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Abstract. We study the propertics of fractional differentiation with respect to reflection
mapping in a finite interval. The symmetric and anti-symmetric fractional derivatives in
a full interval are expressed as fractional differential operators in left or right subintervals
obtained by subsequent partitions. These representation properties and the reflection sym-
metry of the action and variation are applied to derive Euler-Lagrange equations of frac-
tional free motion. Then the localization phenomenon for these cquations is discussed.

Introduction

Fractional derivatives appear in dilferential equations modeling many pro-
cesses in physics, mechanics, control theory, biochemistry, bioengineering and
cconomics. The theory ol {ractional differential equations (FDEs) is an arca of
investigations that has developed rapidly during recent decades and established
a meaningful field of pure and applied mathematics. Monographs [1-6] enclose
a review of solving methods using analytical and numerical approaches. Recently,
also equations including both left and right [ractional derivatives have been dis-
cussed in papers |7-12]. Such differential equations mixing both types of deriva-
tives naturally emerge in (ractional mechanics whenever standard variational cal-
culus is applied in the derivation of Euler-Lagrange equations.

This approach was started in 1996 by Ricwe [13, 14], developed by Agrawal
and Klimek [15-17] and has been investigated ever since (compare papers [18-30]
and the references therein).

The known existence results for equations with left- and right-sided derivatives
lead to a solution with some additional restrictions including the parameters ol the
problem such as the order of derivatives and the length of the time interval [7-
-10]. For instance, a detailed discussion of the existence conditions for the solution
of the fractional oscillator equation has been given in [11]. Here, we shall show
that in fact such equations can be localized in subintervals - left or right, at least in
the case of {ree motion.

The paper is organized as tollows. In the next section we recall the basic defini-
tions and properties of both integrals and derivatives in a finite interval. Then, for
a function determined in such an interval, we define the symmetric and anti-
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Conclusions

We discussed the properties ol [ractional derivatives connected to the reflection
symmetry in a [inite interval. Splitting the given lunction into its components with
determined reflection symmetry, we obtained the representation of the symmetric
and anti-symmetric tractional derivatives in a full interval as operators in a subin-
terval composed of certain products of the projection operators. Such a representa-
tion and the symmetry of the action integral with respect to the reflection, lead to
a new lormulation of variatianal calculus for [ractional mechanics [32]. Here, we
studied in detail a case of free motion and proved that Euler-Lagrange equations in
this setting can be localized in subintervals.
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