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Abstract. In the paper, an unbounded blackjack type optimal stopping problem is consid- 
ered. A decision maker (DM) observes sequentially the values of an infinite sequence of 
nonnegative random variables. After each observation, the DM décidés whether to stop or 
to continue. If the DM décidés to stop at a given moment, the obtains a payoff dependent 
on the sum of already observed values. The greater the sum, the more the DM gains, unless 
the sum exceeds a given positive number. If so, the decision maker loses all or part of the 
payoff. It turns out that under some elementary assumptions the optimal stopping rule 
(OSR) for such a problem has a very simple, so-called threshold form. However, even in 
very simple cases, the value of the problem has no closed analytical form. Therefore, it is 
very hard to evaluate the value directly. Thus, in order to find the relationship between the 
problem design parameters and the value of the problem, is proposed studying the relation 
via Monte Carlo simulations combined with régression analysis The same approach is 
adopted to examine the OSR risk characteristics.

Introduction

The “blackjack type problem” (BTP) models a dass of optimal stopping deci­
sion tasks in which the decision maker observes sequentially the values of a given, 
maybe infinite, sequence X2, ..., XN, ... of nonnegative random variables. After 
each observation, the decision maker (DM) décidés whether to stop or to continue. 
If the DM décidés to stop at moment k, he/she obtains a payoff dependent on the 
sum Xi+...+Xb The greater the sum, the more the DM gains, unless the sum 
exceeds a given number T - a limit given in the problem. If so, the DM loses all or 
part of the payoff. Such problems can represent varions real world situations, 
which can be observed in engineering, économies, finance or social life, see e.g. 
[1, 2]. To illustrate the dass of problems, let us consider a problem of loading 
a device with a limit of load bearing capacity. Many types of machines (trucks, 
crânes etc.) or other engineering structures (such as dams, roofs, bridges, computer 
servers) may be subjected to excessive overloads resulting in possible breakage of 
the mechanism or structure. Assume a DM observes the loading process of such 
a device. During the loading process, the load is increased in random steps, as for 
example during a flood (a dam) or heavy snowfall (a roof). Assume that the limit of 
the load bearing capacity of the device is given. After each observation, the DM
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décidés whether to stop or to continue the process of loading. The DM wants the 
device to bear as much load as possible. However, on the other hand, if the limit of 
the load bearing capacity is crossed, then the gain for the DM is dramatically de- 
creased.

The name of the dass of optimal stopping problems is taken from one of the 
most popular casino table card games. Blackjack type games are played on a points 
system that gives numeric values to every card in a single deck of playing cards. 
The cards are given to a player sequentially until he décidés to stop. The score is 
the sum of the values in his hand. The player with the highest total score wins as 
long as it does not exceed a given limit. If a player’s cards exceed the limit, then 
the player loses and his/her bet is taken by the dealer.

Optimal stopping problems form a dass of optimization problems with a wide 
range of applications in mathematical statistics, engineering, industry, économies, 
and mathematical finance. The most interesting indude e.g. job-search and house- 
hunting problems, see e.g. [3-6], engineering and computer Systems maintenance 
and/or management [7, 8], the pricing of perpétuai American options as well as the 
optimal timing to invest in a projed or capitalizing an asset [9-12].

In the theory of optimal stopping, see e.g. [3, 4], the solution of any optimal 
stopping problem consists of the optimal stopping rule (OSR) and the value of the 
problem, i.e. the greatest expected payoff possible to achieve. In the case of a finite 
horizon, a solution for BTP satisfying some general assumptions is given in [1]. It 
appears that the OSR has a relatively simple structure. However, the dependence 
between the expected gain and the design parameters of the problem is rather com- 
plex. Even more complex is the relation between these parameters and the value of 
the problem in the case of an infinite horizon. Another important problem is to 
describe the relation between varions risk characteristics of a given OSR and the 
parameters of the stopping problem. There is no analytical expression relating the 
design parameters of the decision problem to the corresponding performance char­
acteristics of the decision rule. Usually in the case when the relationship between 
some dependent and the independent variables is extremely complex or unknown, 
the Monte Carlo simulations approach can be adopted, see e.g. [2, 13-15]. 
However, the Monte Carlo methods allow us to solve a spécifie given problem 
rather than to obtain some general expressions describing the relation in which we 
are interested. Thus in order to obtain some more general results we propose com- 
bining the Monte Carlo method with régression analysis which enables us to esti- 
mate and express analytically the relationship which we are going to study with the 
help of computer simulations.

