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Abstract. The aim of the paper is to dérivé the Green’s function of the Helmholtz operator 
in an elliptical region. The function is found in the form of a double séries of Mathieu func- 
tions, which are obtained as a solution to the associated boundary problem. The Dirichlet 
condition on the boundary ellipse is assumed. The eigenvalues are the roots of characteris- 
tic équations, which are derived from the boundary condition. To construct Green’s func
tion depending on time, the orthogonality condition of the eigenfunctions in the elliptical 
region was used.

Introduction

The problems of membrane vibrations hâve been the subject of many papers 
[1-4]. The theoretical and numerical investigations presented in these papers con- 
cern rectangular, circular and arbitrary shaped membranes. For membranes of regu
lär shapes (rectangle, circle), an exact solution to vibration problems can be de
rived. In these cases, non-homogeneous problems can be solved by using Green’s 
function method. The problem of vibration of a non-uniform or non-regular shaped 
membrane is solved by using approximate (numerical) methods [5]. The method of 
fundamental solutions can be used as an example of such approximate methods [4]. 
The application of Green’s function method to the vibration problem of a mem
brane, which occupies a finite region in the plane, requires the knowledge of 
Green’s function for the Helmholtz équation. The method of fundamental solutions 
applied to the vibration problems of arbitrary shaped membranes also requires 
knowledge of the fundamental solution (Green’s function) of the Helmholtz équa
tion in the plane.

Green’s functions of the Helmholtz équation in regulär régions are well known. 
These functions for problems in rectangular and circular régions with varions 
boundary conditions are given in [6]. In this paper, the dérivation of Green’s func
tion for the Helmholtz équation in an elliptical region is presented. In order to 
separate the variables, elliptical coordinates are introduced. The solution is 
obtained in the form of a sériés of eigenfunctions of the associated boundary 
problem.
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1. Problem formulation

The transverse vibration of a homogeneous membrane under a uniform tension 
is described by the équation

p|-4 = 5'V2z/ + /(.¥,.vt), 
dt

{x,y)^D (1)

where D is the domain which occupies the membrane, V2 is the Laplace operator, 
S is the tension per unit length of membrane edge 3D, p is density per unit area of 
the membrane, u(x, y,t) is the displacement of the membrane point (x,y) at time t, 
f(x, y,t) is the extemal force per unit area of the membrane acting in the perpen- 
dicular direction. Equation (1) is completed with initial and boundary conditions. 
We assume here zero initial conditions and the Dirichlet condition at boundary 3D

u(x, y,t)=0, (v,y)e3D, t>0 (2)

Problem (1-2) in elliptical domain D is the subject of this paper. Boundary 3D 
of the considered domain is an ellipse in a canonical form with half-axes a and b

Fig. 1. Ellipses and hyperbolas in elliptical Coordinates

To solve the problem, we introduce elliptical coordinates (^,77), which are cou- 
pied with Cartesian coordinates by the following relationships (Fig. 1):
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ix - hcosh<?cos7
1 , (4)
[ y = Äsinh çsin7

where > 0, 0 < r) < 2n. The équation of ellipse (3) in the elliptical coordinates 

is: £, = £0, where ç, = artgh Í — |. The Laplace operator in elliptical coordinates has 

the form

(5) h2 (cosh2 cos2 7^ ’àf]2 )

Differential équation (1) and boundary condition (2) in the elliptical coordinates 
are as follows:

1 ( 32 32 Y 1 d2U / g \
7^7—7^7----- O + r - ~ + ř'7z |cosh cos dq J c dt

U(g0,7,t) = 0 for 0<7<2æ (7)

where U(£,î],t) = u(x, y,t), F(Ç,q,t)= f(x,y,t) and c - ^S/ p.
S

The solution of boundary problem (6), (7) can be found in the sériés form 

u(^=±±<Pmi^)Tmn(t) (8)
m=()n=l

where functions 0mn (£, 7) satisfy the homogeneous Helmholtz équation

1 ( f)2 r)2
—1------------------- 1 —— + —— 0 +a>2 0 =0 (9)ï7î 1 7 f' 7 1-ï>-7 -ï7 mn tnn tnn /h ^cosh £-cos r))\dg dr/ J

and boundary condition

<Pm„(^n7) = 0 for 0<7<2^ (10)

