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Abstract. We study the properties of fractional différentiation with respect to reflection 
mapping in a finite interval. The Symmetrie and anti-symmetric fractional derivatives in 
a fuli interval are expressed as fractional differential operators in left or right subintervals 
obtained by subséquent partitions. These représentation properties and the reflection sym- 
metry of the action and variation are applied to dérivé Euler-Lagrange équations of frac
tional free motion. Then the localization phenomenon for these équations is discussed.

Introduction

Fractional derivatives appear in differential équations modeling many pro
cesses in physics, mechanics, control theory, biochemistry, bioengineering and 
économies. The theory of fractional differential équations (FDEs) is an area of 
investigations that has developed rapidly during recent décades and established 
ameaningful field of pure and applied mathematics. Monographs [1-6] enclose 
a review of solving methods using analytical and numerical approaches. Recently, 
also équations including both left and right fractional derivatives hâve been dis
cussed in papers [7-12]. Such differential équations mixing both types of deriva
tives naturally emerge in fractional mechanics whenever standard variational cal- 
culus is applied in the dérivation of Euler-Lagrange équations.

This approach was started in 1996 by Riewe [13, 14], developed by Agrawal 
and Klimek [15-17] and has been investigated ever since (compare papers [18-30] 
and the référénces therein).

The known existence results for équations with left- and right-sided derivatives 
lead to a solution with some additional restrictions including the parameters of the 
problem such as the order of derivatives and the length of the time interval [7- 
-10]. For instance, a detailed discussion of the existence conditions for the solution 
of the fractional oscillator équation has been given in [11]. Here, we shall show 
that in fact such équations can be localized in subintervals - left or right, at least in 
the case of free motion.

The paper is organized as follows. In the next section we recall the basie défini
tions and properties of both intégrais and derivatives in a finite interval. Then, for 
a function determined in such an interval, we define the Symmetrie and anti-
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-Symmetrie derivatives of the Riemann-Liouville and Caputo type. The main re- 
sults are given in Section 2 where we study the reflection symmetry properties of 
fractional différentiation. The obtained results are applied to a model of fractional 
free motion in Section 3. We dérivé Euler-Lagrange équations for the reflection 
Symmetrie and anti-symmetric parts of the trajectory using the methods introduced 
in [32]. It appears that the obtained system of équations for the Symmetrie and anti- 
symmetric parts of the trajectory in interval |0,/?|, it is in fact |0,/?Z2| - or respec- 
tively [b/2,b] - localized. The paper is closed by a short discussion of possible ex
tension of the obtained results and their further application.

1. Reflection symmetry in fractional calculus

First we recall the basie définitions of fractional calculus [1, 31].

Definition 1.1. Let Rela) > 0. The left- and respectively right-sided Riemann- 
-Liouville intégrais of order a are given by formulas

= 77- t < h, (2)

where T dénotés the Euler gamma function.

Definition 1.2. Let fís(a) £ (n — l,n). The left- and right-sided Riemann- 
-Liouville derivatives of order a are defined as

(DoVXt) = (£f (CTXt), t > 0 (3)

t < b (4)

Analogous formulas yield the left- and right-sided Caputo derivatives of order a

( t > o (5)

( cD^f'ÁÍ) = t<b (6)

Definition 1.3. Let Jte(a) t (n — 1,»). The Symmetrie and respectively anti- 
-symmetric Riemann-Liouville derivatives in interval [Ü. h] are given as follows:
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Ąo,b] ==|[Doa+ + (-irDfcŒ_] (7)

(8)

The Symmetrie and respectively anti-symmetric Caputo derivatives in interval 
[0, b] are given as:

+ (9)

CĄ“ b] := j[ CD£+ +■ (-I)™“1 CD^_] (10)

Let us also introduce the notion of fractional intégrais over finite interval [n, b]:

qao == od

MAO := s-l™’1’* sgnCf - (s)íís. (12)

It is easy to check that the Symmetrie and anti-symmetric fractional derivatives can 
be represented similar to the one-sided Riemann-Liouville and Caputo operators.

