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Abstract. In this article we consider non-commutative valuation and disercte valuation
rings. We give equivalent conditions for a ring to be a valuation and a diserete valuation
ring.

Introduction

The theory of valuation rings [irst was connected only with commutative fields.
The theory of valuations and valuation rings have their beginning from the early
2(1h century. The concepts ol valuations of liclds and valuation domains lirst were
introduced in 1932 by W. Krull in his (amous paper [1]. [n this paper a valuation
ring was defined as an integral domain whose ideals are totally ordered by inclu-
sion, 1.c. commutative uniserial domains. lle also showed the connection between
the concepts of valuation domains and valuation rings of fields.

However, there is also a non-commutative side of this theory. In the non-
commutative case there are dilferent generalizations of valuation rings. The first
generalization for valuation rings of division rings was obtained by Schilling in
|2], who introduced the class of invariant valuation rings and systematically stud-
icd them in [3]. [ we consider the invariant valuation rings of division rings which
were introduced by Schilling in |2], one obtains that any invariant valuation ring is
a semihereditary ring. Hence, semihereditary rings can be considered as some ge-
neralizations of Priifer domains {or non-commutative rings. A particular example
of invariant valuation rings are discrete valuation rings, which are, besides only
ficlds and division rings, the simplest class ol rings. Nevertheless, they play an
important role in algebra, number theory and algebraic geometry.

Another generalization of non-commutative valuation rings was introduced and
studied by N.L Dubrovin in [4]. These rings were named Dubrovin valuation rings
after him. In this non-commutative valuation theory, any Dubrovin valuation ring
of a simple Artinian ring Q is exactly a local semihereditary order of Q. Therefare,
semihereditary orders can be considered as the global theory of Dubrovin valua-
tion rings. Dubrovin valuation rings have found a large number of applications.
More information about these rings and semihereditary orders in simple Artinian
rings can be {ound in book [5].
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In this paper we present and shortly discuss most of the basic results for non-
-commutative invariant valuation rings and discrete valuation rings of” division
rings.

All the rings considered in this paper are assumed to be associative with 1 7+ G,
and all the modules are assumed to be unital. We write U(A) lor the group of units
of a ring A, and D* the multiplicative group of a division ring ). We refer to |6]
lor general material on the theory of rings and modules.

1. Valuation rings of division rings

The basic notion which plays the main role for the valuation theory is a totally
ordered group.

Definition 1. A group G (with operation written by +) is said to be totally ordered
(or linearly ordered) il there is a binary order relation = in G which satisfics the
following axioms:
(i) eitheree > BorP >
(i) ifoe=Pand B> o theno=;
(i) ila=Pand B>ythenu= v
(iv) ifa=Pftheny+o >y+Pand e+ y2B +y
foralla, B,ve G.

If > is an order relation in a group G we shall write o> B if o> B and o £ B,
we shall also write ¢ BBz oand o< Bil B> o

In the non-commutative case there are different generalizations of a valuation
ring. We consider the generalization which was first proposed in 1945 by Schilling
[2], who extended the concept of a valuation on a licld to that on a division ring.

Definition 2, [2] Let G be a totally ordered group (written additively) with
order relation >. Add to G a special symbol o such that v + cc = oc + x = e for all
x € G.Let Dbe adivision ring. A valuation on D is a surjective map

Vi) > G U e}

which satisfics the following:
L) vix) ec;

2)v(x) =<c if and only if v =0;
3y vlxy) = (X)) + w(y);

4) v(x + ¥) = min(v(x), W¥)),
foranyx, ve D.

