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Abstract. For an Me/M/1 queue with a threshold switching of service modes at the start of 
the service of the next customer an algorithm for determining the stationary distribution of 
the number of customers and stationary characteristics (average queue length, average 
waiting time, variance of queue length) is proposed. In the case the minimum number of 
incoming customers in the group is comparable to threshold value h, the stationary 
characteristics are found in an explicit form. The results are verified by simulation models 
constructed with the assistance of GPSS World.

Introduction. Model description

Models of queueing Systems where a different intensity of service is used 
depending on the queue length and where the customers arrive in groups, are 
frequently used for the study of télécommunication processes [1, 2]. In papers [3, 
4] Mö/G/l/m queues with the switching of service modes and threshold blocking 
of input flow are investigated. Queueing Systems with the switching of service 
modes at the start of the service of the next customer were considered particularly 
in works [5, 6]. More precisely, in [5] and [6] the stationary distribution of the 
number of customers for an M/G/l/m queue with dual-speed service and the 
stationary characteristics of an M/G/l queue with several switching thresholds are 
considered, respectively.

In the present páper we study Mfl/M/1 and M^/M/l/m queueing Systems with 
dual-speed service and grouped arrivai of customers.

Consider an Mö/M/1 queue without a limitation of queue length. The 
customers arrive to the system in groups and the time intervals between the 
successive moments of the arrivai of groups of customers are independent random 
variables with the same exponential distribution with parameter A. In the n-th 
group, there is a random number of customers 0n, which equals k with probability 
P{(9„ =k} = ak (k > 1). Assume that the customer groups are served in the order of 
their arrivai and within the groups the customers are served in random order.
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Customer service can be performed in two modes. In each of them, the service 
time is exponentially distributed with parameters /Ą and //, respectively. While 
the number of customers in the system does not exceed the given threshold value h 
(h>l), a service is performed in the main mode with intensity u,. Switching to 
a service mode with intensity ,//2 is performed at the time of the beginning of 
serving the first customer, provided the number of customers exceeds h. As soon 
as the number of customers becomes less than /z + 1, a reverse Switching to 
a service mode with intensity is performed. Assume that zz2 > p and denote 

the system described above by (index "1" indicates the number of post
threshold service modes).

1. Stationary characteristics of queue

Let «l = Á//4, a2 = 2//Z,, bt = ^k'ak (i> 1 ), p1 = , p2 = a2bx.

Fig. 1. States graph of IVC/M,/! queue in case a{ = 1

We introduce the following numbering of States of the queueing system (see 
Fig. 1): state sQ means that the system is free; state (z > 1) means the presence 
in the system of i customers and that service is performed in the main mode; 
xt (i > h +1) means the presence in the system of z customers and that a service is 
performed with the intensity p2.

Denote by pt (t) ( qt (/) ) the probability of the system at time t remaining state 
(S/ A';). Assuming that the process of change of system States is ergodic (the 
conditions of ergodity are offered below), i.e., there exist limits = lirn/ih )

(z>0), <7, = lim<7,W (z>h + l), we Write the system of équations for finding 

stationary probabilities pt and <?,
/-i 

-'k’o+AJ’i =0; -(À + p^Pi + À^jpaj_k +jU1pM =0 (z — 1,/z-l) (1) 
fc=0
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h-1
-(À + p^p» + À^p.a^ + p,ph+l + p^q,M = 0

k=0
(2)

i-1
-(À + p, )p, + A^ppt^ =0 (ż > h +1) (3)

—(Â + /Ą )‘7/1+1 + lhPh+2 + Z^2<7/1+2 =0 (4)
/-l

U + ZĄ )<?,■ + ^ E Vkai-k + MP/+1 + ÆÆ+i =0 (1 > /î + 2) (5)
k^h+1

ipk + É =1
k=0 k=h+l

(6)

Let

0'-°)’ A)=1; Pi=PoPi 0'^0), p0=l; q^PoQi (i>h + V)
h k=1 h h h (7)

ph = Ípí’ Qh = Ah + ÍPiAh-i’ Lh = f? = if pi

i=i i=i i=i i=i

Theorem 1. If ł\<°° and p2 <1, then stationary probabilities p. (z>0) and 
<7; (i > h +1) exist and can be determined by récurrence relations

Pi+^of^PkĄ-k (i = 0,h-ï)

i i—1
Qi = aiCffPkAi-k + E (i >h + V)

k=0 k=h+l

Pi = ------ ^Pka'-k (i>h + l)
+ A ti

Proof. We get relations (8) by summing successively i ( i > 1) équations of system 
(1), and equalities (10) follow directly from équations (3).

