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In the case of steel cast solidification the following approximation of directed
interval substitute thermal capacity can be taken into account [2]

<, T >T,
, 0
C(T)=4c,+ T, <7 <7, (2)
T, -T,
Cy T, <7

where T . Ty correspond to the liquidus and solidus temperatures, Q is the di-
rected interval latent heat, ¢, , ¢ are the volumetric specific heats of molten metal
and solid state. respectively, while ¢, =0.5(¢, +¢.).

For cxample, for ¢, =5.3895, T, =1470, T, =1505 and the interval latent heat
0 =<1885,275. 2083.725} . the directed interval substitute thermal capacity for
T e <‘1;.. Y',A) is computed according to the rules of the directed interval arithmetic
[3. 4] (scc Appendix)

e

{1885.275, 2083.725)
3895+

T 35 (3)
5.3895, 5.3895) +(53.865. 59.535)=(59.2545, 64.9245
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The considered equation (1) is supplemented by the energy equation concerning
a mould sub-domain €,
. ar,(x.0) . .
XeQ,: o¢,———=A,V T, (x,10) {4)
< < al < <
where ¢, is the mould volumetric specific heat, &, is the mould thermal conductiv-
ity and 7, is the mould temperature.
The cenergy cquations {or both sub-domains must be supplemented by the
boundary-initial conditions

aT, (. 1)

— = =0 .
dn (5)

1=0: Tix, 0)=7,(x). e=12

XeT.: qg.(x 6)=—h,

and the continuity condition on the contact surface between the casting and mould
[ ; aT(x. 1y  aT.(x 1)
— == A,
oan T on (6)
T(x, N=T,(x, 1)
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Analogically
[i)ba<T’ T+>J =l<T7’ T+>3_<T7’ T+>i./’ +1<T7’ T+>i./’_<T7’ T+>4 (12)
dy dy .k Ry, k Ry,
¥
while
i ! i i
Rm‘:?:)-i-Q;} Rmzz}:u"‘i (13)

are the thermal resistances from the node ‘i j° to the nodes *3" and *4°, respective-
ly, kis the grid step in the direction of ¥ axis.

Finally, for the time ¢’ ', the right-hand side of the interval equation (7) can be
written as

VAVE (x| =2 ((r Ty )
(D.:

—({rm. Ty (T )+—((T Ty Ty )+ (14)

n: "
Oefir ) )

" are the dirccted interval temperatures in the central node at the begin-

where 7'”

ning of the time interval A7, ®, (¢=1,2,3.4) arc called the shape lunctions and
arc defined as (ollows

The left-hand side of the energy equation will be substituted by a differential
quoticnlt

\ T . WA (T ’-[.'>:.i_(-[‘ "[IX."[ ..
[<(~ L )T =<(- L )}jl 'A’ : (16)

S

where Tv’; arc the directed interval temperatures in the central node at the end of

the considered time interval As.
For example, for 7 e (TS, T,_), 6‘1;’;’ '=(59.2545, 64.9245) (see eq.3)
and ’f‘l-j'}. ={1499.48,1501.23}  thc sign variables arc of the form
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o(C,/ Y=+ o(T},) =+, so the product of C/ and 7/,
(sce Appendix)

= g o T g —aC @) e ®C )
Cu;'il.:;‘—<cl.‘j '!lif ‘-("li;’ 'Ilij >_

is computed as follows

C'l,.,."-]!'ll.,.*):((‘.“,_ Lys Cl;, |,,+): (17)
( 2545-1499.48. 64.9245-1501.23) = (88851, 97466)

So, onc obtains the (ollowing formula

Fof e (F T

4
~f-l "] ij _ Ly
C;. = E
Y At R,

e=1 e

e

(18)

where ¢ denotes the main direction (e =1, 2, 3, 4).
At last the approximate form of the energy equation is of the following form

=AY S ), ) o
where

« D Al - L - .
A= Ay=1-Y A, (20)
=1f -4 -
R, <(. N ).g,' o=l
All this interval valucs must be calculated according to the rules ol the
directed interval arithmetic |3, 4.
It should be pointed out that {or the nodes in the vicinity ol the boundary
I' the approximation of operator V ().V’l’). ~is formally the same.
ij

3. Numerical examples

As an cxample, the 2D casting-mould system shown in Figure 3 is considered.

