
Scientific Research of the Institute of Mathematics and Computer Science

ON DIFFERENTIABLE SOLUTIONS FOR ONE-TERM 
NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

Małgorzata Klimek, Maria Lupa

Institute of Mathematics, Częstochowa University of Technology, Poland 
klimek@im.pcz.pl, maria.lupa@im.pcz.pl

Abstract. Two one-term nonlinear fractional differential équations with the left- or right- 
sided Caputo derivative are discussed. The existence and uniqueness of solutions, generated 
by the respective stationary function, is proved in the space of continuously differentiable 
function. The proof, based on the Banach theorem, includes the extension of the Bielecki 
method of équivalent norms.

Introduction

Non-integer order operators are now applied in mathematical modelling in 
many areas of mechanics, physics, control theory, engineering, bioengineering, 
économies and chemistry (see monographs [1-8] and the references therein). The 
theory of such operators, fractional calculas, describes derivatives and intégrais of 
non-integer order as well as their properties. In applications of fractional calculus, 
a new dass of integral-differential équations called fractional differential équations 
(FDE), has been developed. The methods of solving FDE extend differential 
équations theory and include fixed point theorems, integral transform methods as 
well as operational methods based on properties of new classes of special functions 
[6-16]. In the páper we shall consider two one-term nonlinear fractional differential 
équations. The differential part contains the Caputo left- or right-sided derivative. 
We reformulate the équations in terms of a mapping determined on a space of con
tinuously differentiable functions. In proof of the existence of a solution, we apply 
the fixed point theorem and an extended version of the Bielecki method of équiva
lent norms [17]. The obtained resuit is global in the sense that the construction is 
valid for an arbitrary finite interval.

The páper is divided into two main parts. In Section 1 we gather ail the neces- 
sary définitions and properties of the operators frorn fractional calculus. There we 
also introduce a family of norms indexed by a non-negative real parameter and 
a non-negative vector function. Then we prove their équivalence in the space of 
continuously differentiable functions. The existence-uniqueness results are includ- 
ed in Section 2, where we obtain solutions for one-term nonlinear FDE containing 
the left- or the right-sided Caputo derivative. The páper is closed by a short discus
sion of possible extension of the presented method of proof.
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1. Preliminaries

We recall here some of the définitions of non-integer order operators and their 
properties. We start with intégrais defined for functions determined on finite inter
val [a,b] (compare monographs [8],[20]).

Definition 1.1
Riemann-Liouville intégrais of order a, denoted as , are given
by the following formulas for Re(rz) > 0 :

C/(0 = 1 f f(u)du 
r(a)J (i-n)1-« t > a (1)

1 f f(u)du
r(a) J (w-t)1"“

t < b . (2)

The first of the above intégrais is called the left-sided Riemann-Liouville inte
gral and the next, the right-sided integral respectively. Applying defined fractional 
intégrais, we can construct fractional derivatives. In our paper we shall consider 
one-term nonlinear FDE with Caputo derivatives given in the définition below.

Definition 1.2
Caputo derivatives of order ot, denoted as c D®+ and 'Dif for Re(«)e (n-l,n), 
look as follows:

CC+/(Í) = W t>a (3)
\dt )

c D^_f = l™f(t) t<b (4)
\ dt )

Similar to the intégrais defined in (1), (2) we have the left-sided derivative (3) 
and the right-sided derivative (4).

A detailed review of the properties and applications of non-integer order opera
tors can be found in monographs [4-9, 20]. We quote here two composition rules 
for intégrais and Caputo derivatives. Fürther, we shall apply them in the transfor
mation of fractional differential équations and in the investigation of their solu
tions.

Property 1.3
The following composition rules hołd for any t e [a,b] :

cDaa+Cf(t)-f(t) (5)
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(6)

provided function/ is continuons i.e. f e C[a,b]

Property 1.4
The following composition rules hold for any t e [a, b] and Re(/?) > Re(ct):

cD^+f(t) = I^af(t) (7)

cD“/£/(r) = /f/tt/(r), (8)

provided fonction/ is continuous i.e. / e C[a,b].

Definition 1.5
Function space C'”[a,b] is a space of /«-limes continuously différentiable fonc
tions determined by the condition

Cm[a,b] = {xe C[a,b]; x(m) e C[a,b]}.

The above space, endowed with a metric induced by the following norm:

m
\\ff = £ sup |/(;)(t)| (9)

y_QÎe[iï,/?l

is a metric and complété space.
Norm (9), standard for the Cm[a,b] space, can be modified so as to be useful in 
the proof of existence-uniqueness of solutions for the discussed FDE.

Definition 1.6
We introduce the following new norm on function space Cm[a,b]

m

I|/E"=Ésup|/<;)#’ÆGj<î) <10>
j=Q tEÏa.bi

where G; are arbitrary continuous, non-negative fonctions and k is a positive real 
number.

Let us note that for k = 0 we recover norm (9) and the corresponding induced 
metric.

