, our solution concept is a refinement of the 

one discussed in Campbell, Kelly and Qi (2018), with a different interpretation. 

This would correspond to the sub-solution of the one in Campbell, Kelly and Qi 

(2018), where only those max-min alternatives with max-min ranks for the fe-

west number of agents are chosen. 

Our study here concerns decision making under uncertainty and one of the 

earliest works dealing with axiomatic characterizations in such a scenario is that 

of Maskin (1979). However, the structure of the underlying set of alternatives 

from which choices are made in Maskin (1979) is completely different from 

what we assume here and hence our axiomatization, as well as the methodology 

we use to obtain our results, is completely different from the corresponding ones 

that are reported and used here. Another notable contribution in a related but 

different line of research is the work of Gilboa and Schmeidler (1989). A fairly 

comprehensive survey of research on decision-making uncertainty is the paper 

by Kelsey and Quiggin (1992). A paper that could have been an exact prede-

cessor to our work here is the one due to Puppe and Schlag (2009), if they had 

used state dependent strict rankings (even rankings would do!) instead of state 

dependent pay-off functions. The fact that in their context, the set of alternatives 

from which choices in a state of nature can be made is state-dependent may not 

be a problem, if we take the given fixed set of alternatives to be the union of sets 

of alternatives available over the different states of nature and in each state of 

nature ranked those alternatives that are not available in that state of nature, 
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strictly below those that are available in that state of nature. The paper by Con-

gar and Merlin (2012) which is concerned with the max-min (Rawlsian) social 

welfare function, is related to the work that follows, but may fail to shed light on 

our results, since it uses a variable number of states (voters) argument via two 

axioms − duplication and weak separability − in the analysis reported there. 

In a final section of this paper we provide an example to illustrate how “bo-

unded rationality” arises in the context of probabilistic uncertainty due to absen-

ce of sufficient information about the state-dependent monetary surpluses of an 

alternative, thereby rendering expected utility maximization practically unusa-

ble. Under such circumstances, using a framework of analysis based on state-

dependent rankings of alternatives may be unavoidable if not inevitable. 

Proofs of results are available from the author on request. 

 

2  The framework of analysis  

 

The following framework is a fairly close adaptation of the ones available in 

Denicolo (1985) and section 2.2 of Endriss (2011) and discussed thoroughly in 

Lahiri (2020/2021). 

Consider a decision maker (DM) faced with the problem of choosing one or mo-

re alternatives from a non-empty finite set of alternatives X, containing at least three 

elements. Let (X) denote the set of all non-empty subsets of X. For a positive inte-

ger n ≥ 3, let N = {1, 2, …, n}. Contrary to convention we will refer to an element in 

N as a state of nature and to the set N as the set of states of nature.  

A strict preference relation/strict ranking on X is a linear order (i.e. a re-

flexive, complete/connected/total, transitive and anti-symmetric binary relation) 

on X. Generally, a strict preference relation is denoted by R with P denoting its 

asymmetric part. If for x, y  X, it is the case that (x, y)  R, then we shall de-

note it by xRy and say that x is at least as good as y for the strict preference 

relation R. Similarly, xPy is interpreted as x is strictly preferred to y for the 

strict preference relation R. 

Given a strict preference R and an alternative x, the rank of x at R, denoted 

by rk(x, R) = |{y  X|yRx}|, i.e., 1 + cardinality of the set of alternatives strictly 

preferred to x for the strict preference relation R.  

Let ℒ denote the set of all strict preference relations on X.  

A strict preference profile, denoted by RN, is a function from N to ℒ. RN is  

represented as the array <Ri|i  N>, where Ri is the strict preference relation/strict 

ranking in state of nature i. The set of all preference profiles is denoted by ℒN.  
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A probability vector over N is a vector p  ℝ+
N satisfying ∑ pi

N
i=1  = 1 where 

for i  N, pi is the probability that state of nature ‘i’ occurs. 

The set of probability vectors over N is denoted by . 

Given a probability vector p, the set {j|pj > 0} is said to be the support of p 

and is denoted by support(p).  

Since probabilities are associated with events, for each i  N, the state of na-

ture i represents a non-empty set and N is a finite partition of some underlying 

sample space. 

Given (RN, p)  ℒN and an alternative x (i.e. x  X), a state of nature i 

(i.e., i  N) will be said to be a worst state of nature for x at (RN, p) if i 

 argmaxjsupport(p) rk(x, Rj). 