The paper is organized as follows. In the next section we formally state a gene­
ral BTP and recall some important définitions from the theory of optimal stopping. 
In Subsection 1.3, we define the considered risk characteristics and in Subsection
1.4, we describe a spécifie BTP which will be studied in detail. In Subsection 2.1, 
we describe the Monte Carlo experiment which we use in order to obtain data con- 
taining the information about the relations between the risk characteristics and 
design parameters of the BTP. Next, we adopt régression analysis in order to obtain 
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approximations of the analytical expressions relating the value of the problem as 
well as the risk characteristics with the design parameters of the considered BTP .

1. Formal Statement of problem

The formal model for the dass of problems we consider in the paper is the fol- 
lowing. Let X2, ... be an infinite sequence of random variables. A DM observes 
sequentially the values of the variables and décidés whether to stop or to continue. 
If the process is stopped at moment k, the DM gains value W(y + A,), where

W is a given real function and y > 0 is the initial state of the process. Function W is 
positive and nondecreasing on the interval (0, T] and is nonincreasing for argu­
ments greater than T. Such problems will be called blackjack type problems (BTP) 
if the random variables are nonnegative and payoff function W achieves its only 
maximum for y + y^=1 X; = T.

Our task is to find a stopping rule which maximizes the expected payoff for 
a decision maker.

1.1. Optimal stopping theory - necessary définitions and results

Before we present the problem considered in the paper we need to present some 
necessary formal définitions from the theory of optimal stopping. They can be 
found e.g. in [3, 4].

Let Xb X2, ... be a sequence of independent random variables. Let F„ denote a- 
algebra generated by random variables Xi,X2,...,Xn in an underlying probability 
space (Q F,P) A stopping rule is a random variable T with values in a set of natural 
numbers such that {t = n)e F„ for n = 1,2,... and P(r< °°) = 1. Let M(n) be 
a dass of all stopping rules T such that P(f< ri) = 1.

Let (T„,F„), n = 1,2,..., be a homogenous Markov chain with values in a state 
space (Y , B). Let W:R+—>R be a Borel measurable function whose values W(y) 
will be interpreted as the gain for a DM when chain (T„,F„) is stopped at state y. 
Assume that for a given state y and for a given stopping rule t, expectation EjW(Yj) 
= = E(W(Tr)|Ti = y) exists. Value ErW(Yj) is the mean gain corresponding to the 
chosen stopping rule r.

Let us define a function Vn by the équation:

Vn(y)= sup EyW(YT) (1)

where Mw(n) is the set of all stopping rules belonging to M(n) for which expecta­
tions EyW(Yj) are larger than -<» for all ye Y. Value Vn (y) is called a value of the 
problem of optimal stopping when the initial state of the process is y and the 
boundary (horizon) for the possible number of Steps is N.
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Stopping rule r:e Mw(n) which for ail je Y satisfies the condition

EyW(Y^ = Vn(y) (2)

is called an optimal stopping rule in dass Mw(n).
Now let us consider an unbounded problem. Let Mw dénoté the set of stopping 

rules satisfying the conditions: P(r< = 1 and for all je Y. The
value of such a stopping problem is denoted by V(y) and the stopping rule which 
satisfies a condition analogous to (2), with Vn replaced by V, is called an optimal 
one in dass Mw.

1.2. Certain unbounded blackjack type problems and their solutions

The following proposition providing us with a solution for bounded BTP is 
proved in [1].
Proposition 1. If there exists real number t*, 0<t* <T, such that

W(y) < EvW(Ti) for 0 < y < t* 
and (3)

W(y) > EvW(Ti) fory > ř*

then OSR Tn in dass Mw(n) for the BTP is given by

Tn = min{l<£<n:I't >f } (4)

Value Vn(y) of the problem can be calculated for y < t*, with the hdp of the fol­
lowing recursive équation:

K(y)=L Vn_l(y + x)f(x)dx+ Í W(y + x)f(x)dxn = 2,...,N (5)
JO Jt^—y

with the initial condition VjCy) = J IV (y + x)f(x)dx.

We see that the above OSR is of the so-called threshold type. Such OSRs are 
especially practically interesting because of their very simple structure, compare 
[16-19].
Now let us consider an unbounded version of such a problem. It follows from well 
-known theorems that under some assumptions, unbounded optimal stopping rule 
î* can be approximated by bounded optimal stopping rules Tn. One of these theo­
rems, see Th.ll, p. 77 in [4], States that if the payoff function is bounded, then

t' = lim Tn

and
V(y) = lim V„(y) (6)
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It results from the définition of the BTP that without the loss of generality, we 
can assume that the payoff function is bounded. Thus the above mentioned theorem 
yields the following proposition.

