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Abstract. Two one-term nonlinear fractional differential equations with the left- or right-
sided Caputo derivative are discussed. The existence and uniquencess of solutions. generated
by the respective stationary function, is proved in the space of continuously differentiable
function. The proof, based on the Banach theorem, includes the extension of the Bielecki
method of equivalent norms.

Introduction

Non-integer order operators are now applied in mathematical modelling in
many arcas of mechanics, physics, control theory, engincering, bioengincering,
economics and chemistry (see monographs |1-8] and the references therein). The
theory of such operators, [ractional calculus, describes derivatives and integrals of
non-integer order as well as their properties. In applications of fractional calculus,
a ncw class of integral-dif{crential equations called (ractional diflcrential equations
(FDE), has been developed. The methads ol solving  FDE extend  dilterential
cquations theory and include lixed point theorems, integral transtorm methods as
well as operational methods based on properties of new classes of special functions
[6-16]. In the paper we shall consider two one-term nonlinear [ractional differential
cquations. The differential part contains the Caputo lelt- or right-sided derivative.
We reformulate the equations in terms of a mapping determined on a space of con-
tinuously differentiable {unctions. In proaol ol the existence ol a solution, we apply
the fixed point theorem and an extended version of the Bielecki method of equiva-
lent norms [17]. The obtained result is global in the sensc that the construction is
valid for an arbitrary finite interval.

The paper is divided into two main parts. In Section | we gather all the neces-
sary definitions and properties of the operators [rom [ractional calculus. There we
also introduce a family of norms indexed by a non-negative real parameter and
a non-negative vector function. Then we prove their equivalence in the space of
continuously differentiable functions. The existence-uniqueness results are includ-
¢d in Section 2, where we obtain solutions for one-term nonlincar FDE containing
the left- or the right-sided Caputo derivative. The paper is closed by a shart discus-
sion of possible extension of the presented method of proot.


mailto:klimek@im.pcz.pl
mailto:maria.lupa@im.pcz.pl

104 M. Khimek. M. Lupa

1. Preliminaries

We recall here some of the definitions of non-integer order operators and their
properties. We start with integrals defined for functions determined on finite inter-
val |«.b| (compare monographs |8].[20]).

Definition 1.1
Riemann-Liouville integrals of order . denoted as I f(r}. I f(r}, are given
by the (ollowing formulas for Re{a)>0:
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The first of the above integrals is called the left-sided Riemann-Liouville inte-
gral and the next, the right-sided integral respectively. Applying delined fractional
integrals, we can construct fractional derivatives. In our paper we shall consider
one-term nonlincar FDE with Caputo derivatives given in the definition below.
Definition 1.2
Capulo derivatives of order a, denoted as “D% and "D lor Re(e)e (n—1.n),
look as follows:

‘D, .I'(!)=(i] L7fy r>a (3)
dt )

¢ [2 JS d ! n—ar g

Dy f (f)=(_z] 175 F () t<h (4)

Similar to the integrals defined in (1), (2) we have the left-sided derivative (3)
and the right-sided derivative (4).

A detailed review of the propertics and applications ol non-integer order opera-
tors can be found in monographs |4-9, 20|. We quote here two composition rules
for integrals and Caputo derivatives. Further, we shall apply them in the transfor-
mation of (ractional diffcrential equations and in the investigation of their solu-
tions.

Property 1.3
The following composition rules hold for any f€|a,b]:

L‘D(Z Ia‘ f(f):f[f) (5)

o+t -
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DI f(ny=f), (6)

provided function £ 1s continuous t.c. f € Cla,b]

Property 1.4
‘The following composition rules hold for any 7€ |¢.b| and Re(f) > Re(a):

DEIP f=15 F1) o
DL FO=1Lf(1), (8)

provided (unction f is continuous i.c. f e Cla,b].

Definition 1.5
Function space C"[a.b] is a space of m-times continuously differentiable func-
tions determined by the condition

C"la.b)={xe Cabl: "€ Clabl).

The above space, endowed with a metric induced by the lollowing norn:

o i
Nl A .
AT =3 sup |17 ¢0) )
.,-_[.IF.It/.I)l

is a metric and complete space.
Norm (9), standard for the C"[a.b] space. can be modified so as to be useful in
the proof of existence-uniquencss of solutions (or the discussed FDE.
Definition 1.6

We introduce the following new norm on (unction space C™[a.h]|

th

¢ ; —AG, 1) :

71 =3 sup |7 ofe ™ (10
=0 1o |

where G are arbitrary continuous, non-ncgative lunctions and x is a positive real

numbcr.

Let us note that for x = 0 we recover norm (9) and the corresponding induced
metric.