The above definition says that a state of nature is a worst state of nature for 

an alternative if the state of nature occurs with “positive probability” and the 

alternative does not attain any worse rank with “positive probability”.  

Given (RN, p)  ℒN and an alternative x (i.e. x  X), the set WS(x, (RN, 

p)) = {i| i is a worst state of nature for x} is said to be the set of worst states of 

nature for x at (RN, p), and for i  WS(x, (RN, p)), rk(x, Ri), denoted wor-

strk(x,(RN, p)), is said to be the worst rank of x at (RN, p). 

Clearly, worstrk(x,(RN, p)) = max{rk(x,Ri)|i  support(p)} for all x  X. 

For all (RN, p)  ℒN, let Mm(RN, p) = argminyX worstrk(y, (RN, p)). 

Mm(RN, p) is said to be the set of max-min alternatives at (RN, p).  

The max-min rank for (RN, p) is equal to the unique worstrk(x,(RN, p)) for any 

x  Mm(RN, p). 

A domain is any non-empty subset of ℒN. We will denote a domain by ℛ. 

An extended choice correspondence (ECC) on (domain) ℛ is a function f 

from ℛ to (X).  

The problem with Mm(RN, p) and any ECC that does not discriminate betwe-

en states of nature which have positive probability is that they might overempha-

size the “extremely unlikely” to absurd extents thereby denying the decision 

maker the right to exercise one’s discretion within reasonable limits. 

Example 1: X = {x,y}, n = 2, p1 = 
1

100
 , p2 = 

99

100
.  

rk(x,R1) = 1, rk(y,R1) = 2; rk(x,R2) = 2, rk(y,R2) = 1. 

Mm(RN, p) = {x,y}. But, does ‘x’ have any reason to be treated at par with 

‘y’, when there is a 99% chance that ‘y’ is going to be preferred to ‘x’? 

Hence, we consider the following procedure. 

The following notation will prove useful in what follows. 

Given (RN, p)  ℒN and x  X, the probability of the worst rank of x  

at (RN, p) denoted by Pr(WS(x, RN, p)) = ∑ piiϵWS(x,RN,p) . 
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An ECC on ℛ is said to be the probabilistic max-min choice correspon-

dence, denoted by f
PMm

, if for all (RN, p)   ℛ, f
PMm

(RN, p) = {x  Mm(RN, p)| 

Pr(WS(x, RN, p))  Pr(WS(y, RN, p)) for all y  Mm(RN, p)}, i.e., f
PMm

(RN, p) is 

the set of max-min alternatives with least total probability of securing the best 

worst rank at (RN, p). 

Thus, an ECC is f
PMm

 which at any (RN, p) in the domain of the ECC, chooses 

those max-min alternatives whose max-min rank occur with least probability, 

i.e., the chosen alternatives are those max-min alternatives that each occurs at its 

worst rank with the least probability. In other words, f
PMm

 minimizes “the proba-

bility” with which a max-min rank occurs. 

Clearly, f
PMm

(RN, p) for Example 1 is {y}. 

Choosing a “best ranked” alternative from among those which attain its worst 

rank with least probability may prove to be misleading as the following example 

reveals.  
 

Example 2: X = {x,y,z}, n = 3, p1 = 
1

100
 , p2 = 

98

100
, p3 = 

1

100
.  

rk(x,R1) = 1, rk(y,R1) = 2, rk(z,R1) = 3; rk(x,R2) = 2, rk(y,R2) = 1, rk(z,R2) = 3; 

rk(x,R3) = 3, rk(y,R3) = 2, rk(z,R3) = 1. 

The probability with which x gets its worst rank, i.e. 3, is 
1

100
. The probability 

with which y gets its worst rank, i.e. 2, is 
2

100
 = 

1

50
. The probability with which z 

gets its worst rank, i.e. 3, is 
99

100
. Hence (in this case) the unique alternative which 

attains its worst rank with least probability is x and the worst rank is equal to 3. 

However, there is only one max-min ranker, i.e. y, and the first method  

selects ‘y’. This seems quite reasonable for a risk-averse individual, since there 

is a 99% chance that ‘y’ will be preferred to ‘x’ and a 99% chance that ‘y’ will 

be preferred to ‘z’.  

In view of the fact that the domain ℛ is a subset of ℒN  , given any (RN, p)  

 ℛ it is not possible for two different alternatives to have the same worst state 

of nature at (RN, p). 

