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Abstract. In this article we consider non-commutative valuation and discrète valuation 
rings. We give équivalent conditions for a ring to be a valuation and a discrète valuation 
ring.

Introduction

The theory of valuation rings first was connected only with commutative fields. 
The theory of valuations and valuation rings hâve their beginning from the early 
20th Century. The concepts of valuations of fields and valuation domains first were 
introduced in 1932 by W. Krull in his famous paper [1]. In this paper a valuation 
ring was defined as an integral domain whose ideals are totally ordered by inclu
sion, i.e. commutative uniserial domains. He also showed the connection between 
the concepts of valuation domains and valuation rings of fields.

However, there is also a non-commutative side of this theory. In the non- 
commutative case there are different generalizations of valuation rings. The first 
generalization for valuation rings of division rings was obtained by Schilling in 
[2], who introduced the dass of invariant valuation rings and systematically stud- 
ied them in [3]. If we consider the invariant valuation rings of division rings which 
were introduced by Schilling in [2], one obtains that any invariant valuation ring is 
a semihereditary ring. Hence, semihereditary rings can be considered as some ge
neralizations of Prüfer domains for non-commutative rings. A particular example 
of invariant valuation rings are discrète valuation rings, which are, besides only 
fields and division rings, the simplest dass of rings. Nevertheless, they play an 
important role in algebra, number theory and algebraic geometry.

Another generalization of non-commutative valuation rings was introduced and 
studied by N.I. Dubrovin in [4]. These rings were named Dubrovin valuation rings 
after him. In this non-commutative valuation theory, any Dubrovin valuation ring 
of a simple Artinian ring (Q is exactly a local semihereditary order of Q. Therefore, 
semihereditary Orders can be considered as the global theory of Dubrovin valua
tion rings. Dubrovin valuation rings hâve found a large number of applications. 
More information about these rings and semihereditary Orders in simple Artinian 
rings can be found in book [5].
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In this páper we present and shortly discuss most of the basie results for non- 
-commutative invariant valuation rings and discrète valuation rings of division 
rings.

All the rings considered in this paper are assumed to be associative with 1/0, 
and all the modules are assumed to be unital. We write U(A) for the group of units 
of a ring A, and D* the multiplicative group of a division ring D. We refer to [6] 
for general material on the theory of rings and modules.

1. Valuation rings of division rings

The basie notion which plays the main role for the valuation theory is a totally 
ordered group.

Definition 1. A group G (with operation written by +) is said to be totally ordered 
(or linearly ordered) if there is a binary order relation > in G which satisfies the 
following axioms:
(1) either a > ß or ß > oc;
(ii) if a > ß and ß > a then a = ß;
(iii) if oc > ß and ß > y then oc > y;
(iv) if oc> ß theny+ a >y+ß and oc + y> ß +y
for all oc, ß, y e G.

If > is an order relation in a group G we shall write oc > ß if oc > ß and cc X ß, 
we shall also write oc < ß if ß > oc and oc < ß if ß > oc.

In the non-commutative case there are different generalizations of a valuation 
ring. We consider the generalization which was first proposed in 1945 by Schilling
[2] , who extended the concept of a valuation on a field to that on a division ring.

Definition 2. [2] Let G be a totally ordered group (written additively) with 
order relation >. Add to G a special symbol such that x + <==<=<+ x = <= for all 
x e G. Let D be a division ring. A valuation on D is a surjective map

rlMGuK

which satisfies the following:
1) v(x)
2) v(x) = if and only if x = 0;
3) v(xy) = v(x) + v(y);
4) v(x + y) > min(v(x), v(y)),
for any x,ye D.