It is easy to check that for any value of parameters zq, r2 e R+ u {o} norms 

(10) are équivalent to each other on the Cm[a,b] space. This fact also implies their 

équivalence to the standard norm || • ||C .
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Property 1.7 
cm cmNorms || • ||*_ and || • ||^ are équivalent on space C'”[a,b] for any 

kx,k2 g R+ u {0} and fonctions G; obeying the conditions of Definition 1.6.
Proof: let us assume A', < a'2 . Then the following inequalities are valid for expo- 
nential coefficients

g > g j = 0,1,..., ni

m m

Z sup sup
j^otefa,b] j^otefa,b]

As a conséquence we obtain the relations for any function f e Cm[a,b] and 
*i < a-2

Due to the properties of the exponential function we also háve 

m m
\\f\C - £ S“P |/(y)a)kťlGj(í) - £ sup sup <

1 te\a,b\ j_Q tefa,b] tefa,b]

m
b£ sup|/w(ř) 

j=0 te(a,b]

where we denoted constants Bj and B as

B. = sup B = max{Bx,...,Bm}.
tefa,bl

From our calculations, it follows that for any function fe Cm[a,b], its norms 
fulfill the inequalities:

»mi:

<£«, sup /w(t)pG'(í)<
;=0 íe[a,/>l

which means norms || • ||y and || • are équivalent on function space 

Cm[a,b].
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2. Main results

In this section we shall solve one-term nonlinear FDE in the form of

cDf+/(r) = T(r,/(r)) (11)

eD“/(r) = T(r,/(r)) (12)

The first of the above équations contains the left-sided Caputo derivative, the se
cond one the right-sided Caputo derivative. We assume that in both cases order a is 
a real number and équations are determined on arbitrary finite interval [a, b].
Let us observe that équations (11), (12) can be reformulated as the following 
équivalent fractional integral équations

/(t) = Z“T(t,/(t)) + %(t) (13)

/(t) = Z“T(t,/(t)) + ^(t) (14)

where functions cpo and 7po are arbitrary stationary functions of the left- and right- 
-sided Caputo derivative. In both cases these functions are polynomials of degree 
determined by the order of the respective derivative.
Fürther, the obtained fractional integral équation (13) is an example of a more gen
eral integral équation:

f (0 = J K0(t,sy¥(s,f(s))ds + (15)

with the kernel given in our case as

K0(t,s) = -
\t-sr1

s <t
(16)r(a)

0 s>t.

We use kernel Ko to construct a mapping on the C" 2[a,b] space: 

t
Ty(t) := jK0(t,sy¥(s,y(s))ds + %(t). (17)

Now, we are able to rewrite équations (11), (13, (15) as the following fixed point 
condition
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determined on the space of n-2-times continuously différentiable fonctions. 
In what follows we shall also apply kernels in the form of

^(M) = r(a-j)
o

s<t

s > t.
(18)

Let us note that kernels (16), (18) are non-negative, continuous fonctions on set 
[n,Z?]x[n,Z?] whena>land j = 0,l,...,n-2.

The procedore of transforming an FDE of type (11) into the above fixed point 
condition with mapping (17) was discossed earlier in the fractional calcolos. Oor 
aim is to present an efficient method of proof that it is contractive in the chosen 
fonction space. In the lemma below we extend the Bielecki method of eqoivalent 
norms [17] and apply the family of norms indexed by a non-negative scalar Param
eter and non-negative vector fonction, defined in (10).

Lemma 2.1
Mapping T, defined in formola (16) is contractive on the ( C" 2\a.b\. ||-||^ ) 

n—2
space when j, and

t

Gj (t) = j K, (u)L(u)du (19)
a

K,(u) = sop Ä?,(t,w).
te [a,Z>]

Proof: let os dénoté

||<:= sop |y(t)| • 
tefa,b]

and in addition constants

M0=l M. = supe-ÁG/í)+AG,,(í) j = l,...,n-2. (20)
te /d

The distance between images Tx and Ty obeys the following ineqoalities for any 
pair of fonctions x,ye C"~2[a,b]

h~<'"
n—2

y_Q te.\a,b\

j 7C/t, s)<P(s, x(s))ds - J Kj(t, s)¥(s, y(s))ds
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n-2 r

;=()<e[a,fc] a

n-2 r
< y sup e“AGj(0 í K J (s)L(s)|x(s) - ,yGO|ćfc =

i
n—2 t

- sup e J.Ky.(\s)L(\s)|.x(s)-.yGs)|<? >(s}>(s}ds <
>o ieG.G a

n-2 l
— y, supe àG'<î> j Ä’y GOM‘O|Ä‘O _ y(.v)|e-AG1’('’)e*G1’('’)e ^'^e^'^ds < 

7=oie[a,i] a

1 n— 2 1
< lk< j SUP |sir7.(5)L(5)e'<G'<')dv =

ť >0 ie[a,i] Ja

K " K

1 n—2= T>-£'ŸMi sruP*

Æ y—0 te[a,b\ a: y—0 te\a,b\

n—2 n—2

y.m,

llTx-jyr
K

Summarizing, we observe that for any pair of functions i,ye C" 2[a,b], the 
distance between their images is smaller than the initial distance, provided we 

/i-"1 /l~2
consider mapping Tacting on the (Cn-2[a,ż>],|| • ) space with k> ; :

n—2

where M j are given in (20) for j =0,...,n-2 .
The proved property of mapping T leads to the following proposition describing the 
solution of a one-term FDE with the left-sided Caputo derivative.