In order to obtain the first equality in (9), we add équation (2) and then the first 
équation in (3) to the sum of ail the équations in (1) (i.e., to the last equality in (8)). 
To obtain the second equality in (9), we add the first equality in (9) and équation (4) 
to the second équation in (3). Summing the third équation in (3), the second equality 
in (9) and the first équation in (5), we obtain the third equality in (9) and so on.

(8)

(9)

(10)

(11)
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To find p0, we sum over i ( i > 1 ) both sides of the relations

/-i ____ /-i /-i

MA = (i = W MA + M = ^XÀ A-i-r + X A A-i-r (^h + i) 
fc=0 fc=0 k=h+l

and, using normalization condition (6), we get

XXm A-r + X X =(Éa + X Qi )Xa=X4=X X ai==a
z=0fc=0 i=h+lk=h+l i=0 i=h+l k=0 k=0 k=0j=k+l j=l

Then

= MÈa + M> XQi = M(t- Po - XQi) + M XQi =

i—1 i—h+1 i=h+l i=h+l (12)

=a(i-po)+(m-m)X^
i-h+l

Summing over i (i >72 + 1), both sides of relations (9) and using equalities (8) 
we deduce that

OO OO /' 7—1 h i

X Qi = a2 X <Xm A-r + X QkAi-i-k ) = a2 (A - XXm A-r ) = 
i=h+l i=h+l k=0 k=h+l i=0k=0

.. h h
= ha2 - ^-^Pi - a2 ^pkAh_k

M /-l k=0

(13)

Substituting relation (13) into (12) and using notations (7), we obtain solution 
p0 to équation (12) of form (11). Formula (11) gives positive values of p0, 
provided only that ^J2>Âb1, i.e., p2<l- The proof of the theorem is now 
complété.

Récurrence relations (8)-(ll) serve to détermine pi (z>l), <7, (i>h + ï), Ph, 
Qh, Lh, and thus, stationary probabilities pt (z>0) and qt (i>h + Y) for 
every fixed value h.

Consider the generating functions

^(z) = Xaz'; 0(z)= X^z<; = p(z) + ÖU); A(z) = Xa,z'.
/=0 !=h+i 7=1

Theorem 2. Generating function P(z) can be represented as

P(z) = -------  ----------------- 1---------- ----------------((/Ą ( 1 - z) - Az(l - A(z)) - A ) x 
(A + 2(1- A(z)))(a (1 - z) - 2z(l - A(z)))

h+1

1=1

h+1

+ +MA) + Mh+G ) + (M + /l(l- A(z)))(aXaz'' + M%+iAî+1))
/■=() (14)
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Proof. Multiplying the z-th équation of system (l)-(3) by z (z>0) and summing 
them, we get

Ä+1
-(2 + a)P(z) + 2P(z)A(z) + jUtpQ + aZ/^'”1 + /i2qMz = 0

Hence,

i h+1
pU) =------ 77—+ A%+iZft + APo) (15)

A + 2(1- A(z)) “

Now we multiply the z-th équation of system (4)-(5) by z and sum over 
i (i > h +1). We obtain

h+l

(A(l - z) - 2z)ß(z) + A- AaZ* + 7zQ(z)A(z) = 0
/=o

From this équation using equality (15), we first find Q(z) and then we find 

P(z) of form (14). This complétés the proof.

By differentiating generating function P(z) at point z = 1 (an appropriate 
number of times) it is possible to calculate the moments of the number of 
customers in the system. In particular, denoting by L the stationary average 
number of customers in the system, we find that

L = t/Pi+XiQi=P’W’ (16)
/=1 i=h+l i=2 i=h+l

Denote by lV(F)(z) and D(F)(z) the numerator and denominator in the 
expression for some function F (z), respectively. Let us simplify the process of 

finding the derivatives of function P{ź).