Proposition 2. If conjunction (3) is satisfied, then the OSR in dass Mw for the 
BTP is given by

r* = min{l < £ : Ę. >t*}

Condition (3) is fulfilled in many practically interesting problems, for examples 
see [1]. One of such problems will be considered in detail in the sequel.

1.3. Important characteristics of OSR

In the situation where we deal with decision making under uncertainty, the most 
important for the DM features of any decision rule are the expected payoff and the 
risk characteristics.

It results from the two above propositions that value Vn(y) of a bounded prob­
lem can be computed with the help of recursive équation (5). However, usually the 
calculations are extremely arduous, even if we make use of some symbolic mani­
pulation software, such as Maple, Mathematica or Maxima, see [1, 2]. In the case 
of an unbounded problem, there is not even one recursive formula to calculate the 
value. The same problem is connected with the risk. The theory of optimal stopping 
hardly provides us with any results devoted to any risk measures connected with 
the optimal stopping rule.

In general decision theory there are two basie types of risk concepts:
- risk connected with the variability of results around a spécifie value of payoff
- risk connected with the possibility of occurrence of undesired results.

For the BTP, two risk characteristics reflecting both above risk concepts were 
proposed in [2]. Let Z be the random payoff connected with optimal stopping rule 
T*, i.e. Z = W(Tt*). Let <yz denote the standard déviation of optimal payoff Z. The 
following risk measures connected with rule OSR z* will be considered in the se­
quel:
- ratio SV of standard déviation of random payoff to expected payoff, i.e. SV = 

= Oz/Vn(0)
- probability of failure PrF, i.e. probability that the process under control will 

cross limit T.
In the sequel we deal with the problem of modeling the expected payoff as 

well as the two risk characteristics for the unbounded BTP. We combine the Monte 
Carlo method with régression analysis to estimate and express analytically the rela- 
tionship between the design parameters of the BTP and the indicated characteristics 
of the OSR. The BTP we will study in detail is deseribed in the next subsection.
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1.4. Blackjack type problem with linear payoff and exponential step

In the sequel, the following BTP will be considered in detail. Let the DM observe 
a sequence of i.i.d. random variables having an exponential distribution with the 
density function:

/(t) = ^-exp(--^-)ll()oo)(t), 2>0 (8)
A A

Therefore, in this problem the DM approaches limit T with exponential steps of an 
average length 2.
Let payoff function Wbe given by the following équation: 

W) =
B y,

0,
y<T 

y >t
(9)

with B > 0.
According to formula (8), the DM obtains a positive payoff which is propor­

tional to state y of the process, unless the state is greater than limit T. If so, then the 
player gains 0.

It was shown in [1] that such a problem satisfies the condition given in Proposi­
tion 1 with

t* = T - 21n(l + —) (10)
2

the OSR î* given by (7) tells us to continue the observation as long as the sum of 
the initial state and already observed values does not exceed the above given value 
t*.
This particular subclass of BTP models an important practical decision task con- 
nected with the theory of mass-service and called service with work time limits, see 
[1,2].

2. Monte Carlo simulations and régression models

In this section, we describe the Monte Carlo experiment and present the results 
of the régression analysis applied to the obtained data.

2.1. Monte Carlo experiment

The idea of the Monte Carlo simulation is to draw sample {Z-}“, i.e. a realiza- 
tion of stochastic process {Zi,Z2,...Z,„} composed of independent and identically 
distributed random variables having the same distribution as random optimal pay­
off Z = W(Tp.). Let/be any Borel function for which expected value Ef(Z) exists.
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By the strong law of large numbers, average fm - — will almost surely
m

(a.s.) converge to Ef(Z). In particular, when m tends to infinity, we hâve

ž,n = - LZiz/ = vn (y) 
m

1 2

m (11) 
and

—=- zr=i <z/ ) w «)

m m

In the latter expression, M is the number of the values in the Monte Carlo sam­
ple which are not greater than a.
In our Monte Carlo simulations, the realizations of random optimal payoff Z are 
generated directly according its définition with the help of the foliowing procedure:

Set z=y;
While y^t* Do Set z=z+REX(k)
If y<T Set W=B-z
Else Set W=0
Return W

In the above procedure, function REX(X) returns a pseudorandom number gen­
erated according to the exponential probability distribution having the density func­
tion given by (8), t* is given by (10). We use the procedure to estimate the values 
of the problems for varions design parameters as well as other statistics characte- 
ristising the performance of the OSR.

