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Abstract. The numerical modelling of Steel cast solidification process in sand mould is 
considered. The problem analyzed is described by the system of partial differential équa­
tions supplemented by adéquate boundary and initial conditions. The latent heat appearing 
in the model of a casting sub-domain is treated as directed interval value. The problem 
formulated has been solved by means of interval finite différence method with the approach 
of directed interval arithmetic. In the final part of the paper, results of numerical computa­
tions are shown.

1. Governing équations

Let us consider the solidification process in heterogeneous domain of the casting 
(Q,) and mould (Q,) (see Figure 1).

mould 

casting

Fig. 1. Domain considered

The energy équation describing the casting solidification has the form [1]

3T,(x,î) . ,
XeQ,: ----- = XlV1Tl(x,t) (1)

dt

where CJT) is the directed interval substitute thermal capacity [2], À.j is the 
thermal conductivity, T. X = j.v. y}, t dénoté the température, geometrical Co­
ordinates and time of the casting sub-domain, respectively.
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In the case of Steel cast solidification the following approximation of directed 
interval substitute thermal capacity can be taken into account [2]

(2)

where TL , Ts correspond to the liquidus and solidus températures, Q is the di­
rected interval latent heat, c L, cs are the volumétrie spécifie heats of molten metal 
and solid state, respectively, while cp - 0.5 (cL + cs ).

For example, for cp - 5.3895 , Ts -1470 , TL = 1505 and the interval latent heat 
g = (1885.275, 2083.725), the directed interval substitute thermal capacity for 
T\ e (Ts, Tl} is computed according to the rules of the directed interval arithmetic 
[3, 4] (see Appendix)

- , x Q (1885.275,2083.725)
C, (T) = cP + = 5.3895 + =

Tl~Ts 35 (3)
(5.3895, 5.3895)+ (53.865, 59.535) = (59.2545, 64.9245)

The considered équation (1) is supplemented by the energy équation concerning 
a mould sub-domain Q 2

3T2(x, t)
XeQ2: c2— ----- = À2 V2T2(x, t) (4)

3t

where c2 is the mould volumétrie spécifie heat, À2 is the mould thermal conductiv- 
ity and 7) is the mould température.

The energy équations for both sub-domains must be supplemented by the 
boundary-initial conditions

/ x <)T2 G t)XeT/. q2(x, t) = -À2—- ------= 0
d n

t = o-. Te(x, 0) = Te0(x), <? = 1, 2
(5)

and the continuity condition on the contact surface between the casting and mould

Xe T:
()T.(x. ť) dT2(x, ť)

7. i — À. ,

(6)
Tt(x, ť) = T2(x, t)
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2. Interval finite différence method

The energy équations (1) and (4) for directed interval latent heat can be written 
in the form [1]

The right-hand side of the interval équation (7) can be expressed as follows [1, 5]

XeQ: = V[X.Vf (X, t)] (7)

where
XeQ.: č = Č.(T), X =

7 (8)
X G 2 • ď = C 2 , À, = X 2

(9)

Using the mean quotient définition, we can write

while

(10)

h h
~ 2X1;

h h
~2\. 2Z2 dl)

are the thermal résistances from the node ‘z/ to the nodes ‘1’ and ‘2’, respectively, 
h is the grid step in the direction of x axis (see Figure 2).

Fig. 2. 5-point star
X
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Analogie ally

(12)

while

R h h
—------------- 1-----------

2z.; ■
h h

—------------- 1------------
2À1; 2à,4

(13)

are the thermal résistances from the node ‘z j’ to the nodes ‘3’ and ‘4’, respective - 
ly, k is the grid step in the direction of y axis.

Finally, for the time t * ', the right-hand side of the interval équation (7) can be 
written as

v[xvf (x, r+)f;1)+
^01

—((?”, r+)2/-1)+—((r-, T+)f~'\+
7?O2 Rq3 ' ‘7 '

R-04-

(14)

where 1 are the directed interval températures in the central node at the begin- 
ning of the time interval At, <b (e = 1,2,3,4) are called the shape functions and 
are defined as follows

<b =<b = — <b = <b =-l
1 2 h 3 4 k (15)

The left-hand side of the energy équation will be substituted by a differential 
quotient

a/r-, r) Y-1 , (r-,T+)f ~{T-,T+)f

3t ' '*/ At
A./

where are the directed interval températures in the central node at the end of 
the considered time interval Ai.

For example, for e (Ts, TL), Ç,',1 = (59.2545. 64.9245) (see eq.3)
and =(1499.48,1501.23) the sign variables are of the form
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') = +, ct(Tl(/) = + , so the product of C^-1 and is computed as follows 
(see Appendix)

— 1 y — i j ) Ç A i j• )  

{c,,/+ • T{,/+, c{ ,;■!}, ;)=(ą,/ • T{, c{, ; • ,;)= (i7)

(59.2545 • 1499.48, 64.9245 • 1501.23) = (88851, 97466)

So, one obtains the following formula

where e dénotés the main direction (e = 1,2, 3, 4).
At last the approximate form of the energy équation is of the following form

{t-, =(a0, aj) {t-, T+y~i+x{A-, a;)((t-, Tyy ~(t-, Tyy\
<?=!

where
<p At - J-, -

Ae = 4 -1 - Z 4 (20)
R^{cAc+)iJ

All this interval values must be calculated according to the rules of the 
directed interval arithmetic [3, 4].