It is casy to check that {or any value of parameters &, x, € R. U {0} norms

(10) arc cquivalent to cach other on the C™ [« b] space. This fact also implics their

. ™
equivalence to the standard norm || .
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Property 1.7
Norms”-"fn and ||||f:l arc  equivalent on space  ("la.b] lor any
1 32

K43 € R_ {0} and functions G; obeying the conditions of Definition 1.6.
Proof: lct us assume &, < &5. Then the lollowing inequalitics are valid for expo-
nential coefficients

VAT Ko, (T

e =000 ..m

i
—.&‘,G N

Sup :
=0 clab]

”'(r)‘ Sy sup‘f‘“(t)’
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As a conscquence we oblain the relations for any function fe C™|a.b] and

Ky <A
171
o 2
Duc o the propertics of the exponential lunction we also have
ct i S 15 G,
. I —A‘, A N (&=’ e L} iji =&~ 401
“j"h sup‘f (I)‘ = Z sup ¢ %up‘f (z‘)}
=0 1 e 2| = ]| tEleb|

'ZB sup‘f"'(t)‘ Rl e p sup‘f"'(t)‘ =i 40 B"f"

=0 1] a.fr| = t=)ub|
where we denoted constants B,. and B as

1K MG N
B;=supe " B=mux{B,....B,}.
1€fa.b]

From our calculations, it follows that for any function  fe C"[a.b]. its norms
fulfill the incqualitics:

Bfls, 201 =01

which means norms ||||Z and ||||: are equivalent on function space
] 5

C"eb].
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2. Main results
In this section we shall solve one-term nonlinear FDE in the form of
DY Fy=" f(1) (11)
Dy f) ="t (1) (12)
The lirst ol the above equations contains the lelt-sided Caputo derivative, the se-

cond one the right-sided Caputo derivative. We assume that in both cases order a is
a real number and equations are determined on arbitrary finite interval |a.b).

Let us observe that equations (11), (12) can be reformulated as the following
cquivalent fractional integral equations

f@y=I7Ya. f) +o,0) (13)

fO=IYE f) +@,0 (14)

where functions ¢, and ¢, are arbitrary stationary functions of the left- and right-

-sided Caputo derivative. In both cases these functions are polynomials of degree
determined by the order of the respective derivative.

Further, the obtained fractional integral equation (13) is an example of a more gen-
cral integral equation:

FO= [ Ky ¥, £ (5)ds +0,0) (15)

with the kernel given in our case as

(1 — )"
Kyr.9)=1 T(e) ‘ (16)
10 §>1.

We use kernel K, to construct a mapping on the C* “la.b] space:

I3
Tv(t) = .[Ku(r.s)‘ms. Vis)ds +,(0). (17)

Now, wc arc able 1o rewrile equations (11), (13, (15) as the lollowing fixed point
condition

fy=Tf{1)
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determined on the space ol n—2-1imes continuously dillerentiable [unctions.
In what lollows we shall also apply kernels in the form ol

ey -l
. u Isgf
K(t.s)=9 Tle-j) (18)
0 §>1.

Let us note that kernels (16), (18) are non-negative, continuous l[unctions on sct
[e,b]x[ee.h) whene 21 and j=01..n-2.

The procedure of transforming an FDE of type (11) into the above fixed point
condition with mapping (17) was discussed carlier in the fractional calculus. Qur
aim is (o present an clficient method of proof that it is contractive in the chosen
function space. In the lemma below we extend the Bielecki method of equivalent
norms |17] and apply the family of norms indexed by a non-negative scalar param-
ctler and non-negative vector (unction, defined in (10).

Lemma 2.1

Mapping 7., defined in formula (16) is contractive on the (C"|a.b], ||||i)
space when x> ZM It and

=0

G_I. (I)=j.Kj () L(u)du (19

]

K_I.(u)= sup Kj(t,u).

1efub]

Proof: let us denote

"\'"(: — gupl |‘\,(,)| . (,--G..u)

1|l

and in addition constants

—alr Al dn)

M, =1 M. =supe j=lL..,n=2.  (20)

I3 Iu])]

The distance between images 7x and 7y obeys the following inequalities for any
pair of functions x, ve ("7 |a.h]

-1 = 3 sup N K G s, s — [ K G5, v <

=) C ex s
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Summarizing, we observe that for any pair of functions x.ve C" “[a.b], the
distance between their images is smaller than the initial distance, provided we

=2
o
. ||A ) space with &> ZM

J=U

consider mapping 7 acting on the (C*™

=2

ZM )

_ ("f'?
(]/(' "\ - ‘\;" &

||I\—

where M are givenin (20 for j=0,...n-2.

The proved property of mapping 7 lcads to the lollowing proposition describing the
solution of a one-term FDE with the left-sided Caputo derivative.