Note that if 1 is a field, then from condition 3) it follows immediately that D
admits only valuations with Abelian groups G.
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Remark 1. Let D be a division ring with valuation v and multiplicative group D*.
Denote

U={ue D* v(u)=0}

I a, #: € U then v(agi) = v(i) + v(i) = O and viusu) = via) + v(ig) = 0y 1.c.
i, a6 € [/ Let 1 be the identity ol D. Then w(1) = V(IZJ =v(l) + ¥(1) implics
that 1 e U. MMue Uthen ) =+v(1)= v(_uu_l) =v(u) + v(u_]) =), ic. W' e U
Thus U is a subgroup of D* which is called the group of valuation units. Let
x e DF Then vivex™) = v(¥) + v(i) + v(x™) = v(x) + v = wy™) = 0 for any
w € U. Thus, I/ is an invariant subgroup of D% which is equal to Ker(v). Therelore
DU =G,

Proposition 1. Let (G, +, =) be a totally ordered group, and let

v D> GU{oc}
be a valuation of a division ring 1. Then
A={xye D : v(x)>0)

is a subring ol D.
Proof. Let v, y € A, then v(v), v(y) = 0. Therefore vixy) = v(v) + v(y) > 0 and
(x4 ¥) = min(v(x), v(v)) = 0, which means that vv € A and v+ ¥ € A. Moreover,

=) = (=D =v=D +vy)=v) = 0

forany x e A.

Definition 3. A subring A of a division ring D is called an invariant valuation
ring (or valuation ring for short) of £ if there is a totally ordered group G and
a valuation

viD— G ufes}
of 1 such that
A={xe D v(v)=0).

Lemma 1, Let A be a valuation ring of a division ring D with respect to valuation
v. Then U = U(A), where U(A) is the group of valuation units of D, and
U={ve D:vix)=0}.

Proof. Supposc that # € U(A), then there is clement w € U(A) such that ww = 1.
Therefore 0= v(uw) = v(at) + v(w). So v(u) = v(w) =0, since v(u) > 0 and v{w) = 0.

Conversely, suppose « € D and w(u) =0. Then o' € D% and v(u™") = —v(u) = ().
Hence #, t ' € A, which means that # € U(A).
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For any invariant valuation ring A associated to the valuation v we denote
M={xe D vix)>0} =AU,
the set ol all non-units ol A.

Lemma 2. An invariant valuation ring A is a local ring with the unique maximal
leit (and maximal right) ideal M of A.

Proof. Let v,y € M and ¢ € A. Then
1) v(x+y) = min(v(x),v(v)) >0, that is, x + ve M;
2) viva) = vix) + v(e) > 0 and viax) = via) + viv) >0, that is, ax, xa € M.

Thus. M is an ideal of A. Show that M is the maximal ideal ol A. Supposc that /
is an ideal ol A such that M 8 7 ¢ A. Since M = A\ U, there is a unit # € 7 such that
viw) = vy =0 and ' € A. Consequently, 1= " e I Thus, I = A, ie. M is
a maximal idcal of A. Since M = A\ U, M consists of all non-units of A, therefore A
is a local ring, and M is the unique maximal idcal ol A, by proposition 1(11.1 [6].

Lemma 3. [2] II'A is the valuation ring of a division ring D with respect to valua-
tion von D then both A and M are invariant subscts o' D%, that 1s, dAd '=A and
dMd' = M for any d € D*.

Proof. Supposc that that dAd™" [ A for some d € D#. Then there is an clement x =
=dvd"' € dAd"' with y € A and x { A. Therefore v(x) < 0 and v(¥) = (. On the
other hand, y = & 'x¢, and so

v(y) = v(d™) + () + w(d) < w(d™) + v(d) = (1) =0,

since G is a totally ordered group. This contradiction shows that dAd™' = A for any
de D,
Supposc that dMd™' { M for some d € D% Then there is an clement v = dvd™!
€ dMd" withy e Mand x [ M. Since dMd™ c dAd”' =Aand A=M U U, xe U.
By remark 1, U is an invariant subgroup of £*, and so v = d'xd € U. Consequent-
ly, ye M n U =%. This contradiction shows that M is an invariant subsct of D*.
The following theorem gives the equivalent definition of a valuation ring which
15 similar to the valuation domains of {iclds.
Theorem 1, (O.EG. Schilling [2]) Let A be a subring of a division ring 1. Then
the following arc equivalent:
1. A is a valuation ring with respect to some valuation v on D.
2. Ajis an invariant subring of D%, and for any clement x € D* citherxye A orx™
€ A.