It should be pointed out that for the nodes in the vicinity of the boundary 
T the approximation of operator V(XVf) is formally the same.

3. Numerical examples

As an example, the 2D casting-mould system shown in Figure 3 is considered.
The following input data hâve been introduced: liquidus température 

Tl = 1505°C, solidus température Ts = 1470°C, pouring température Tl0 = 1550°C, 
initial mould température T20 = 20°C, A, = 30 W/mK, cL = 5.904 MJ/m3K, 
cs = 4.875 MJ/m3K, Q = (1885.275, 2083.725) MJ/m3, X2= 1 W/mK, c2 = 1.75 
MJ/m3K.

The problem considered has been solved using the explicit scheme of interval 
FDM. The regulär mesh created by 30x30 nodes with constant step h = 0.002 m 
has been introduced, time step At = 0.1 s.

Figures 4 and 5 present the cooling curves at the nodes from the casting sub- 
domain. The dashed and solid lines denote the lower and the upper bounds of the
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température intervals, respectively. We can see that the température intervals are 
narrow and their width does not increase in the time considered.

Fig. 3. Casting-mould system
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Fig. 5. Cooling curves at nodes 3 and 4 trom the casting
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Figure 6 illustrâtes the heating curves at the nodes from the mould sub-domain. 
The température intervals’ width is very small.

Conclusions

In this paper the solidification process of the casting proceeding in the mould is 
analysed. The latent heat appearing in the approximation of the substitute thermal 
capacity has been assumed as interval value. The problem discussed has been 
solved using the interval finite différence method.

Directed interval arithmetic allows one to obtain narrow and convergent tem­
pérature intervals, while classical interval arithmetic gives large and divergent 
température intervals [5, 6].
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APPENDIX

Directed interval arithmetic

Let us consider a directed interval à which can be defined as a set D of ail di­
rected pairs of real numbers defined as follows [3, 4, 7]

â = (a ,a+):=\âeD\a , a+ e R (21)

where a and a dénoté the beginning and the end of the interval, respectively.
The left or the right endpoint of the interval â can be denoted as as, se {+, -}, 
where s is a binary variable. This variable can be expressed as a product of two 
binary variables and is defined as

(22)

An interval is called proper if a < a+, improper if a >a+ and degenerate if 
« = «1. The set of ail directed interval numbers can be written as D = P u I, 
where P dénotés a set of ail directed proper intervals and I dénotés a set of ail 
improper intervals.

Additionally a subset Z = Z(, uZ( e O should be defined, where

Zp={àeP|a <0<n+] ZI = {àe l\a+ < 0 < a ] (23)

For directed interval numbers two binary variables are defined. The first of them is 
the direction variable and the other is the sign variable

, +, if a <a+
<a) = \ - +, ij a > a

The sum of two directed 
written as

, +, if a > 0, a > 0
rr(a)=<

[—, if a < 0, a+ < 0
âe D \ Z (24)

intervals â = (a , and b=(b ,b+) can be

â + b=(a + b ,a++b+), â,beD (25)

The différence is of the form

à — b=(a —b+,a+—b^, â,beD (26)

The product of the directed intervals is described by the formula
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(a.-a(i,y ■ b-^à>, , à, b e D\Z

■ b-a{ä\ aaWlCh'1 -ba(ä)}, âeD\Z,be Z

(a^-baChWl\ ■ b^wä)y aeZ,beD\Z

mi n(ö ■ /?1. ö1 ■ /? j. max[c/ ■ /? . c/1 ■ /?1 . ä,beZp 

/max(ö • b~, ö 1 ■/? J. min (ö ■//. ö 1 ■/? A. a,beZp

(27)

0, f i/E Zp, /? EE Zj O EE Zj, /? EE Zp j

The quotient of two directed intervals can be written as

ä ! b =
(a^ lba(à\ /b-^,

/ b-a(bMä) I

ä,be D\Z

äe Z, be D\Z
(28)

In the directed interval arithmetic two extra operators are defined, inversion of 
summation

—Dä = (—a ,—a+j, äeD

and inversion of multiplication

1 lD à = ^1 ! a~, 1 ! a+^, äeD\Z

So, two additional mathematical operations can be defined as follows 

ä—Db=(cT—b~,a+—b+}, ä,beD

and

ä, be D\Z

àe Z, be D\Z

(29)

(30)

(31)

(32)

Now, it is possible to obtain the number zero by subtraction of two identical inter­
vals ä -D ä = 0 and the number one as the resuit of the division ä ID ä = 1, which 
was impossible when applying classical interval arithmetic [8].