Lemma 1. Forfunction Piz) defined by (14), the following equalities hold:

N'\Pf(\) = D\P\\\N'\P\\)-D'\P\\))
D'\P\Y) D"(P')(V)

(17)

P ’’(D =
2V(/V)(P")(1).
D(lV) (?")(!)’

(/y)(P")(l) = 2D"(P’)(l)(2D'(P)(l)(2V"'(P)(l)-
(18)

-D'"(P)(1))-P’(1)D'"(P’)(1))
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Proof. Since /Ul) = = 1, it is elear that for fonction P(z) defined by (14), the
/=i

equalities hold

7V(P)(1) = D(P)(1) = 7V(P’)(D = 0(P’)(D = W’)(D = W’)(D = 0 

D"(?’)(l)*0

Using equality P( 1) = 1 as well as L'Hôpital's rule and the représentation of 

function P(z), we get

W)(D = D'(P)(1) 0; D'(P ")(l) = ö"(P")(D = £>'"(? ")(l) = 0; (2Q)

D(/y)(P")(l)^0

From (19) and (20), the first parts of formulas (17) and (18) follow respectively. 
Since

N(P ’)(z) = W)(z) • O(?)(z) - N(P)(.z) ■ D\PW, 

N\P\z) = N"(P)(.z) ■ D(PXz)-N(P^ ■ D'XPW, 
N"(P ’)(z) = 2V'"(?)(z) • D(P)(z) + N"(PX.z) ■ D'(PXz) - 

-N'(P)tf) ■ D”(p\z3 - N(P)(z) ■ D'"(PXz)

in view of (19) and the first formula in (20), the following equality

N"(P)(Y) = D'(PX1XN"(P)W - D"(P)W)

holds. By differentiating both sides of the equality

N(P')(z) = N'(P)(z) ■ D(P)(z) - N(P)(z) ■ D'(P\z)

we obtain the formula

Nuv> (P ”)(z) = N(V> (P ’)(z) • D(P ’)(z) + 3N(IV> (P ’)(z) • D'(P ’)(z) +

+ 2N"'(P ’)(z) • D"(P ’)(z) - N(P ’)(z) • D(V> (P ’)(z) -

- 3N'(P ’)(z) • D(,v > (P ’)(z) - 2N"(P ’)(z) • D"'(P ’)(z)

which in view of relations (19) and the equality

7V"(F')(1) = F'(1)-W')(1)

which follows from the first formula in (17), at point z = 1, it can be reduced to

7v(/y’(p")(i) = 2r>"(?')(i)(^",(?')(i)-?'(i)'£,",(?')(i)) (2i)
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By using the formula

7V'"(P’)(Z) = 7V(/y)(P)(z) • D(P)(z) + 27Vz"(P)(z) • Dz(P)(z) - 27Vz(P)(z) • Dz"(P)(z) - 

-7V(P)(z)-D(/y)(P)(z)

and the first relations in (19) and (20), we get

7VZZZ(F')(1) = 2Oz(P)(l)(Ařzzz(P)(l) - OZZZ(F)(1))

Substituting the expression for into (21), we establish a second formula
in (18) and the lemma is proved.

Lemma 2. The first and the second derivatives offunction P(z) at point z = l are 
determined as follows:

~ i /l+1
P’(D = —-----------—(2a(a-A)E<z'-1)a +

2/Zi(xĄ-/tói) (22)

2//2 (/Ą - /Ą )hqh+y - 2Àbyfiypü + 2/Zj (by + b2) + 2Aby (//2 - Aby ))

p”(1)=- ^(i-^(i-2(Pi +
3A(A2-^i) m

3a(A2 - Pi)h(h-i-)qIM-3Ap,(b2 -by)p0 + Ap.y(b3 -Ą)+ (23)

3Ap2(b2 -by)-6A2byb2 + 3AP(V)(/ly (by+b2) + 2by(p2-Ad)y)))

Proof. To calculate derivatives F'(l) and P"(l), we use formulas (17) and (18), 
and take into considération the equalities

Az(l) = fiay = by-, A"(l) = ±i(i-Y)ay =b2~by

/=1 t-2

Az"(l) = ^j(i - l)(ż - 2)n; = b3 - 3b2 + 2Ą
/-3

The lemma is proved.