In what follows we will be concerned only with those domains which satisfy 

the following property: 
 

Domain Property:  ℛ = ℒN  Q, where Q is a non-empty subset of . 

 

3  Some axioms and a lemma that will be useful on the way  
 

We begin this section with two very desirable axioms that few would wish to contest. 

An ECC f on ℛ is said to satisfy Unanimity if for (RN, p)  ℛ, x  X: [rk(x, Ri) = 

= 1 for all i  N] implies [f(RN, p) = {x}]. 
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An ECC f on ℛ is said to satisfy Independence of Irrelevant States (to be 

Independent of Irrelevant States) (IIS) if for all (RN, p), (RN
′ , p)  ℛ: [{j|pj > 0}  

 {j|Rj = Rj
′}] implies [f(RN

′ , p) = f(RN, p)]. 

The next axiom is considerably more specific to our present context. 

An ECC f on ℛ is said to satisfy the Worst-Rank Property if for all (RN,p)  

 ℛ and x  f(RN,p): [worstrk(x, (RN,p)) > 1] implies [for no y  X is it the case 

that worstrk(y, (RN,p)) = worstrk(x, (RN,p)) − 1]. 

An ECC f on ℛ is said to satisfy Worst-Rank Positive Responsiveness  

(W-RPR) if for all (RN,p), (RN
′ ,p)  ℛ, x  f(RN,p) satisfies worstrk(x, (RN,p)) > 1 

and i  WS(x,(RN,p)): [(a) Rk
′  = Rk for all k  i; (b) rk(x,Ri

′) = rk(x, Ri) − 1, rk(z, 

Ri
′) = rk(z, Ri) if z  x and rk(z, Ri)  rk(x, Ri) – 1] implies [f(RN

′ ,p) = {x}]. 

From the construction of (RN
′ ,p) it is clear that rk(z, Ri) = rk(x, Ri) – 1 implies 

rk(z, Ri
′) = rk(z, Ri) + 1 = rk(x, Ri). 

Note that from the definition of W-RPR, we get either WS(x,(RN
′ ,p)) =  

= WS(x,(RN,p))\{i} in which case worstrk (x,(RN
′ ,p)) = worstrk(x,(RN,p)) and 

∑ pjjWS(x,( RN
′ ,p))  = ∑ pjjWS(x,( RN,,p))  – pi < ∑ pjjWS(x,( 𝑅𝑁,p))   or WS(x,( RN

′ ,p)) = 

= WS(x,(RN,p)) in which case worstrk (x,( RN
′ ,p)) = worstrk (x,(RN,p)) – 1. 

W-RPR says that if i is a worst state of nature for some chosen alternative 

with worst rank greater than 1 and if in state of nature i this alternative exchan-

ges its position with the alternative immediately above it at ‘i’, then after such  

a change this alternative becomes the uniquely chosen alternative and the unique 

max-min alternative.  

As an immediate consequence of Unanimity, IIS, Worst Rank Property and 

W-RPR is the fact that chosen alternatives must be max-min alternatives. 
 

Lemma 1: If an ECC f on a domain ℛ satisfies Unanimity, IIS and W-RPR 

then for all (RN,p)  ℛ, it must be the case that f(RN, p)  Mm(RN, p). 
 

  

4  The main result  

 

An ECC f on ℛ is said to satisfy Not Chosen After Worser Rank (NCWR) if 

for (RN, p), (RN
′ , p)  ℛ, x  f(RN, p) and i  N: [(a) Rk

′  = Rk for all k  i; (b) 

rk(x, Ri
′) = rk(x, Ri) + 1, rk(z, Ri

′) = rk(z, Ri) if z  x and rk(z, Ri)  rk(x, Ri) + 1] 

implies [x  (RN
′ , p)].    

NCWR says that if initially an alternative is not chosen, then it remains un-

chosen if in any state of nature, it exchanges places with an alternative ranked 

immediately below it. It is easily verified that f
PMm

 satisfies NCWR. 
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An ECC f on ℛ is said to satisfy Not More Probable Worse Rank 

(NMPWR) if for all (RN,p), (RN
′ , p)  ℛ, x  X and i  I: [x  f(RN, e

I
)f (RN

′ , e
I
)] 

implies [P(WS(x, (RN
′ , p)))  P(WS(y, (RN

′ , p))) for all y  f (RN
′ , p)], where: 

[(a) Rk
′  = Rk for all k  i; (b) rk(x,Ri

′) = rk(x, Ri) + 1, rk(z, Ri
′) = rk(z, Ri) if z  x 

and rk(z, Ri)  rk(x, Ri) + 1]. 