Note that if D is a field, then from condition 3) it follows immediately that D 
admits only valuations with Abelian groups G.
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Remark 1. Let D be a division ring with valuation v and multiplicative group D*. 
Dénoté

U= {u e D*: v(w) = 0}

If wb u2 e U then v(w1w2) = v(ui) + v(w2) = 0 and v(w2W!) = v(m2) + v(ui) = 0, i.e. 
wiw2, w2wie U. Let 1 be the identity of D. Then v(l) = v(l2) = v(l) + v(l) implies 
that le U. If u e U then 0 = v(l) = v(ww-1) = v(u) + v(w-1) = v(w-1), i.e. w-1 e U. 
Thus U is a subgroup of D* which is called the group of valuation units. Let 
x e D*. Then vîxilG') = v(x) + v(u) + v(x-1) = v(x) + v(x-1) = if.v.v-1) = 0 for any 
u e U. Thus, U is an invariant subgroup of D* which is equal to Ker(v). Therefore 
D*/U~G.
Proposition 1. Let (G, +, >) be a totally ordered group, and let

be a valuation of a division ring D. Then

A = [xe D : v(x) > 0}

is a subring of D.

Proof. Let x, y e A, then v(x), v(y) > 0. Therefore v(xy) = v(x) + v(y) > 0 and 
v(x + y) > min(v(x), v(y)) > 0, which means that xy e A and x + y e A. Moreover,

v(-x) = v((—1) x) = v(-l) + v(x) = v(x) > 0

for any x e A.

Definition 3. A subring A of a division ring D is called an invariant valuation 
ring (or valuation ring for short) of D if there is a totally ordered group G and 
a valuation

of D such that

A = {x e D : v(x) > 0}.

Lemma 1. Let A be a valuation ring of a division ring D with respect to valuation 
v. Then U = U(A), where t/(A) is the group of valuation units of D, and 
U = {x e D : v(x) = 0}.

Proof. Suppose that u e Č/(A), then there is element w e i/(A) such that uw = 1. 
Therefore 0 = v(uw) = v(u) + v(w). So v(w) = v(w) = 0, since v(w) > 0 and v(w) > 0.

Conversely, suppose u e D and v(u) = 0. Then w-1 e D* and v(w-1) = -v(w) = 0. 
Hence u, w-1 e A, which means that u e i/(A).
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For any invariant valuation ring A associated to the valuation v we dénoté

M={xe D : v(x)>0} = A\U,

the set of ail non-units of A.

Lemma 2. An invariant valuation ring A is a local ring with the unique maximal 
left (and maximal right) ideal M of A.

Proof. Let x, y e M and a e A. Then
1) v(x+y) = min(v(x),v(y)) >0, that is, x + y e M;
2) v(xa) = v(x) + v(a) > 0 and v(ox) = v(a) + v(x) > 0, that is, ax, xa e M.

Thus, M is an ideal of A. Show that M is the maximal ideal of A. Suppose that I 
is an ideal of A such that M § I <f> A. Since M = A \ U, there is a unit u e I such that 
v(w) = v(n-1) = 0 and w-1 e A. Consequently, 1= ww-1 e I. Thus, I = A, i.e. M is 
a maximal ideal of A. Since M = A \ U, M consists of ail non-units of A, therefore A 
is a local ring, and M is the unique maximal ideal of A., by proposition 10.1.1 [6].
Lemma 3. [2] If A is the valuation ring of a division ring D with respect to valua
tion v on D then both A and M are invariant subsets of D*, that is, dAď1 =A and 
dMd~x = M for any d e D*.
Proof. Suppose that that dAd~x f A for some d e D*. Then there is an element x = 
= dyď' e d/\ď' with y e A and x f A. Therefore v(x) < 0 and v(y) > 0. On the 
other hand, y = d~lxd, and so

v(y) = vtcf1) + v(x) + v(d) < v(cT1) + v(d) = v(l) = 0,

since G is a totally ordered group. This contradiction shows that d/\ď' = A for any 
d& D*.

Suppose that dídď' [' M for some d e D*. Then there is an element x = dyď' 
e dMď' with y e M and x f M. Since dMď1 c d/\ď' = A and A = M u U, x e U. 
By remark 1, G is an invariant subgroup of D*, and so y = ďxd e U. Consequent
ly, y e M n U = 0. This contradiction shows that M is an invariant subset of D*.

The following theorem gives the équivalent définition of a valuation ring which 
is similar to the valuation domains of fields.