2.2. Design parameters of the problem

The design parameters of a given BTP as stated in section 2.1 are the following: 
limit T, parameter 2 determining the step probability distribution, and payoff func­
tion parameter B. Let us assume that initial state y of the process equals 0 and let us 
confine ourselves to these situations where the value of problem V(0) is positive. It 
reflects the case where the optimal stopping rule tells the decision maker to make 
at least one observation.

It appears, see [2], that it is very convenient to consider a parameter K which 
equals ratio 772 and can be interpreted as the average number of Steps needed to 
cover distance T. It allows us to obtain more general results. Because the optimal 
stopping rule is independent of B and the expected value of the payoff as well as 
the value of the problem are linear functions of B, we assume in the sequel that 
B = 1. What is more, to obtain an even more general description, we model the 
ratio
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R = V(0) (12)

instead of modeling the problem value alone. Thus finally, we hâve one indepen­
dent variable for our models - parameter K.

2.3. Monte Carlo estimation of the value of the problem

It was shown in [2] that the Monte Carlo approximations of the value of the 
problem in the case of bounded versions of the BTP are very accurate. The average 
relative error of these approximations was about 0.3%, see [2]. Thus one may ex­
pert the same in the case of the unbounded BTP. Let VM(, RMC dénoté the Monte 
Carlo estimate of the values V and R respectively. We compute the estimâtes of 
l/MC and Rmc for the values of parameter K changing in interval [1, 30]. In our 
Monte Carlo simulations we assume m = 10 000, compare (11), and for each num- 
ber K limit T is chosen at random from interval [50, 250]. Next we adopt the ré­
gression analysis to obtain an analytical model relating ratio R given by (12) and 
parameter K. The resulting model has the following form:

R(K) =
ßa + ßj K + ß2K + ß,K~, 

‘ ß. + fclK + ß.K + ß.K2,
X<g

^>g

with the following least squares (LS) estimâtes h, for the unknown coefficients ß, 
z = 0,...,8:

bQ = 31.1854, h1 =-11.2167, b2 = 11.5469, 
b3 = -0.917678, bt = 79.6558, b5 = -94.3583, 
Z>6 = 0.6659, b- = -0.00867, g = 4.8924.

Fig. 1. Graph of model for ratio R (in %) as fonction of K and Monte Carlo approxima­
tion of values obtained for Ke ft, 30] (dots). Regression values and their approximations 

are almost the same - they can hardly be distinguished in the figure
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Figure 1 shows both the data obtained by the Monte Carlo experiment, as well 
as the graph of a model for ratio R estimated on the basis of the Monte Carlo data. 
We see that the model values and the Monte Carlo approximations can hardly be 
distinguished.

Now, to study the quality of the approximations we compute the average rela­
tive error RE between our model and of the Monte Carlo approximations.
The formula for RE is as follows:

RE = 3- \R(Ki ï-Rmc (Ki )| / RÍKi )
I (13)

To compute RE, we generate another Monte Carlo sample (called in the sequel 
a validation set) containing N = 4000 records. The value of RE obtained for our 
data is 0.00288, and its value confirms that the régression model is really good.
In the next part of the páper, we adopt this approach to build models for the risk 
characteristics of the optimal stopping rule.

2.4. Regression models for risk characteristics

Model risk characteristics are developed on the simulations described in the 
previous subsection.

First we present the model for ratio SV. We assume the following form of the 
régression function:

çwjn \ßo+ßi( K + ßzK + fyK2, À<g

Based on the Monte Carlo data, we obtain the following LS estimâtes /?, of un- 
knowncoefficients/?„ i = 0,...,6:

ho = 0.6948, b1= 0.508183, b2= -0.11354, b3 = 0.00980, bĄ= 0.212579, 
b5= 1.3666, h6 — —0.00260, g = 4.9530

The model function graph along with the data is presented in Figure 2.
To check the usefulness of the régression model, we compute the RE given 

by (13) (with R replaced with SV) based on the validation set. The average relative 
absolute error RE equals 0.63%. It confirms good quality of the régression 
model.