Theorem 3. If by < °° (i = 1,2) and p2 < 1, then the stationary average number of 
customers in an queue is finite and it is determined as follows:

L = ~ ~ Tt7~S^'Í + ^2 ) + 22Ą (p2 — Aby ) +2pQ (/ty (fj^ — Py fiLy, ~ ) +
2m(A2-^i)

+a2(a2-a)H!+i-^iA))
(24)
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and the stationary average queue length as well as the stationary average waiting 
time are determined by

= + (25)

Proof. From the first formula in (16) and equality (22) using notations (7), we 
obtain (24). The first formula in (25) follows from the obvious equalities

MQ = ^i-Y)Pi + ^(i-l^q, =^iPi + 
i=2 i=h+l /=1 i=h+l /=1 i=h+l

and the second one is the conséquence of Little's formula for Systems with grouped 
arrivais of customers. This complétés the proof.

Theorem 4. If bt<°° (i = 1,2,3) and p2 < 1, then the variance of the stationary 

average queue length in the M^/M/l queue is finite and it can be determined as 
follows:

DQ = Pf l)-MQ-(MQÝ = 1 -Ą) +
3a(A2-/^i)

+ 3/ł/Ą (b2 —bf) — 622bf2 + 3AL(/z1 (Ą + b2 ) + 2Ą (/Ą - Al\ )) + n

3Po (A (A — A )(Ai ) ~ 3 A + + h(h — l)pw ) +

+A(A - pQh(h-V)qM-2pfb2-b.m-MQ-ÇMQ)2

Proof. In view of the second formula in (16), we obtain

MQ2=Y(i-iyPi+fj(i-iyqi = 
i=2 i=h+\.

= p"(1)-£(z-1)a- X0-1)^/ =PXV-MQ 
i-2 i-h+l

Using expression (23) for P"(l) and notations (7), we arrive at formula (26) for 
DQ. This complétés the proof.

Now we investigate the limit performance capabilities of an queue as
the intensity of service of post threshold mode p2 increases infinitely. The next 
theorem follows directly from equalities (11), (24) and (25).
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Theorem 5. Let the conditions of Theorem 3 hold. Then

. x Ai
lim PoCA?) = —-———TfT 
-7 Ai(i+Ę) + ^Qh

lim A(//2) - — +
72^°° Al

Al(Al(Pft Ph + + A2^‘?ft+1)

A1(1 + ph) + ^Qh

lim MQfuf) - —
/'2^°° Al ly

Ai (Ai (L/i P/i +hPh+i') + fhhq h+i )
aCi+pj + M

Ai P/> + ^Qh
A1(1 + Ph) + ^Qh

If the minimum number of incoming Customers in the group is comparable to 
threshold value h, then the stationary characteristics of the queue can be
found in an explicit form.

Theorem 6. If bt<°° (i = 1,2,3), /?2 < 1 and the following conditions hold:

ak=0 (k = l,h-2); ak—^ (k>h — l) (27)

then

____________ Ai(A2~^i)____________
AiA2+(A2-Ai)(Ai^+^(4+^-«iAi-i)) (28)

pi = (fpQ ( 1 + oq )'-1 (i = 1,7z —1)

and the stationary characteristics of the Mö/Mj/1 queue are finite and they are 
determined by formulas (24)-(26), where

Ph =(l + öi)/! -l-ąa,^; Lh = — (1 + (oq/z —1)(1 + c^)7' -o^hah_fp

= Lh + -U(l + affhfh -1)(1 + ay,+1 - 2(h2 -1)(1 + af}h + (29)
»!