From the construction of (RN
′ ,p) it is clear that rk(z, Ri) = rk(x, Ri) + 1  

implies rk(z, Ri
′) = rk(z, Ri) – 1 = rk(x, Ri).  

NMPWR says that if a chosen alternative is chosen after it exchanges its po-

sition with the alternative immediately below it at a state of nature occurring 

with positive probability, then at the lower rank it occurs with positive probabili-

ty not more often than any other chosen alternative does. 

An ECC f on ℛ is said to satisfy Greater Probability if Exclusion After 

Worsening (GPEAW) if for all (RN,p), (RN
′ ,p)  ℛ, x  X and i  N: [{x} =  

= Mm (RN,p) and x  f (RN
′ ,p)] implies [P(WS(x, (RN

′ ,p))) > P(WS(y, (RN
′ ,p))) 

for some y  f(RN
′ ,p)], where: [(a) Rk

′  = Rk for all k  i; (b) rk(x,Ri
′) = rk(x, Ri) + 1, 

rk(z, Ri
′) = rk(z, Ri) if z  x and rk(z, Ri)  rk(x, Ri) + 1]. 

From the construction of (RN
′ ,p) it is clear that rk(z, Ri) = rk(x, Ri) + 1  

implies rk(z, Ri
′) = rk(z, Ri) – 1 = rk(x, Ri).  

Given Lemma 1, GPEAW is the converse of NMPWR. Along with Lemma 1, 

what NMPWR and GPEAW together say is the following: 

A chosen alternative is chosen after it exchanges its position with the  

alternative immediately below it at a state of nature occurring with positive  

probability if and only if at the lower rank it occurs with positive probability not 

more often than any other chosen alternative does. 
 

Note: By IIS, the three properties NCWR, NMPWR and GPEAW hold non-

vacuously only when the state of nature ‘i’ in their definitions belong to 

support(p). 
 

Proposition 1: If an ECC f on ℛ satisfies Unanimity, IIS, Worst Rank Prop-

erty, W-RPR, NCWR NMPWR and GPEAW then for all (RN,p)  ℛ, f(RN,p) = 

= fPMm(RN,p). 
 

It is easy to see that on the domain with equiprobable support f
PMm

 satisfies 

Unanimity, IIS, Worst Rank Property, NCWR, W-RPR, NMPWR and GPEAW. 

Thus we arrive at the following theorem. 

Theorem 1: An ECC f on ℛ satisfies Unanimity, IIS, Worst Rank Property, 

W-RPR, NCWR, NMPWR and GPEAW if and only if  f = fPMm on ℛ. 

An alternative axiomatic characterization with a shorter proof can be  

obtained by replacing NMPWR by the following property. 
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An ECC f on ℛ is said to satisfy Non-Domination of Worst Rank  

(ND-WR) if there does not exist (RN, p)  ℛ and x,y  f(RN, p) satisfying  

worstrk(x, RN, p)  worstrk(y, RN, p), Pr.(WS(x, RN, p))  Pr.(WS(y, RN, p)) 

with at least one strict inequality. 

ND-WR says that given two chosen alternatives if one has a “better” worst 

rank than the other, then the probability of the first alternative securing its worst 

probable rank must be greater than the corresponding probability of the second. 

With ND-WR replacing NMPWR, we have the following. 
 

Proposition 2: If an ECC f on ℛ satisfies Unanimity, IIS, Worst Rank Prop-

erty, W-RPR, NCWR ND-WR and GPEAW then for all (RN,p)  ℛ, f(RN,p) =  

= fPMm(RN,p). 
 

Since f
PMm

 satisfies ND-WR, we get the following result. 

Theorem 2: An ECC f on ℛ satisfies Unanimity, IIS, W-RPR, NCWR,  

ND-WR and LPEAW if and only if f = f
PMm

 on ℛ. 

 

5  Bounded rationality in decision aiding − an example  
 

This section was included at the behest of Professor Tadeusz Trzaskalik and  

I thank him for the suggestion.  