Theorem 1. (O.F.G. Schilling [2]) Let A be a subring of a division ring D. Then 
the following are équivalent:
1. A is a valuation ring with respect to some valuation v on D.
2. A is an invariant subring of D*, and for any element xe D* either x e A or x-1 

e A.

Proof. 1 => 2. A is an invariant subring, by lemma 3. Suppose x e D* and x C A, 
which means that v(x) < 0. Then 0 = v(l) = v(xr-1) = v(x) + v(x-1), hence 
v(x-1) = — v(x) > 0. Thus x-1 e A.
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2 => 1. Suppose that A is an invariant subring of a division ring D* with the group 
of units U(A). Let u e U(A) and d e D*. Then x = ducT1 e A and a:-1 = 
= d^u^d e A. Therefore x, x-1 e U(A), i.e. U(A) is an invariant subgroup of D*.

Let M = A \ U(A). Show that this set is also invariant in D*. Let d e D*. As
sume that dMď' M. This means that there exists an element x = dyď' e dMď' 
with y e M and x f M. Note that x e A, since A is an invariant subring in D*. 
Therefore x e U(A) and y = ď xd e U(A), since U(A) is invariant in D*. So 
y e M n U(A) = 0. This contradiction shows that M is invariant in D*.

Since U(A) is an invariant subgroup in D*, we can consider the factor group 
G = D*/U(A) as an additive group and define the natural map v: D —» G u{°<} 
such that v(ď) = dU(A) = U(A)d for each de D* and v(0) = <=. Obviously, v(du) = 
= v(ud) for ail u e U(A) and d e D*. We set v(w) = 0 for any u e U(A). Then v is 
a surjective map with Ker(v) = U(A). We must only introduce the total order on G 
assuming that v(x) < 00 for ail x e D. Let a, b e D*. By assumption, either 
ď'b e A or If'a e A. Suppose ďb e A, then a(a-1Z>)a-1 = bď'e A, since A is an 
invariant ring in D*. We use this fact to order group G. We set v(a) > v(b) in the 
case alf e M (and If'a e M). In this way G turns out to be totally ordered. Show 
that v is a valuation of D with valuation ring A. Indeed,
1) v(x)<°<;
2) v(x) = if and only if x = 0;
3) v is surjective;
4) v(d) = 0 if and only if d e Č/(A);
5) v(ab) = v(a)v(fl).
6) Let a,b e D* and a+b 0. Assume that v(a) > v(b) in G. This means that 

alf' e M 01 alf' e U(A). In both cases alf' + l e A, since 1 = l-1 e A. Since 
(a+bflf1 = alf' + le A, v(a+b) > v(b) = min(v(n), v(b)). If a + b = 0, then 
v(a+b) = 00 and we also hâve v(a + b)> v(b) = min(v(n), v(b)).
This theorem gives a possibility to introduce other kinds of generalizations for 

a valuation ring of a division ring.
Definition 4. A subring A of a division ring D is called a total valuation ring if 
for each r e fl* we hâve x e A or x-1 e A.

Theorem 1 States that any invariant valuation ring is a total valuation ring, but 
not conversely. Note that in the case of integral domains these two notions for 
valuation rings are équivalent to the notion of a classical valuation domain.
Lemma 4. (O.F.G. Schilling [2]) Let A be the valuation ring of a division ring D 
with a valuation v, and a,b e A. Then the following Statements are équivalent:
1) a = bei with ci e A;
2) a = c2b with c2 e A;
3) v(a) > v(Z>).

Proof. 1), 2) => 3). Suppose a = bct = c2b with cb c2 e A. Then v(a) = v(b) + v(ij) = 
= v(c2~) + v(fl) > v(fl) by condition 4) of définition 1.
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3) =?> 1), 2). Suppose v(d) > v(b) and b 0. Then v(aZ>-1) > 0 and v(b~ld) > 0, that 
is, ab~l e A and If'a e A. Thus, a = bUA'a) = (iib~')b.