In order to dérivé eigenfunctions 0mn (^, 7), the method of séparation of varia

bles will be used. We assume that

^mn0) = Rmqmn)^m (7,qmn) (H)

After the substitution of (11) into équation (9) and séparation of the variables, two 
équations are obtained:
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j2n
^-[fl-2^ncosh2^„=0 (12)

+^-2^008 277]*^= O (13)
dq L J

where a is the séparation constant and co2nn - 2qm/l / h2. Taking into account 

boundary condition (10) and équation (11), we found that qmn are the roots of the 
équation

(14) 

Moreover, we assume that functions ^„(?7,<7m„) are periodic with period yror 2æ. 

This property holds for particular values of séparation constant a, which dépends 
on the values of qmn.

Equations (12) and (13) are well known as the radial Mathieu équation and the 
angular Mathieu équation respectively. The Pairs of the independent solutions of 
these équations are radial and angular Mathieu functions [2]:

D 1e ) í Cem(£,qmn) / \ [ Qmn)
Rm[^^nn =j\o (e V ( T W = 0,1,2,... (15)

Using (11) and introducing functions

me2,n^,q) = cem(d,q) meM(d,q)= sem+1(0,q), m = 0,l,... (16)

Me2,n&q) = Cem{e,q) Me2nM(0,q)= Se^&q), m = 0,l,... (17)

function 0mn (^, 7) can be written in the form

(Šďl) = Mem (<f, qmn ) mem (77, qmn ) (18)

The angular Mathieu functions create the set of the orthogonal system in inter
val [0,2^|, i.e. the following orthogonality condition holds:

J 2,7

— \meln(ri,q)men(ri,q)dq = 8mn (19)
K J 0

where 8mn is the Kronecker delta. This leads to the Statement that eigenfunctions 
^„„(^,77) given by (11) satisfy the condition

\\®J^dn)&kl^dn)dÇdq = n8ink (20)
D
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The orthogonality of the eigenfunctions will be ušed to détermine an équation 
for functions Tmn(t), which occur in sériés (8). First, we substitute function 
U(Ç,T!,t) in form (8) into differential équation (6). Next, using the standard proce
dure and condition (20), the foliowing équation is obtained:

Tmn + c2^,X« = ~pmn (ř) (21)
where

c2 rrpmn (') = — ÍÍ&mn (£??)p (£ri,t)dĘdri (22)
71 D

The solution of équation (21), which satisfies zero initial conditions has the 
form

Tmn (ř) = —— ÍP„m (v)sinc(ûmn (t-v)dv (23)
ca>mn «

If function F(£,T],t) at the right hand side of équation (6) equals [7]

(24) 
h2 (cosh2 Ç — cos2 3)

where j(-) is the Dirac delta function, then the solution to the problem is a time 
dependent Green’s function. Taking into account function (24) in équations (22), 
(23), next using équation (18) and (8) and the properties of the Dirac delta function, 
the Green’s function for the wave équation in elliptic coordinates with a Dirichlet 
boundary condition at the ellipse is obtained:

G(^,7/,t; ^,6», f) =

I °° °° I (25)-- ,2i Z S----- CO)mn (t - f) 
Trc/r (coshX -cos2 3)^^ a>nn

The assumption of function occurring in the right-hand side of équa
tion (6) in the form

h (cosh Ç - cos 6)

leads to a so-called dynamie Green’s function

G(Î,77XX) =

tic h2 (cosh2 Ç - cos2 <?) ,Zo ZÍ ~ ($nn
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Conclusions

The dérivation of the Green’s function of the wave équation in an elliptical 
region with the Dirichlet boundary condition has been presented. In order to solve 
the problem, elliptical coordinates were introduced. The function has the form of 
a double sériés of Mathieu functions, which are eigenfunctions of the Helmholtz 
operator in the considered elliptical region. Although, the solution is obtained for 
the Dirichlet condition at the boundary ellipse, by applying a similar approach, 
a Green’s function satisfying the Neumann boundary condition can be derived. 
Using the Green’s function, the solution to the non-homogenous problem of the 
membrane vibration can be presented in an exact form.
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