Proposition 1.4. Let Re(a) G fn — !/«■)■ The Symmetrie and anti-symmetric
Riemann-Liouville derivatives in interval [a,b] obey relations

u»

®w.i ■■= (£T'tS <■<)

The Symmetrie and anti-symmetric Caputo derivatives in interval [a,b] obey rela
tions

^Ł.)=iŁiG)“ «i

<16’
Definition 1.5. Reflection operators Q[o_&_] and 6_ acting on arbi-

trary function / determined in interval [0, b] are given as follows:

Ç[o,b]AO:= “O 07)
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L Łml *■ (18)

nflJł+Ł-
QL&-4b]r(ö:=r(-^fe -o. (19)

Definition 1.6. Let f be an arbitrary function determined in [0, fc] and vector 
[/. = hâve components in the two-element set {D,l}. The following
recursive formulas define the respective projections/components of function /:

Ą] (t) := ± (1 + (-1)J t?[4ùl)r(t) (20)

:=

(21)

(22)

For any m £ iV function f can be split into the respective projections

Jtr](Ö =E^+L=0ĄJ^,Jr](t) (23)

= sitt+L=0rp^+j(ö (24) 

reo=Z[ji/t7i(0, (25)

where the Summation in (25) is over all the m - component vectors with Coordi
nates in the two-element set {0, 1}.

Property 1.7. Let /qj be the projection given in Definition 1.6.

(1) The following relations are valid:

(taslMÖ = - ö = (26)

(2) The projections fulfill orthogonality relations

Íq = (io Ąrfc (27)
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2. Properties of the Symmetrie and anti-symmetric derivatives

In this section we shall discuss the représentation properties of the Symmetrie 
and anti-symmetric fractional derivatives of order « t (1,2). We shall prove that 
acting on the [/] - projections of function / they can be expressed as operators 
dependent on the values of function in a relatively short interval obtained as a re
suit of the corresponding partitions of [0, &].

The représentation properties enclosed in Propositions 1.1 and 1.3 were proved 
in [32]. They show the connection between the fractional derivatives determined in 
interval |0,/?| and the ones determined over subintervals [0., b/2] and [0, &/2m] 
respectively. The new results given in Propositions 1.2 and 1.4, connect the deriva
tives determined in 10,/?| with those determined over the right subintervals.

Proposition 2.1. Let /[;] be the [/]-projection of function / given by formula (20). 
Its Symmetrie derivatives of order a E (1,2) in interval [0, ů] can be represented 
as foliows:

= Ci + (-1) WbiM. Wu-i (0 f2Sl

= ( 1 + (-D'Qtol) (29^

Let /[/] be the [/J-projection of function f given by formula (21) for vector 
[/] = Dï âJ, jl t {0,1 j. Its Symmetrie derivatives of order a E (1,2) in interval 
[0, fe] can be represented as follows:

Wf =2™ (30)

(31)

where we denoted as the ordered product of the projection operators

Fit/] + (-1)>^[1},Æ])...(1 T (-l)J™Ç[a_LL_]) (32)

Proposition 2.2. Let /tjl be the [/] - projection of function f given by formula 
(20). Its Symmetrie derivatives of order a E (1,2) in interval [0, j] can be repre
sented as follows:

(33)

^(0= ( 1 + (-iVQtol) (34)
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Let /[/] be the |J]-projection of function f given by formula (22) for vector 
[/] = [Ą,. /; G {ö,l}. Its Symmetrie derivatives of order a G (1,2) in interval
[0, ń] can be represented as follows:

(35)
L gfH- J

‘Ąkn/W = 2™n^ (36)

where we denoted as FlL the foliowing ordered product of the projection opera- 
tors

[fo : = 2 -™(1+ + (-iWn^A (37)

Proof. First, we check property (33) using the intégration properties and the reflec- 
tion properties of the second order derivative:

Ď
-n- * O! _ 1 dZ f fol(g)dg

- 2rC2 _ ff) dt2 J |t _ sp-l -
□

r b
2 b

1 d2 f /Tj-](s)àJ f /tjiGÛdj
- 2r(2-tr)d!t2 J |r-j|Æ-1 + J If-sp-1

0 b
L 2

' b — s — Wj ds — —dw ’
" - «■')=í-iv/t/iwj

i a2
~ 2P(2- a)dt2

1 d2
= +« jřčT^^&iA,iC0 =

=<(-iy«tw+W/Mift-i®.