Proposition 2.2
If a > 1, a e (n -1, n) and function T fulfills the following Lipschitz condition

|T(r, x(ť)) - T(r, y(r))| < L(t)|x(t) - y(t)| te [a,b] Vx,ye C[a,b]
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then each stationary function <p,, of the left-sided Caputo derivative, generates 

a unique C" 2|«./?| solution of fractional differential équation

cD“/(r) = T(r,/(r))

This solution is a limit of itérations of mapping T defined belo w on the Cn~2[a,b] 
space:

Ty(r):=CT(r,y(r)) +^(r) VGC"2\a.b\

/=lim^(T)V

where t//g C"~2[a,b] arbitrary.
Proof: we start the proof by transforming équation (11) into an équivalent frac
tional integral équation. Thanks to the composition rule given in Property 1.3 we 
can rewrite équation (11) as follows

/(z) = Z“T(r,/(r))+^(r)

where stationary function Çt() of the left-sided Caputo derivative fulfills the condi
tion:

X>0(o=o

As is known from fractional calculus, the dass of the stationary functions con- 
sidered as a subclass of continuous functions contains only polynomials of degree 
dependent on the order of derivative. When we assume ae (n-l,n),then each <p0 
is a polynomial of degree n-1 with arbitrary coefficients.

Hence, we can reformulate FDE (11) and the corresponding fractional integral 
équation (13) as the following fixed point condition:

f(t) = Tf(t) te[a,b\ (21)

where mapping T is generated by (pQ and defined as follows for any given 

ye Cn2[a,b]

Ty(t) := /“?(t, y(f)) + (p„ (t)

In the next step we apply Property 1.4 and note

(W^^WXOM^) j=l,...,n-2
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where fractional intégrais on the right-hand side are determined by the 
kernels givenin(18)

t

(Ty(tiïJ> = \KJ (t, y(s))ds + <p^(t) j = l,...,n-2
a

As fractional intégrais are bounded in the space of functions continuons in in
terval [a,b] (compare Lemma 2.8 in [8]), we see that mapping T transforms func
tions from the Cn~2[a,b] space into images belonging to the same function space

T : Cn~2[a,b]—> Cn~2[a,b]

Applying Lemma 2.1 we observe that the above mapping is contractive on the 
(Cn-2[a,ż>],|| • ||^ ) space, provided k is large enough. Therefore function 

/'g C" 2|«./?|. obeying fixed point condition (21), exists. This function is 
a unique solution to équation (11) in this space, generated by (pQ. In addition, the 
Banach theorem allows us to construct this unique solution as a limit of itérations 
of mapping T.

Let us note that an analogous existence-uniqueness resuit can be proved for 
équation (12) with the right-sided Caputo derivative. As we know [20], the left- 
and right-sided derivatives on finite interval |«./?|are connected by the action of 
reflection operator Q:

cDlf(t)=QcD^Qf(ť)

Qf(t) :=j\a + b — t).

Thus, we can rewrite équation (12) as an FDE with the left-sided Caputo deriva
tive. Its solution exists due to Proposition 2.2 and is generated by the respective 
polynomial Q<pü.

Proposition 2.3
If a > 1, a e (n -1, n) and function T fulfills the following Lipschitz condition

|vP(r,x(r))-vP(r,y(r))| < L(r)|x(r)-y(r)| te[a,b] \/x,ye C[a,b],

then each stationary function <p0 of the right-sided Caputo derivative, generates 
a unique C"~2[a,b] solution of fractional differential équation

cD“/(r) = T(r,/(r)).
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This solution is a limit of itérations of mapping T defined belo w on the Cn 2[a,b] 
space:

Ty(t) := I“_T(7,y(t)) + ^,(t) y e C"~2[a,b]

/ = lim^(f)V

where (/e C"~2[a,b] arbitrary.

3. Final remarks

Two types of nonlinear one-term FDE with Caputo derivatives were discussed 
and solved globally in an arbitrary finite interval. We derived their solution in the 
dass of continuously différentiable functions. As a main tool of proof we applied 
the extended version of the Bielecki method and explicitly constructed solutions 
generated by stationary functions of the Caputo derivative.

Let us note that the scaling of norms using exponential functions, as in formula 
(10), restricts our results to équations of fractional order a > 1. The obtained solu
tions belong to the C"~2[a,b] space when ae(n-l,n). In further investigations 
we shall also consider case 0<a<l and in general for cre (n-l,n) solutions in 

the corresponding C"~l[a,b] space. To this aim we propose to apply scaling via the 
Mittag-Leffler function which is a generalization of the exponential function:

ll/ll = y sup-------- !--------- —
j=0 te[a,i] Ea_- Y(K(t — a)

Ea_Jtlw-arj-)=^
k=() T\(a-j)k + l)
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