The following input data have been introduced: liquidus temperature
T; = 1505°C, solidus temperature 75 = 1470°C, pouring temperature 7, = ]')')()"C
initial mould temperature 7,, = 20°C. A, = 30 W/mK, ¢, = 5904 MJ/m'K,
¢y =4.875 MK, Q={(1885.275, 2083.725) MJ/m’, ,=1 W/nK, ¢, = L.75
MJmK.

The problem considered has been solved using the explicit scheme of interval
FDM. The regular mesh created by 30x30 nodes with constant step h = 0.002 m
has been introduced, time step At = 0.1 s.

Figurcs 4 and 5 present the cooling curves at the nodes from the casting sub-
domain. The dashed and solid lines denote the lower and the upper bounds of the
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Figure 6 illustrates the heating curves at the nodes from the mould sub-domain.
The temperature intervals’ width 1s very small.

1000
T[°C]
800

node 6

600

400

node 5

200

0

0 5 10 15 fs] 20

Fig. 6. Heating curves at nodes from the mould

Conclusions

In this paper the solidification process ol the casting proceeding in the mould is
analysed. The latent heat appearing in the approximation of the substitute thermal
capacity has been assumed as interval value. The problem discussed has been
solved using the interval (inite dilference method.

Directed interval arithmetic allows one to obtain narrow and convergent tem-
perature intervals, while classical interval arithmetic gives large and divergent
lemperature intervals [5, 6].
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APPENDIX

Directed interval arithmetic

Let us consider a directed interval ¢ which can be defined as a set P of all di-
rected pairs ol real numbers defined as lollows [3, 4, 7]

H:(a ,a')::{de D|a .a'eR} (21)

where ¢« and ¢~ denote the beginning and the end of the interval, respectively.
The lett or the right endpoint of the interval 4 can be denoted as «, s€ {+, —} ,
where 5 is a binary variable. This variable can be expressed as a product of two
binary variables and is defined as

dt=——=+ to=—+=— (22)

An interval is called proper if «” <«*, improper if «” >a* and degenerate if
¢ =a'. The set of all directed interval numbers can be written as D=P U [T,
where P denotes  a set of all directed proper intervals and 7 denotes a set of all
improper intervals.

Additionally a subsct Z =Z, W Z, € D should be defined, where

Z,,={¢7€P|u S(]Sa'} Z,={&el|a'$0£a } (23)

For directed interval numbers two binary variables are defined. The first of them is
the direction variable and the other is the sign variable

. If <a' . . if 0.a' >( .
T(ﬁ)= + if ¢ Za 0_((_{}= + i a »>0.a" > )’ GeD\Z (24)
- if @ >d” o= i @ <04 <0

The sum of two dirceted intervals a=<a ,a’) and I;=<b ,b') can he

wrillen as

a+b={a"+b". " +b*), da.beD (25)
The difference is of the form

a-b={u =b'.a'=b ), abeD (26)

The product of the directed intervals is described by the formula
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(“ 1) b Foa) “0‘(!;| 'bm‘“)._ l'_l., I;E D\Z
<“ola|rlh b ala ot:?irl!;_l_boﬂ&)), HED\ZJ;GZ
) ((4’ G bmb)rul aol.f;_\'bmﬂ_mm)‘- ﬁEZ, {;ED\Z
a-b= . (27)
<mm b ) max ({f b, oat bt )) a.beZ,
<max a‘-b'),mjn[a b atb )) i.beZ,
(ieZp.bez,}ulacZ, beZ,)
The quotient of two directed intervals can be writlen as
N (a-‘“"‘* 1670 a5, i.be D\Z
alb= (28)

—mh —b g h —mhTii -~ r
((i{ 1 ;/b e JIn:’ an’(lJ/b mihy (1;>’ (YEZ,bGD\Z

In the directed interval arithmetic two extra operators are defined, inversion of
summation

—D&=<—u',—a*), ae D (29)
and inversion of multiplication
1ya=(11a 11d"). aeD\Z (30
So, two additional mathematical operations can be defined as follows
&—,,I;=<a -b ,a'—b'), a.heD (31
and

) [((l—oﬂ;l /b-cr”.“, {IU(J.JI /IJﬁll§)>’ ("" };ED\Z
il b= (32)

[(a TP a5, GeZ.be D\Z

Now, it is possible to obtain the number zero by subtraction of two identical inter-
vals @ —, =0 and the number one as the result of the division @/, é=1. which
was impossible when applying classical interval arithmetic [8].