Proof. 1 = 2. A is an invariant subring, by lemma 3. Suppose v € D% and x [ A,
which mcans that v(x) < Q. Then 0 = wW1) = v = ) + v(.\'“[)._ henee
vy ) =—w(x) = 0L Thus v’ e A.
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2 = 1. Supposc that A is an invariant subring of a division ring D* with the group
ol units U(A). Let we UA)andd € D*. Then x=dud' € Aand x' =
=d'w'd € A. Theretore X, e U(A), Le. UA) is an invariant subgroup of D*.
Let M = A\ U(A). Show that this set is also invariant in D%, Let ¢ € % As-
sume that dMd™" # M. This means that there exists an element x = dvd™' € dMd™

with y € M and x [ M. Note that x € A, since A is an invariant subring in D*,

Therefore ve {(A) and y= d'xd e U(A). since U(A) is invariant in D*. So

ye M n UA) =@, This contradiction shows that M is invariant in 1%,

Since {/(A) is an invariant subgroup in D*, we can consider the lactor group

G = D*UA) as an additive group and define the natural map v: D = G W{s}
such that v(d) = dU(A) = U(A)d Tor each d € D% and w(()) = =<. Obviously, v(di) =
= v(ud) lor all w e U{A)and d € D% We set (i) = 0 lor any i € U(A). Then v is
a surjective map with Ker(v) = U(A). We must only introduce the total order on G
assuming that v(x) < eo for all v € D. Let ¢, b € D* By assumption, either
a'be Aorblae A Suppose ¢ 'b € A, then ala by = ba'e A, since A is an
invariant ring in D% We use this fact to order group G. We set v(a) > v(b) in the
case ab™' € M (and b™'a € M). In this way G turns out to be totally ordered. Show
that v is a valuation of" D with valuation ring A. [ndeced,

1) v(x) €,

2) v(x) =< if and only if v =0;

3) vis surjective;

4 vidy=0if and only if d € U(A);

5) viub) = vlaw(b).

6) Let a,b € D* and a+b # 0. Assume that v(a) > v(b) in G. This means that
ab™ € M or ub™ € U(A). In both cases ab™+1 € A, since 1 = 17! € A. Since
(a+b)h™ = ab™ + le A, v(a+h) > v(b) = min(v(a), v(b)). If ¢ + b = 0, then
v(a+bh) = oo and we also have v(a + b) = v(b) = min(v{«), v(h)).

This theorem gives a possibility to introduce other kinds of generalizations for

a valuation ring of a division ring.

Definition 4. A subring A of a division ring D is called a total valuation ring if

forcachye D¥ wehavexe Aory™ € A.

Theorem | states that any invariant valuation ring is a total valuation ring, but
not conversely. Note that in the case ol integral domains these two notions for
valuation rings are equivalent to the notion of a classical valuation domain.

Lemma 4. (O.EG Schilling [2]) Let A be the valuation ring of a division ring £J
with a valuation v, and ¢,b € A. Then the following statements are equivalent:

1) ¢ =be¢, withe, € A;

2 a=cbwithese A;

3) vla) = vib).

Proof. 1), 2) = 3). Suppose ¢ = by = exb with ¢, ¢x € A. Then ww) = v(b) + v(¢)) =
= v(¢2) + v(b) = v(b) by condition 4) of definition 1.
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3) = 1), 2). Suppose v(@) > v(b) and b # 0. Then v(ab™) > 0 and v(b™'a) = 0, that
is, b € Aand b'u € A. Thus, a = b(b™'a) = (ab™)b.

Suppose vie) 2 v(b) and b = 0. Then w(b) = =< and sa v(a) = o=, hence ¢ = 0. This
means that « is again both a left and a right multiple ol 5.