Figure 3 illustrâtes the dependence between the probability of failure PrF and 
Parameter K. The continuous line represents the graph of the régression model 
obtained in our studies. It has the logistic form given by the formula:

PrF(TC) = Exp(PF(O 
1+Exp (PF (K))
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Fig. 2. Graph of estimated régression fonction .SV (continuons line) and Monte Carlo 
estimâtes for .SV (dots) when Ke fl, 30], and m = 10000. Parameter T was chosen at ran­

dom from interval 150, 250]

Fig. 3. Graph of estimated régression fonction PrF (continuons line) and Monte Carlo 
estimâtes for PrF (dots) when A'e fl, 30], and m = 10 000. Parameter T was chosen at 

random from interval 150, 250]

Function PF appearing in the above formula is of the form:

PF(K) = ßQ+ßJK + ß1K + ßiK1

with the following LS estimâtes for unknown coefficient /?,:

bQ = -1.2932, bY = 1.4272, b2 = -0.05456, b3 = -0.0101

The relative prédiction error in this case (computed on the basis of the valida­
tion set) amounts to 0.00776. The régression model perforais really well.
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Final remarks

The Monte Carlo experiments - as all computer simulations - are subject to 
a similar weakness; the results may dépend on the spécifie experiment design. 
Thus, we propose here to combine the simulation with régression analysis to gen- 
eralize the results for an arbitrary set of possible design parameters. With the help 
of the proposed approach we develop models for the value of an unbound black­
jack type optimal stopping problems with a linear payoff and exponential step as 
well as for the risk characteristics of the OSR. The models allow the decision mak­
er to study the risk characteristics of the OSR for a wide range of design parame­
ters. The estimated prédiction errors appear to be very small, which indicates that 
the approach results in the analytical models which are very good approximations 
of the true relationship.

References

fl] Grzybowski K.L., Optimal Stopping Rules for Some Blackjack Type Problem, Current Thèmes 
in Engineering Science 2009, ed. A. Korsunsky, Melville, American Institute of Physics, New 
York 2010, 91-100.

121 Grzybowski A.Z... Monte Carlo Analysis of Risk Measures for Blackjack Type Optimal Stop­
ping Problems, Engineering Letters 2011, 19, 3,147-154 (online version available: 24 August 
2011).

|3| Chow Y.S., Robbins H., Siegmund D., Great Expectations: The Theory of Optimal Stopping, 
Houghton Mifflin, Boston 1971.

f4] Shiryayev A.N., Optimal Stopping Rules, Springer-Verlag, New York 1978.
f5] Bearden J.N., Murphy R.O., Rapoport A., A multi-attribute extension of the secretary problem: 

Theory and experiments, Journal of Mathematical Psychology 2005, 49, 5, 410-422.
f6] Ferguson T.S., Klass M.J., House-hunting without second moments, Sequential Analysis 2010, 

29, 3, 236-244.
f7] Ghasemi A., Yacout S., Ouali M., Optimal stategies for non-costly and costly observations in 

condition based maintenance, IAENG International Journal of Applied Mathematics 2008, 38, 2, 
99-107.

f8] Mihalyi D., Novitzka V., Coalgebras as intrusion détection system, Acta Polytechnica Hungari- 
ca 2010,7,2,71-79.

19] Beibel M., Lerche H.R., A new look at optimal stopping problems related to mathematical 
finance, Statistica Sinica 1997, 7, 93-108.

flO] Jönsson H., Kukush A.G., Silvestrov D.S., Threshold structure of optimal stopping domains for 
American type options, Theory of Stochastic Processes 2002, 8, 24,169-177.

fil] Mordecki E., Optimal stopping and perpétuai options for Lévy processes, Finance Stoch. 2002, 
6,473-493.

|T2] Surya B.A., An approach for solving perpétuai optimal stopping problems driven by Lévy pro­
cesses, Stochastics 2007, 79, 337-361.

|T3] Ludkovski M., A Simulation approach to optimal stopping under partial information, Stochastic 
Processes and Applications 2009, 119, 12, 2071-2087.

114] Padmanabhan D., Agarwal H., Renaud J.E., Batill S.M., A study using Monte Carlo Simulation 
for failure probability calculation in reliability-based optimization, Optim. Eng. 2006, 7, 
297-316.



86 A.Z. Grzybowski

[15] Tian X., Benkrid K., Gu X., High performance Monte-Carlo based option pricing on FPGAs, 
IAENG Engineering Letters 2008, 16, 3, 434-442.

[16] Christensen S., Irle A., Novikov A., An elementary approach to optimal stopping problems for 
AR(1) sequences, Sequential Analysis 2011, 30, 1, 79-93.

[17] Novikov A.A., Shiryaev A.N., On an effective solution of the optimal stopping problem for 
random walks, Theory Prob. Appl. 2006, 49, 344-354.

[18] Novikov A. A., Shiryaev A.N., On a solution of the optimal stopping problem for processes with 
independent incréments, Stochastics 2007, 79, 393-406.

[19] Villeneuve S., On threshold strategies and the smooth-fit principle for optimal stopping prob­
lems, J. Appl. Probab. 2007, 44, 1, 181-198.