Consider an individual who has to book a room in a hotel for an overnight 

stay that is supposed to take place a week later. There are three types of rooms in 

the hotel: Rooms with air conditioners “x”, Rooms with air coolers “y” and  

Rooms with just a ceiling fan “z”. The tariff for a room of type x is INR 3500 

per night, for a room of type y it is INR 3000 per night, and for a room of type z 

it is INR 2500. The weather during the night of the proposed stay at the hotel 

could be either “1” hot and dry, “2” hot and humid, or “3” just pleasant, with 

equal probability of occurrence of each of the three types of weather. 

The individual’s satisfaction from each of the three types of rooms is reflec-

ted in a reservation price which depends not only on the weather but on other 

amenities (such as the availability of air freshener, room service etc.) and in 

particular, “the intensity of the weather condition”, about which information is 

not available to the individual at the time of booking the room. This is a situation 

that may be referred to as “bounded rationality due to lack of sufficient informa-

tion”. However, on the basis of the information available − which includes room 

tariffs − the individual’s weather-dependent preferences are as follows: 

If the weather is as in 1, y is ranked first, x is ranked second and z is ranked 

third. 
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If the weather is as in 2, x is ranked first, z is ranked second and y is ranked 

third. 

If the weather is as in 3, z is ranked first, y is ranked second and x is ranked 

third.  

On the basis of the above information the individual prefers x to z with pro-

bability 
2

3
, y to x with probability 

2

3
 and z to y with probability 

2

3
. This situation is 

referred to as Condorcet Paradox, where the individual is indecisive due to lack 

of sufficient information. Almost all reasonable ECC would recommend {x,y,z} 

under such circumstances. 

However, if the “reservation price” for a type of room w  {x,y,z} under the 

weather condition j  {1,2,3} is denoted by WTP(w, j) (i.e. willingness to pay 

for w if the weather is as in “j”) then the individual’s expected surpluses for  

a type of room x is given by 
1

3
[WTP(x, 1) + WTP(x, 2) + WTP(x, 3)] − 3500, for 

a type of room y is given by 
1

3
[WTP(y, 1) + WTP(y, 2) + WTP(y, 3)] − 3000 and 

for a type of room z is given by 
1

3
[WTP(z, 1) + WTP(z, 2) + WTP(z, 3)] − 2500. 

It is not unreasonable to assume that WTP(x, 1) = 4000, WTP(y, 1) = 3600, 

WTP(z, 1) = −1000; WTP(x, 2) = 4500, WTP(y, 2) = 3000, WTP(z, 2) = 3000; 

and WTP(x, 3) = 3600, WTP(y, 3) = 3500, WTP(z, 3) = 3500. However, such 

information will be available only after arrival at the hotel and not at the time of 

booking a room. 

During a night that is not humid, an air cooler can be made to serve exactly 

the same purpose as a ceiling fan, simply by turning off the water pump of the 

air cooler. On such nights the surplus (i.e., reservation price minus room tariff) is 

clearly greater for a room with a ceiling fan than for a room with an air cooler.  

It is only on a hot and dry night that the ceiling fan has the same effect as  

a “blast furnace”. 

Thus, on a hot and dry night the individual’s surplus from a room of type x is 

500, from a room of type y is 600 and from a room of type z is −3500. 

On a hot and humid night, the individual’s surplus from a room of type x is 

1000, from a room type of room y is 0 and from a room of type z is 500.    

On a pleasant night, the individual’s surplus from a room of type x is 100, 

from a room of type y it is 500 and from a room of type z is 1000.  

It is easy to see that the weather-dependent surpluses are consistent with the 

weather-dependent rankings. 

The expected surplus from a room of type x is 533
1

3
, the expected surplus 

from a room of type y is 366
2

3
 and the expected surplus from a type of room z is 

−666
2

3
. 
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Suppose the individual is “risk neutral”. 

Thus, had this information been available to the individual at the time of  

booking, the individual would have chosen x. 

Hence the indecisiveness noticed earlier is an instance of “bounded rationali-

ty due to lack of sufficient information”.  

In a private contribution, Professor Prasanta Pattanaik suggested that boun-

ded rationality could arise out of a much greater informational deficit, i.e., lack 

of information about the probabilities of the states of nature. Clearly, this would 

be a very general starting point for investigating the consequences of “bounded 

rationality due to lack of sufficient information”.  