The next proposition gives the basic properties of invariant valuation rings.

Proposition 2. Let A be an invariant valuation ring ol a division ring D with

a valuation v. Then

1. aA c bA or bA C aA for any a.b € A.

2. Each ideal of A is two-sided. i.e. A is a duo ring. (Recall that a ring A is called
a left (right) duo ring if every left (right) ideal is two-sided. A duo ring means
both a left and a right duo ring).

3. Alisaright and a left Ore domain. Therefore it has a lelt and right classical
ring of fractions which is a division ring.

4. Any finitely generated ideal of A is principal.

Proof. 1. This follows immediately from lemma 4.

2. Suppose that / is a left ideal of A, that is, Af c f. Since | € A, Al = 1. Let

"
X = 2.“‘;‘%‘ be an arbitrary element of the set fA, where v; € I, &; € A. Then
=1

viva;) = viy) + v(a;) = v(v;). Consequently, by lemma 4, va; = by; for some b; € A.

n
Therelore x = Zb,.y, € AT=1 Thus Iisarightideal.
il

3. Let / = xA, then Af = AxA = x4, since { is a two-sided ideal. Analogously,
Ax = AxA. Therefore Ax = xA. This means that A satisfies the right and left Ore
conditions. Sincc A is a domain (that is, a ring without divisors ol zero), A has
a left and right classical ring of fractions which is a division ring.

4. Letl=aaA+ A+ ... +a,A, where ; € A. Since A is a valuation ring then
we can choose among the elements ¢,,¢5,...,¢¢, an element with a minimal value.
Withoul loss of generality, we can consider that v(«;) = v(e,) lor all i. Then, by
lemma 4, this means that ¢4 C ¢,A. So I = aA.

As immediate conscquences of this proposition, we obtain the lollowing.

Corollary. Any invariant valuation ring of a division ring D is semihereditary and
a Bézout ring. (Recall that a ring A is called a right Bézout ring if any of its finitely
generated ideal is principal.)

The {ollowing thcorem gives the equivalent delinitions ol a (non-commutative)
invariant valuation ring.

Theorem 2, Lct A be a ring with a division ring ol fractions D which is invariant
in . Then the following are equivalent:

1. Ais an invariant valuation ring of some valuation v on D.

2. The sct of right (left) principal ideals of A is lincarly ordered by inclusion.

3. The set of all ideals of A is linearly ordered by inclusion.
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Proof.

| = 2. Leta, b e A and v(«) = v(b). Then from lemma 4 it follows that @ € A and
a € Ab. Therefore ¢A C bA and Aa C Ab.

2 = 3. Let 7 and J be right ideals of A. Suppose that 7 is not contained in J.
Choose a nozero element v € f\ J. Let v be any element of J. Since v (4
x ¥A, and so xA [ ¥A. Therefore, by assumption. ¥4 < xvA < £. 1t follows that
Jcf

3 =1. By assumption, A is a domain which has a division ring ol {ractions D. Let x
e D be a nonzero element. Then v = @™ for some nonzero ¢.b € A. Since A4 is
a uniserial ring, A¢ € Ab or Ab C Aa. If Ae  Ab then & = rb for some r € A. Then
x=ab =rbb ' =re A. If Ab ¢ Aathen b = sa with s € A. Then v = ba™' =
=saa” = s € A. Since A is invariant in D by assumption, A is a valuation ring, by
theorem 1.

2. Non-commutative discrete valuation rings

Similar to the commutative case ol a f{icld, onc can introduce the notion of
a discrete valuation ring of a division ring.
Definition 3. A subring A ol a division ring D is called the (noncommutative)
discrete valuation ring il there is a {discrete) valuation v: D = Z of D such that

A={yve D : vv)=0}

The main example of noncommutative discrete valuation rings is a skew power
series ring  K[[x, ¢]] with xa = G(a)y for any ¢ € K, where K is alicld and ©:
K — K is a nontrivial automorphism of X.

