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Abstract. The site percolation, where the long-range Connectivity is the result of the occu- 
pancy probability defined on a site, is studied on the LxL square lattice. Method of deter- 
mining of the location of the percolation pseudo-threshold pc(L) is proposed and the influ
ence of a barrier on the percolation pseudo-threshold is analysed.

Introduction

The basie mathematical model of Connectivity is called percolation theory. It 
was proposed by Broadbent and Hammersley [1] to study the flow of fluid in 
a porous medium with randomly blocked channels. Since that time percolation 
techniques hâve become a corner stone of the theory of disordered media [2].

Fig. 1. The square grid on the LxL system. The vertical thick line dénotés a barrier D, 
whereas dots are occupied sites. The thin lines indicate the spanning cluster created by 

randomly chosen sites
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Let us take a grid and occupy sites on this grid with a probability p. For small 
values p one can see mostly isolated occupied sites with occasional small groups of 
them. As the occupancy probability increases, groups grow forming some clusters. 
Of course in the second limit, when p = 1, every site is occupied. Thus, there exists 
such a value of p for which one of the clusters starts to connect opposite edges of 
the square, which in practice means a maximal cluster size at a given square LxL. 
This is called the spanning cluster (or the infinite cluster) as it spans the entire lat- 
tice (arbitrarily, we consider only the clusters connecting the left and right edges). 
This particular value of the occupancy probability, well defined for is known 
as the percolation threshold pc. So, the long-range Connectivity is the resuit of the 
occupancy probability defined on a site. It can be described in ternis of the proba
bility of appearance of spanning cluster P as a function of p. The exact value of the 
threshold dépends on the kind of grid considered and strongly on the dimensionali- 
ty of the grid. In our case, for the two-dimensional square lattice, the percolation 
threshold has been designated numerically aspc= 0.59274621... [2].

Not all occupied sites are in the spanning cluster. That is why we can define an- 
other probability P\p) saying if an occupied site belongs to the spanning cluster. 
Below the percolation threshold that clearly must be zero. The function P\p) is 
particularly important when dealing with critical phenomena for percolative Sys
tems, but we do not treat this subject in the present study.

Fig. 2. The probability of appearance of spanning cluster P as a function of occupancy 
probability p for varions system sizes L and barrier lengths D. The inset: the maxima of 

curves dénoté the positions of the percolation pseudo-threshold pc(L)
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The main aim of this paper is to answer the question of how the presence of 
a barrier in the finite system affects the behavior of the probability functions de- 
fined above. For simplicity, the barrier, which can be interpreted as a selected 
group of sites for which p = 0, has been chosen as Symmetrie with respect to the 
system edges (see Fig. 1). It is worth mentioning that the preliminary results has 
been presented in the reference [3].

1. Model

At finite Systems there is no longer a sharp transition at pc, it becomes smeared 
out to some extent of p around pc. Therefore the percolation threshold defined by 
the singularity of P(p) (or PXp)) at pc is replaced by the percolation pseudo- 
threshold p£L). As one increases the system size, the smearing gets less (see in the 
main body of the figure 2 at D = 0). To déterminé the location of the percolation 
pseudo-threshold p^L) we use the inflexion point of curve (or the équivalent posi
tion of the maximum of its first derivative). The same stratégy for determining the 
p'c(L) can be ušed to the P\p) probability (see Fig. 3). Although both quantities 
pc(L) and p'c(L) vary for finite L, they tend to the same pc when L—>oo.

Fig. 3. The fraction of occupied sites belonging to the spanning cluster for varions system 
sizes L and barrier lengths D. The inset: the maxima of curves dénoté the positions of the 

percolation pseudo-threshold p 'C(L)

The presence of a vertical barrier reduces the number of paths along which the 
cluster may extend between the edges. The only way to compensate the lack of 
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some connections is to increase the probability p. Therefore we expect that for 
a non-vanishing D the percolation pseudo-threshold is shifted towards higher val
ues of p. Our results presented in Figures 2 and 3, where the value of D has been 
chosen to be high enough to make significant a différence between the curves with 
zero and nonzero D, confirm this conjecture. It is worth noticing that this effect is 
much more pronounced for the P(p) probability. In addition, in Figure 4, curves for 
different values of D at fixed L = 101 hâve been collected. It may be noted that for 
extremely large D shape of the function P and its derivative, changes dramatically.

Fig. 4. The probability of appearance of spanning cluster P for L = 101 at varions barrier 
lengths D. The inset présents their first derivative. Its maxima localize the percolation 

pseudo-threshold at finite Systems

In order to combine the results for different values of L and D, it seems reason- 
able to confront the results obtained at a constant ratio of DIL. Both values are 
lengths characterizing the system, but one can expect that their ratio plays the role 
of an universal scaling parameter [4]. Thus, we are able to present a common plot 
for the percolation pseudo-threshold dependence on the ratio DIL.

The plots in Figure 5 show that the presence of a barrier affects the location of 
the both pseudo-thresholds in a different way. The déviation of the value of p^L) 
for small D/L is relatively small, but it increases dramatically if the D/L is close to 
one. The position of p'AL) varies almost linearly with the change of D/L, but is 
clearly lower in the whole range of D/L, compared with the previous case. It can be 
assumed that in the first case a very wide barrier makes practically impossible to 
create a cluster - only a few sites between the barrier and the edge are crucial. That 
is why so large p is necessary. In the second case, we consider only those situa
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tions, where the spanning cluster has already been formed and we inspect how 
large is the fraction of occupied sites belonging to it.

Fig. 5. The lines represent the percolation pseudo-thresholds for the square cluster LxL 
with the symmetrically located barrier with the height D parallel to one pair of edges

2. Discussion

We hâve confirmed the significant influence of a barrier on the localization of 
the percolation pseudo-threshold. Moreover, we showed that for different ways of 
determining the percolation pseudo-threshold in finite Systems, the effect is di
verse. To investigate thoroughly these behaviors further calculations are necessary 
for larger Systems.
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