Suppose v(a) > v(b) and b = 0. Then v(b) = and so v(a) = hence a = 0. This 
means that a is again both a left and a right multiple of b.

The next proposition gives the basie properties of invariant valuation rings.
Proposition 2. Let A be an invariant valuation ring of a division ring D with 
a valuation v. Then
1. aA çz bA or bA ç aA for any a,b e A.
2. Each ideal of A is two-sided, i.e. A is a duo ring. (Recall that a ring A is called 

a left (right) duo ring if every left (right) ideal is two-sided. A duo ring means 
both a left and a right duo ring).

3. A is a right and a left Ore domain. Therefore it has a left and right classical 
ring of fractions which is a division ring.

4. Any finitely generated ideal of A is principal.
Proof. 1. This follows immediately from lemma 4.

2. Suppose that I is a left ideal of A, that is, AI ç I. Since 1 e A, AI = I. Let 
n

x = ^yiai be an arbitrary element of the set IA, where y, e /, a, e A. Then 
/=i

v(y,a,) = v(y,) + v(a,) > v(y,). Consequently, by lemma 4, y,a,- = by, for some /y e A.
n

Therefore x = y, e AI = I. Thus I is a right ideal.
/=i

3. Let 1 = xA, then AI = AxA = xA, sińce 1 is a two-sided ideal. Analogously, 
Ax = AxA. Therefore Ax = xA. This means that A satisfies the right and left Ore 
conditions. Since A is a domain (that is, a ring without divisors of zero), A has 
a left and right classical ring of fractions which is a division ring.

4. Let 1 = atA + a2A + ... + a„A, where a, e A. Since A is a valuation ring then
we can choose among the éléments an element with a minimal value.
Without loss of generality, we can consider that v(a,) > v(ûi) for ail i. Then, by 
lemma 4, this means that a A çz a^A. So 1 = atA.

As immédiate conséquences of this proposition, we obtain the following.
Corollary. Any invariant valuation ring of a division ring D is semihereditary and 
a Bézout ring. (Recall that a ring A is called a right Bézout ring if any of its finitely 
generated ideal is principal.)

The following theorem gives the équivalent définitions of a (non-commutative) 
invariant valuation ring.

Theorem 2. Let A be a ring with a division ring of fractions D which is invariant 
in D. Then the following are équivalent:
1. A is an invariant valuation ring of some valuation v on D.
2. The set of right (left) principal ideals of A is linearly ordered by inclusion.
3. The set of ail ideals of A is linearly ordered by inclusion.
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Proof.
1^2. Let a, b e A and v(a) > v(b). Then from lemma 4 it foliows that a e bA and 
a e Ab. Therefore a/\ çz bA and Aa çz Ab.
2 => 3. Let I and J be right ideals of A. Suppose that I is not contained in J. 
Choose a nozero element x e I \ J. Let y be any element of J. Since x f J, 
x f yA, and so xA F yA. Therefore, by assumption, yA ç xA ç I. It follows that 
J <^I.
3 =>1. By assumption, A is a domain which has a division ring of fractions D. Let x 
e D be a nonzero element. Then x = ab~l for some nonzero a,b e A. Since A is 
a uniserial ring, Aa çz Ab or Ab ç Aa. If Aa çz Ab then a = rb for some r e A. Then 
x = ab~l = rblf' = r e A. If Ab <f> Aa then b = sa with s e A. Then .r-1 = bcf = 
= saa~' = s e A. Since A is invariant in D by assumption, A is a valuation ring, by 
theorem 1.

2. Non-commutative discrète valuation rings

Similar to the commutative case of a field, one can introduce the notion of 
a discrète valuation ring of a division ring.
Definition 3. A subring A of a division ring D is called the (noncommutative) 
discrète valuation ring if there is a (discrète) valuation v: D —» Z of D such that

A = [xe D : v(x) > 0}

The main example of noncommutative discrète valuation rings is a skew power 
sériés ring A5|| .v, g]] with xa = G(a)x for any a e K, where K is a field and g: 
K —» K is a nontrivial automorphism of K.