We formulate the basic propertics of a discrete valuation ring in the following
proposition.

Proposition 3. Let A be a (noncommutative) discrete valuation ring ol division

ring £ with respect to a valuation v. Let 1 be a fixed element of A with v{r) = 1.

Then

l. A is a local domain with the nonzero unique maximal ideal M = {v € A :
v(x) >0).

2. Any nonzero clement v € A has the unique representation in the form
x={"u=wt", for some uw € U(A), and n € Z, n > 0. If D is a division ring of
(ractions of A then any clement y € D has the lorm ¥ = "5 = wt® for some
upwe UA),andne Z.

3. Any one-sided ideal I of A is a two-sided ideal and has the form / = (A =
=A" forsome ne Z, n >0, i.c. Ais a principal ideal ring (Recall that a ring A
is called a principal ideal ring if cach onc-sided ideal of A is principal). In par-
ticular, M=tA=Ar,and I=M" = "A = A"
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4. T M’ =0, where M is the unique maximal ideal of A.
i=1

5. Ais a Noctherian uniserial ring.

6. A is a hereditary ring.

Proof. 1. Since a discrete valuation ring A is a particular case of a valuation ring,
this statement follows from lemma 2.

2. Let ¢ be a fixed element of A with v(r) = 1, and x € 4 with w(x) =« > 0. Then
te M, and vixt ") = v(x)— n=0=v(t "x). Therefore from lemma 1 it follows that
M'=ue UA)and 1w =1, € UA). Sox=a"="{"u,.

Let ¥ € D*, Since D is the division ring of fractions of A, any element y € D*
can represented in the form v = ab™ with ab € A. Let a = £°u and b = " with
wnw € U(A) and i > . Then v = (Fu)(™w) = £ "wpw) = wonst™ ™,
t:wae UA)yand n —m e Z.

3. Since A is a valuation ring, any onc-sided idcal ol' A is two-sided. Let 7 be an
ideal of A. Choose in / an element v with a minimal value v(x) = # (if there are
a few such clements we can arbitrarily choose one). Then x = 5 = wit® with war €
U(A). Therefore A < Tand Af* < 1. Let vy € 7, then ¥ = "w with oz > . So w(r ™) =
0, henee 17v € A and y € A, Therelore 7 = "A. Analogously, 7 = A7". [n particular,
sincete M M=tA=Ar,and M'=1"A=Al"=1.

where uw,

P

4. Assume that N= T M’ #0. Let v be a nonzero element of N with y(x)=n >
=l

0. Thenx =" € M" with « € U(A). Since x e N.x e M""". Therefore v ="'y
with w € U(A). So "t = 1"*'w. Since A is a domain. # = v € M. A contradiction.
Thus N=0.

5. This (ollows immediately {rom 3 and theorem 2.

6. This follows from the fact that A is a principal ideal domain and any princi-
pal ideal over a domain is {rec.

Together with definition 3 there are other equivalent definitions of a discrete
valvation domain which are given in the following statement.

Proposition 4. The following statements (or a ring A are equivalent.
(1)A is a (noncommuative) discrete valuation domain.
(2)A is a local ring with nonzero maximal ideal M ol the form M = 1A = At. where

te Ais anon-nilpotent clement, and | M7 =0.
i=1
Proof. (1) = (2). From proposition 3 it follows that A is a local ring with nonzero
maximal ideal M of the form M = 1A = At. where t € M with v(r) = 1. Since A is
a domain, L is a non-nilpotent clement.
(2) = (1). Since M = (A = Ay, it is easy to show directly that M" = 1"A = Ar". Show
that any nonzero element v € A has a unique representation in the form v =" = wi”,
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where #,w € {(A) and # > 0. Let v [ U(A), then v € M. Since [ M =0, there
i=|

exists 1= 1 such that v € M”" but x ( M. Then x = "n, where « | M. Therefore
e UlA). Analogously x = wi’.