In a different context, Professor Pattanaik mentioned his work in Pattanaik 

(1968), which seems to be related to what we are discussing here. I wish to thank 

him for showing me the way to Pattanaik (1968). In Pattanaik (1968), the pro-

blem faced by an individual is to choose one from a non-empty finite set X of 

societies that the individual could migrate to. Let #X denote the cardinality (i.e., 

the number of societies) in set X. For each society in X, there are ‘n’ possible 

positions that the individual may end up being placed in, resulting in a state of 

nature s  S = {1, …, n}  X. A typical state of nature, (j, x), represents the 

event “the individual chooses society ‘x’ and is assigned position j”. Pattanaik 

(1968) assumes the “first best” situation, where the individual’s preferences are 

represented by a state-dependent utility function u: X  S ℝ satisfying the 

property that for all x  X and (j, x)  S, u(x, (j, y)) = 0 if x  y. Since, from the 

perspective of “nature” − the hypothetical entity that chooses or assigns the posi-

tion to the individual − a priori, the probability of each society being chosen is 

the same as that of any other, the admissible set of subjective probability distri-

butions over the states of nature S is a function of the form p:{1,…,n} X[0,1] 

such that for each x  X, p(j, x) = 
q(j|x)

#X
, where for each x  X and j  {1, …, n}, 

q(j|x)  [0,1] and ∑ q(j|x)n
j=1  = 1. Here q(j|x), may be interpreted as the probabi-

lity of the event of being assigned the j
th
 position conditional on migrating to 

society ‘a’. The probability distribution ‘p’ is the individual’s assessment of the 

randomized strategy chosen by nature. 

Note that ∑ p(s)sS  = ∑ (∑
q(j|x)

#X
𝑛
𝑗=1 )xX  = ∑ (

1

#X
∑ q(j|x)n

j=1 )xX  = ∑
1

#XxX  = 1. 

Given such a ‘p’, the individual’s problem is to choose an x  X that maxi-

mizes ∑ u(x, s)p(s)sS  which is equivalent to choosing an x  X that maximizes 

∑ u(x, (j, x))q(j|x)n
j=1 .  

The purpose of our example in this section is to point out that the information 

required to formulate individual preferences in terms of state-dependent utility 

functions may be difficult to access and at best one may have state-dependent 
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preferences represented by a “partial preference relation”, leading to “bounded 

rationality” that may be consistent with optimization and yet lead to sub-optimal 

outcomes, simply due to insufficient information.     

I am also very grateful to Itzhak Gilboa for his informed observation which 

includes the following observations (which he honestly claims to be his personal 

views on “bounded rationality”): 

(a)  State-dependent preferences or utilities are not a reflection of bounded ratio-

nality. 

(b)  “(…) the term «bounded rationality» was coined by Simon, who had so-

mething much more dramatic in mind than what most people refer to by the 

term since he wanted to reject the entire optimization paradigm, replacing it 

by satisficing. While satisficing can also be embedded in the optimization 

framework, at least formally, it seems to me more of a deviation from the 

classical paradigm than, say, bounded memory, non-material payoffs and 

other models that explicitly are about optimization of something”. 

Given that expected surplus maximization is simply expected utility maximi-

zation by a risk-neutral individual, we have no reason to disagree with his claim 

that representation of preferences by state-dependent utility functions do not 

imply “bounded rationality”. However, the example in this note clearly shows 

that state-dependent preferences may not always be able to perform the same 

“decision aiding” tasks that state-dependent utility functions are able to perform 

and so we would hesitate to treat the two concepts at par, at least in the context 

of decision aiding/making under uncertainty. Furthermore, the observation in (b) 

is a statement of fact, very correctly and succinctly expressed for the benefit of 

those like us, who may have limited knowledge of “mainstream bounded ratio-

nality” − theory and applications. Note that unlike the received theory of boun-

ded rationality originating in the work of Herbert Simon, we focus on “lack of 

sufficient information” and not on “computational complexity” as our major 

concern for not being able to perform optimal decision making. Not being able 

to perform optimal decision making need not necessarily imply that the decision 

maker is not solving an optimization problem, as is mentioned in the last senten-

ce of (b) above. The existing literature on bounded rationality focuses on  

behavioral issues related to computational constraints and complexity, which 

prevents individuals from solving optimization problems. We focus on the pro-

blems arising in “decision aiding” − the kind that technically qualified consul-

tants may face − due to absence of sufficient information. Hence, although the 

decision aiding process involves optimization, the outcome of the process may 

turn out to be suboptimal, simply due to lack of available information.  
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