Let us observe that équation (33) remains valid when we replace 0 by h —— and 
takei7G[b-Lffł]:
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Thus, we can prove property (35) by means of the mathematical induction princi- 
ple. Using (33) and (35) we obtain for the [j^-jJJ-projection

=2” =

_ 2^+1 n1 J-DWl./]

which proves formula (35) to be valid for arbitrary G j¥. The calculations for 
properties (34) and (36) are similar.
Proposition 2.3. Let /[_,] be the [/] - projection of function f given by formula 
(20). Its anti-symmetric derivatives of order a E (1,2) in interval [0, ů] can be rep- 
resented as foliows:

Sfaífl® = i1 + WĄaWlj] (0 (38)

=( 1 + OD (0- (39)

Let be the [/J-projection of function f given by formula (21) for vector 
[71 = Dl /ml /i E {0,1}. Its anti-symmetric derivatives of order a E (1,2) in 
interval [D, i] can be represented as follows:

“ 2™ nLí]íl[tQ.,í3/2™]/Í7](Í7) (40)

=2™ nÿ] ^.^1(0 ■ (41)

where we denoted FI[y] as the ordered product of the projection operators

n7J ^2-™(i+(-i)A*içD}.bL)..^i + (_i)^+iç.^_^^_ (42)

Proposition 2.4. Let /[j] be the [/] - projection of function f given by formula 
(20). Its anti-symmetric derivatives of order a E (1,2) in interval [0, &] can be rep
resented as follows:
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Wi® = (i+(43> 

r®[‘i]ftiW=(i+(-«ítli2to»i) ■%»&& <«>

Let /[/] be the [JJ-projection of function / given by formula (22) for vector 
[/] = [/i, Ji E {0,1j. Its anti-symmetric derivatives of order a G (1,2) in in
terval [0, ů] can be represented as follows

Wl® = 2™ (Ó (45)

= 2™IĘi (46)
L 2™’ 1

where we denoted as Fl^q the ordered product of the projection operat ors

n5| := 2-™(l + (-l)^łlę[0„b])... (1 +(-!) ). (47)

Now, we apply the représentation properties of Symmetrie and anti-symmetric frac- 
tional derivatives of order a G (1,2) to prove some intégration formulas. We quote 
the proposition belo w from paper [32].

Proposition 2.5. Let a G (1,2). The following intégration formulas are valid for 
any pair of functions so that f Ê Ů) and or

~ L respectively

fa f t = EJ=8 fa f[j] (Û [ji(ř)íít = (48)

= 2 EJ. a fa f (0 bPiU/siÊFtl ©î»

faA0 SjLofT/ïj-iCt) = (49)

The next resuit is an analogue of Proposition 2.5.

Proposition 2.6. Let a c (1,2). The following intégration formulas are valid for 
any pair of functions so that f E L]_(ü; b) and or

e LWď) respectively

C = SjLaf» /tjltô SfcUlSEiltÛitt = (5°)
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fa ÄÜ e2^S|ď(t)dt = Sj=of(,,’Aí](t) e®[0,b]^ij-](t)iit= (51)

= 2 £ J=o Ja An (ó (t)

Proof. Formula (50) results from the reflection symmetry of the integral in |0,/?| 
and the représentation property of the Symmetrie Riemann-Liouville fractional 
derivative given in (7)

fa/(Ûï|^1£t(t)dt= S;=of«r[j](t) =

= S>=a C An (i + (-1)J =

= Z y=0 fa Ail ^[Ł/Łb]5(j] +

+(-l) 75^=0ffl An ?[o.b]'D[b/ZÄ]5[j](Ö=

= £}=□ fa An +

+ <-1Vàj=X (?[□.*] [Çtad/b-l'Dfe/îili’üiCÔ] rfř =

= E}=0 fo An dt + Sj=o Ja Q toi I/îj] [%/z,0] <? ça < 0]  ̂t =
2 S|=a fob An f

The proof of formula (51) is analogous to the calculations presented above.