+h(h +1)(1 + er/"1 - 2) - o?h(h - Y)ah_f)

2
Qh ~ Ph + ~ CfajP, Pj v — ——■ (<A+! + ai ah + ö)(l + Cüi)0/!-!)’

^ + Ai (30)

Qh+i = ^(Ai+i + ai Ah + (1 + )Ai-i + — (1 + 0)) — t^lAi-i + Pä+i)

Proof. If conditions (27) are satisfied, then from relations (7) it follows that

 k
4=1 (Ä: = l,/i-2); 4=1- (k>h-Y) (31)

/=7z—1
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In view of (31), by using formula (8) we obtain

Pm =ai^Pk =«i(1 + «i)'Po (ż = 0,/z-2);

h-1

Ph = «1 (Po4-1 + YPk ) = «1 ((1 + «1 )'!-1 - ah-l (Po 

k-1

This leads to the expression for Ph in (29). The expressions in (29) for Lh and 

Z^2) are obtained using the formulas

^^1 + Wi+1-q + 1^); Yá(á DY = V ,(//(// D.v 

k=l (x 1) k-2 (x 1)
- 2(7i2 - l)x'! + h(h + l)x'!_1 - 2)

Formulas (30) follow from (9) and (10) with the use of equalities (31) and 
expressions (28) for pi (i=l,h— 1). Substituting expression (30) for Qh into 
formula (11), we obtain equality (28) for p0. The proof of the theorem is now 
complété.

3. Examples of calculating stationary characteristics

We calculate the stationary characteristics of an M^/Mj/l queue in the case 

that customers can arrive only one or two at a time, i.e., al+a2 =1. Let 2=2, 
74 =1, zz, = 4, = 0.75, a2 = 0.25 (data 1). Then a, = 2; a2 = 0.5; bx = 1.25; 
b2 = 1.75; b3 = 2.75; p, = 2.5; p2 = 0.625; Ą = 0.25; Ą = 0 (i > 2).

Table 1

Stationary characteristics of queue (for data 1)

h 1 2 3 4 5

Mß 4.032 4.855 5.768 6.725 7.704

Mß (GPSS) 4.039 4.850 5.779 6.705 7.700

o-«2) 4.006 4.097 4.153 4.187 4.207

O-(ß) (GPSS) 3.986 4.070 4.147 4.156 4.210

Mn 1.613 1.942 2.307 2.690 3.082

Mir (GPSS) 1.615 1.939 2.309 2.682 3.082
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Dénoté by cr(ö) a standard déviation of the stationary queue length, i.e., 

tr(2) = - foQ. Table 1 contains the values of the stationary characteristics of an 

M^/M|/l queue that are calculated for different threshold values h. In this table, 
for comparison, the values of these stationary characteristics obtained by the 
general purpose simulation system (GPSS World) [7, 8] are also written for the 
value of simulating time t = 5 ■ 105.

Table 2

Stationary characteristics of MTW! queue (for data 2-5)

Data number 2 3 4 5
mq 10,906 14,503 27,024 53,733

MQ (GPSS) 10,907 14,665 27,315 53,881

Mi* 1,818 2,231 3,753 7,070

Mb (GPSS) 1,821 2,253 3,800 7,095

Assume that for an M^/Mj/l queue, conditions (27) hold. Let 2 = 2, u, =2, 

Z/2 = 8, Zz = 4, ak = 0 (Z: = 1,2). Consider such cases as: a3 = 1, «,=0 (k > 4) 
(data 2); a3=0,75; a4=0,25; ak=0 (k>5) (data 3); a3 = 0,6; a4=a5=0,2; 
«;=0 (/< > 6) (data 4); a3=0,5; a4=0,3; a5=a6=0,l; ak=0 (k>7) (data 
5). The comparison of the stationary characteristics, calculated for data 2-5 with 
ones obtained with the assistance of GPSS World for the value of simulating time 
t = 2 ■ 105 is exhibited in Table 2.

Let conditions (27) hold, and the range of the number of incoming customers in 
the group is a countable set described by the geometrical distribution: ah_x = p: 

ah+k = Pc!>+' (k>0), where 0 < p < 1, q = l- p. Then stationary characteristics L 
and Mg can be found by using explicit formulas (24), (25), (29), (30), where

4_i=?, Ah = l-p(q + l), Ąi+1=l-p(q2 +<? + l)

Ą = p2(4g + D-l) + ^ + l; = p((h _ 1)2 + hiq) + h2 + žhp + q + l

P P
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