We formulate the basie properties of a discrète valuation ring in the following 
proposition.
Proposition 3. Let A be a (noncommutative) discrète valuation ring of division 
ring D with respect to a valuation v. Let t be a fixed element of A with v(ř) = 1. 
Then
1. A is a local domain with the nonzero unique maximal ideal M = {x e A : 

v(x) >0}.
2. Any nonzero element x e A has the unique représentation in the form 

x = fu = wf, for some u,w e Č/(A), and ne Z, n > 0. If D is a division ring of 
fractions of A then any element y e D* has the form y = fu = wf for some 
u,w e Č/(A), and n e Z.

3. Any one-sided ideal I of A is a two-sided ideal and has the form I = t'A = 
= Af for some ne Z, n > 0, i.e. A is a principal ideal ring (Recall that a ring A 
is called a principal ideal ring if each one-sided ideal of A is principal). In par- 
ticular, M = tA = At, and I = Mn = fA = Af.
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4. J M ' = 0, where M is the unique maximal ideal of A.
;=i

5. A is a Noetherian uniserial ring.
6. A is a hereditary ring.

Proof. 1. Since a discrète valuation ring A is a particular case of a valuation ring, 
this Statement follows from lemma 2.

2. Let t be a fixed element of A with v(ř) = 1, and x e A with v(x) = n > 0. Then 
t e M, and v(xf") = v(x) - n = 0 = v(f"x). Therefore from lemma 1 it follows that 
xť' = ue U(A) and f"x = ut e t/(A). So x = uf = ful.

Let y e D*. Since D is the division ring of fractions of A, any element y e D* 
can represented in the form y = ab~l with a,b e A. Let a = fu and b = tmw with 
u,w e U(A) and n,m > 0. Then y = (t"u)(tmw) = f^uywi = u2w2f^n, where WiWi, 
u2w2 e Í/(A) and n - m e Z.

3. Since A is a valuation ring, any one-sided ideal of A is two-sided. Let I be an 
ideal of A. Choose in I an element x with a minimal value v(x) = n (if there are 
a few such éléments we can arbitrarily choose one). Then x = fu = wf with u,w e 
t/(A). Therefore fA çz I and Af ç I. Let y e I, then y = t'nw with m > n. So v(t^y) > 
0, hence ť'y e A and y e fA. Therefore I = fA. Analogously, / = Af. In particular, 
since te M, M = tA = At, and M" = fA = Af = I.

4. Assume that N = J M ' £ 0 . Let r be a nonzero element of N with v(x ) = n >
/=!

0. Then x = fu e M" with u e U(A). Since x e N, x e Mn+1. Therefore x = f+,w 
with w e U(A). So fu = f+Iw. Since A is a domain, u = tw e M. A contradiction. 
Thus N = 0.

5. This follows immediately from 3 and theorem 2.
6. This follows from the fact that A is a principal ideal domain and any princi

pal ideal over a domain is free.
Together with définition 3 there are other équivalent définitions of a discrète 

valuation domain which are given in the following Statement.

Proposition 4. The following Statements for a ring A are équivalent.
(1) A is a (noncommuative) discrète valuation domain.
(2) A is a local ring with nonzero maximal ideal M of the form M = tA = At, where

t e A is a non-nilpotent element, and J M ' = 0.
i=i

Proof. (1) => (2). From proposition 3 it follows that A is a local ring with nonzero 
maximal ideal M of the form M = tA = At, where t e M with v(ř) = 1. Since A is 
a domain, t is a non-nilpotent element.
(2) =5> (1). Since M = tA = At, it is easy to show directly that Mn = fA = Af. Show 
that any nonzero element xe A has a unique représentation in the form x = fu = wf, 
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where u,w e t/(A) and n > 0. Let x f U(A), then x e M. Since J M ' - 0, there 
/=i

exists n > 1 such that x e M'1 but x f Mn+I. Then x = ťu, where u Ç M. Therefore 
u e U(A). Analogously x = wť.