3. Reflection symmetry and localization of Euler-Lagrange équations 
for fractional free-motion

In paper [32] we derived Euler-Lagrange équations for an action dependent on 
trajectory x and its Caputo derivative of order a e (in)- P°r x heing a real-valued 
function determined in interval [0, ù] the action looked as foliows:

b
5 = j L(x(t), (52)

(3 
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and after application of the minimum action principle and properties of fractional 
derivatives and intégration, we obtained a set of équations of motion given in the 
theorem belo w.

Theorem 3.1. Let a E (1,2). Then the Euler-Lagrange équations for action (52) 
look as follows

(53)

provided the boundary conditions are fulfilled

V

fI
Zj-'J+ )\gCDa■ Ir
Dl v 0+ 7 Cii

Z, 
DI

3L
lf=o,b

We shall now discuss in detail the case of free motion, where the action 
dépends solely on the derivatives:

■5 = í l i (54)

The Euler-Lagrange équations in interval [0, i] (j = 0,1, 7 = 1— /) look as fol
lows:

-*W (55)

Now, we calculate the |/|-components of denoting them as ?|j] respec-
tively

( = yCflI (56)

( = T[i] ■ (57)

We note that system (55) can be rewritten as the following set of four équations of 
order a (j = 0,1, ] = 1 - J) :
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WDrïï[Wti] = û (58)

C£}[Ww + = /(,] (59)

Applying the représentation property given in Proposition 2.1 we obtain the fol- 
lowing form of system (58), (59)

(i + - (1 - (—= 0 (60)

(1 + (-iVÇJto]) cĄa„0/z]^-] + (1 - (-O'Qtol) ^Uö/zplj] = ?[/] (61)

The above system of fractional differential équations can be transformed into an 
équivalent system of fractional integral équations. To this aim we dénoté the se
cond order derivatives of projections as

= (62)

and dérivé the équivalent system in the form of

(1 T - U - = Pi(t) (63)

(1 T + Í1 - = W (64)

where (0 = + co is an arbitrary polynomial of the first degree and intégrais
over interval [0,b/2] are defined in (11), (12) for n = 2, a = 0 and b replaced by 
è/2.

Comparing Systems (58), (59) and (63), (64), we observe that the derived sys
tem of integral équations is explicitly localized in interval [0,b/2], Solving it in this 
subinterval we automatically recover the part of the trajectory in [b/2,b],
We can perform a similar transformation of system (58), (59) to the integral one 
applying Proposition 2.2. Thanks to this représentation property we can express 
the fractional differential operators in terms of Symmetrie and anti-symmetric de
rivatives over subinterval [b/2,b]

(i+- (i - = o (65)

(1 + <-l)J(?[□.*]) +- (1 - (-lyfllAsl) = >'ui. (66)

Now we use formulas (11), (12) and Proposition 1.4 with n = 2, a = b/2 to obtain 
the system of fractional integral équations localized in subinterval |/?/2,/?|:

(1 + - Û - = i’iW (67)

(1 + (-1)J 4- (1 - = ?|j]- (68)
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Conclusions

We discussed the properties of fractional derivatives connected to the reflection 
symmetry in a finite interval. Splitting the given function into its components with 
determined reflection symmetry, we obtained the représentation of the Symmetrie 
and anti-symmetric fractional derivatives in a fuli interval as operators in a subin
terval composed of certain products of the projection operators. Such a représenta
tion and the symmetry of the action integral with respect to the reflection, lead to 
a new formulation of variational calculus for fractional mechanics [32]. Here, we 
studied in detail a case of free motion and proved that Euler-Lagrange équations in 
this setting can be localized in subintervals.
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