Proposition 2.2
I zz1, @ae (n—1.1) and function ¥ tulfills the following Lipschitz condition

I‘P(r. x(1))— Wi, _\-(r))| < L(r)|.r(r) - ‘\'(t)| tela.b) V. ve Cla.h|
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then each stationary function @, of the left-sided Caputo derivative, generates

a unique C” *[a.b] solution of fractional differential equation
DEf="0 f)
"This solution 1s a limit of iterations of mapping 7 defined below on the C” “[a.b]
space:
Tv(t) =1" Y. vy +e,1) ve O *la.b]

f=lim,_, (TYy

where € C"*a.b] arbitrary.

Proof: we start the prool by transforming cquation (11) into an equivalent frac-
tional integral equation. Thanks to the composition rule given in Property 1.3 we
can rewrite equation ( L1) as follows

FO=I5Ya fu)+e.)

where stationary {unction ¢, of the left-sided Caputo derivative [ullills the condi-
Lion:

‘D@, (1) =0

ol

As is known {rom [ractional calculus, the class of the stationary functions con-
sidered as a subclass of continuous (unctions contains only polynomials ol degree
dependent on the order of derivative. When we assume a'e (n—1.#). then each ¢,
1 a polynomial of degree #-1 with arbitrary cocllicicnts.

lence, we can reformulate FDE (11) and the corresponding [ractional integral
cquation (13) as the following (ixed point condition:

F)=TF () t€ [a,b] (1)
where mapping 7 is generated by @, and delined as follows for any given
ve " la.b)

Tv() =17 P 3(0) +0,()
[n the next step we apply Property 1.4 and note

(Te(e)' =1 "W, v() + @t (1) j=l...n=2

=
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where [ractional integrals on the right-hand side are determined by the
kernels given in (18)

(Te(e ) = J"K_,.(r, MW (s, v(s)ds + @' (1) j=l..n-2

Q

As fractional integrals are bounded in the space of functions continuous in in-
terval [a,b] (compare Lemma 2.8 in [8]), we see that mapping T translorms func-

tions from the C"“[a.b] space into images belonging to the same function space

T:C" *la.b] > C" b

Applying Lemma 2.1 we observe that the above mapping is contractive on the
(C"*[a,bl - ||i) space, provided x is laree enough. Therefore function
fec” la.bl. obeying fixed point condition (21), exists. This function is
a unique solution to equation (11) in this space, generated by ¢, . In addition, the

Banach theorem allows us to construct this unique solution as a limit of iterations
of mapping 7.

Let us note that an analogous cxistence-uniquencss result can be proved for
cquation (12) with the right-sided Caputo derivative. As we know [20], the left-
and right-sided derivatives on  {inite interval [«.#]are connected by the action ol
reflection operator Q:

"D f(1)=Q"D,0f (1)
Qf ()= fla+b—1).

Thus, we can rewrite cquation (12) as an FDE with the lefi-sided Caputo deriva-
tive. Its solution exists due to Proposition 2.2 and is generated by the respective
polynomial Qg,.

Proposition 2.3
Il z1, ae (n—1,1) and function ¥ (ul(ills the following Lipschitz condition

|\P(74.\'(t)) - P, _\-(r))| < L(r)|.1'(t) - ‘\.-(,)| teab| Yy, ve Cla.b),

then each stationary function @, of the right-sided Caputo derivative, generates

a unique C" *[a.b] solution of fractional differential equation

‘DEfiny=Yi. fie)).
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"This solution 1s a limit of iterations of mapping 7 defined below on the C” la.b]

space:
Ty(t) = IS Y. ya) +@,() ve C"[a.b]
f=lim_ (T

where we C" *a.b] arbitrary.

3. Final remarks

Two types of nonlinear one-term FDE with Caputo derivatives were discussed
and solved globally in an arbitrary {inite interval. We derived their solution in the
class of continuously differentiable functions. As a main tool of proof we applied
the extended version of the Bielecki method and explicitly constructed solutions
gencraled by stationary {unctions of the Caputo derivative.

Let us note that the scaling ol norms using exponential functions, as in formula
(10), restricts our results 1o equations ol fractional order & = 1. The obtained solu-

- -y 2 N . - -
Lions belong o the €7 “la.f]| space when g€ (n—1n). In lurther investigations
we shall also consider case O<y¢</ and in general for e (1—1,1) solutions in
the corresponding C"'ab) space. To this aim we propose (o apply scaling via the
Mittag-Leffler function which is a generalization ol the exponential function:

- n-1 I .('i’(.f)
D e L
. -0 refud] E, —j.l ( K{t - ‘l)a ! )

- (o= j bk

4 . K (—ay"™

Ly AU =) )= )
i ;,r((a—ﬂ“l)
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