Ring A is a domain. Otherwise there are clements x,y € A such that xy = (. Let
x =, v="wand w'" = "uy with uw, vy € U(A). Then xv = ™uyw = 0, and so
""" =0, which is not the case, since 7 is 4 non-nilpotent element. A contradiction.

Show that A is a right and left Ore domain. Let x,» be nonzero clements ol A.
Suppose x = 1", ¥y = Mw. 1™ = Muy and wit = Owy with wow, 1, wy € U(A). Then
Xy = M = M = 0w = CwnTgw = vy, where X = wlw € AL
Analogously, vx = xv,, where v, = &~ '"w . This shows that A satistics the right
and the lelt Ore conditions. So A has a division ring of [ractions D. Any clement of
D* can be represented in the form ¢ = ab™'. where ¢, b € A. If ¢ = ('« and
b = 1" with upv € U(A) and ngn = (), then d = 17 "¢, where 1 —m € 7 and
g e U(A). If we set vid) =w(i"™e)=n —m e Z, we obtain a valuation of D* with
the discrete valuation ring A.

This finishes the proof of the proposition.

Proposition 5. The the following statements lor a ring A are cquivalent.

(1) Ais a (noncommuative) discrete valuation domain.

(2) Ais a local principal ideal domain which is not a division ring.

(3) A is a Noctherian local ring with a nonzero maximal ideal which is two-sided
and principal.

(4) Ais a right (left) Noctherian local ring with the nonzero maximal ideal M of
the form M = (A = Ar with a non-nilpotent element 7 € A.

Proof. That statement (1) implics cach of the other propertics was proved above.
The implications (2) = (3) and (3) = (4) arc trivial.

(4) = (1). Let A be a Noetherian local ring whose maximal ideal M + 0, and
M = tA = Ar. Note that M" £ M™' [or any n > 0. Otherwise, by the Nakayama lem-
ma, M" =0, and 1" = 0, which is not the case, since 7 is a non-nilpotent element.

P >

We now prove that [ M’ =0. Otherwise there is a nonzero element x € | M'.
=l =l
Thenx=ay=a 7=l =...=a, = ... for suitable &; € A.

Every a; [ U(A). Otherwise ¢, — a;f € U(A). and from ai' = ;0™ it would
follow that ¢ = 0, that is, 7 is nilpotent, which is not the case. So we have the as-
cending chain of right principal ideals ¢4 < @:A C ... which must be stabilized
because A is Noetherian, i.e. there is a number n > 0 such that «,4 = ¢,.,A. Then
tp = b and a,= a, ¢ for some b.c € A. Hence ¢, = b = a,cb. and
dpn(1 — by =0. Since 1 — cb € U(A), a1 = 0. So x = 0. This contradiction shows

that | M’ =0. Now we can apply proposition 4.

=1
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Proposition 6. The tollowing statements lor a ring A arc equivalent.
(1)A is a (noncommuative) discrete valuation domain.

(2)A is a Noctherian non-Artinian uniserial ring.

(3)A is a Noctherian valuation ring.

Proof. lmplications (1) = (2) and (2) = (3) were proved in proposition 3. Impli-
cation (2) = (3) follows from theorem 2.

(2) = (1). Let A be a uniserial Noctherian but a non-Artinian ring. Then the unique
maximal ideal M of A is the Jacobson radical ol A, M # 0 and M /M ™ is a simple
A-module. So we have a strictly descending chain of ideals

ADMOM?*>...oM"> (1)

llence M is nilpotent, otherwise, (1) is a composition scrics for M and so A is
an Artinian ring, which is not the case. Choose an element £ € M\ M . Since A is
uniserial, M° c 1A € M. lence M = 1A, since M/M 2 is a simple A-module. Analo-
gously, M = Ar. Now we have exactly case (4) of proposition 5.
(3) = (1). Let A be a Noetherian valuation ring. Then any ideal of A is finitely
gencrated, hence it is principal by proposition 1. Thus, A is local principal idcal
domain which is not a division ring. Therelore we can apply proposition 5.
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