Ring A is a domain. Otherwise there are éléments x,y e A such that xy = 0. Let 
x = ťu, y = tmw and utm = t'"wi with u,w, u^ e U(A). Then xy = ť+mU]W = 0, and so 
t'!+m = 0, which is not the case, since t is a non-nilpotent element. A contradiction.

Show that A is a right and left Ore domain. Let x,y be nonzero éléments of A. 
Suppose x = ťu, y = ťnw, ut'n = ťu> and wť = ťw\ with u,w, u^, mą e U(A). Then 
xy = ťuťnw = ťťujW = ťYuyw = ['"ww^ťuiW = yxi, where xi = e A.
Analogously, yx = xyt, where ją = u^ťwiu. This shows that A satisfies the right 
and the left Ore conditions. So A has a division ring of fractions D. Any element of 
D* can be represented in the form d = ab~\ where a, b e A. If a = ťu and 
b = ťw with u,w e U(A) and n,m > 0, then d = ť "ť. where n - m e Z and 
£ e U(A). If we set v(d) = = n — m e Z, we obtain a valuation of D* with
the discrète valuation ring A.

This finishes the proof of the proposition.

Proposition 5. The the following Statements for a ring A are équivalent.
(1) A is a (noncommuative) discrète valuation domain.
(2) A is a local principal ideal domain which is not a division ring.
(3) A is a Noetherian local ring with a nonzero maximal ideal which is two-sided 

and principal.
(4) A is a right (left) Noetherian local ring with the nonzero maximal ideal M of 

the form M = tA = At with a non-nilpotent element t e A.

Proof. That Statement (1) implies each of the other properties was proved above. 
The implications (2) => (3) and (3) => (4) are trivial.
(4) =ą (1). Let A be a Noetherian local ring whose maximal ideal M ť 0, and 
M = tA = At. Note that M'1 ť M'1+1 for any n > 0. Otherwise, by the Nakayama lem
ma, M" = 0, and ť = 0, which is not the case, since t is a non-nilpotent element.

We now prove that J M' = 0. Otherwise there is a nonzero element x e J M' .
/=i /=i

Thenx = a0 = att = a2t2 = ... = anť = ... for suitable a, e A.
Every a,- f U(A). Otherwise a,- - ai+1t e U(A), and from a,ť = ai+lt'+1 it would 

follow that ť = 0, that is, t is nilpotent, which is not the case. So we hâve the as- 
cending chain of right principal ideals a^A cz a2/\ c ... which must be stabilized 
because A is Noetherian, i.e. there is a number n > 0 such that a„A = an+1A. Then 
an+l = anb and an= an+lc for some b,c e A. Hence an+l = anb = an+icb, and 
a„+i(l - cb) = 0. Since 1 - cb e U(À), an+l = 0. So x = 0. This contradiction shows

that J M' = 0. Now we can apply proposition 4.



70 N. Gubareni

Proposition 6. The following Statements for a ring A are équivalent.
(1) A is a (noncommuative) discrète valuation domain.
(2) A is a Noetherian non-Artinian uniserial ring.
(3) A is a Noetherian valuation ring.

Proof. Implications (1) =z (2) and (2) =ż (3) were proved in proposition 3. Impli
cation (2) => (3) follows from theorem 2.

(2) => (1). Let A be a uniserial Noetherian but a non-Artinian ring. Then the unique 
maximal ideal M of A is the Jacobson radical of A, M 0 and M n/M ”+1 is a simple 
A-module. So we hâve a strictly descending chain of ideals

/\ Z) ,Wz) 2 Z) ... Z) ,W"z) (1)

Hence M is nilpotent, otherwise, (1) is a composition sériés for M and so A is 
an Artinian ring, which is not the case. Choose an element t e M\M2. Since A is 
uniserial, M2 <z tA çz M. Hence M = tA, sińce M/M2 is a simple A-module. Analo- 
gously, M = At. Now we hâve exactly case (4) of proposition 5.
(3) => (1). Let A be a Noetherian valuation ring. Then any ideal of A is finitely 
generated, hence it is principal by proposition 1. Thus, A is local principal ideal 
domain which is not a division ring. Therefore we can apply proposition 5.
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