Dr Marian Podhorodyński Wyższa Szkoła Zarządzania i Marketingu w Sosnowcu Instytut Informatyki i Matematyki

PROBABILISTIC PROPERTIES OF THE SETS OF DETEMINISTIC SEQUENCES

The paper shows the consequences of frequential definition of probability which is natural from the intuitive point of view. In particular: probability isn't a σ -additive function and the family of events isn't a σ -field and even it isn't a field.

Key words: probability, average, event, field, π -system, Dynkin system.

A family $\mathbb{Z} \subset 2^{\Lambda} (\Lambda \neq \emptyset)$ will be called a *half -field* in Λ if

 $\mathcal{Z} \neq \emptyset,$ $A \in \mathcal{Z} \Rightarrow A' = \Lambda \setminus A \in \mathcal{Z},$ $A, B \in \mathcal{Z}, A \cap B = \emptyset \Rightarrow A \cup B \in \mathcal{Z}$

and $a\sigma$ -half-field in Λ (Dynkin system [2]) if

 $A \in \mathcal{Z} \Rightarrow A' \in \mathcal{Z},$ $A_n \in \mathcal{Z}, \quad n \in \mathbb{N}, \quad A_i \cap A_j = \emptyset, i \neq j \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{Z}.$

AEZ.

Corollary 1. A family \mathcal{Z} is a half-field in Λ if

 $A \in \mathbb{Z},$ $A, B \in \mathbb{Z}, A \subset B \Rightarrow B \setminus A \in \mathbb{Z},$ $A, B \in \mathbb{Z}, A \cap B = \emptyset \Rightarrow A \cup B \in \mathbb{Z}.$

Moreover for every half-field \mathcal{Z} in Λ we have

$$\emptyset \in \mathcal{Z},$$

$$A, B, A \cap B \in \mathcal{Z} \Rightarrow A \cup B, A \setminus B \in \mathcal{Z},$$

$$A_1, \dots, A_n \in \mathcal{Z}, A_i \cap A_i = \emptyset, i \neq j \Rightarrow \bigcup_{i=1}^n A_i \in \mathcal{Z}.$$

Corollary 2. A family Z is a field in Λ (i.e. $Z \neq \emptyset$; $A \in Z \Rightarrow A' \in Z$;

 $A, B \in \mathbb{Z} \Rightarrow A \cup B \in \mathbb{Z}$) iff \mathbb{Z} is a half-field in Λ and \mathbb{Z} is a π -system (i.e. $A, B \in \mathbb{Z} \Rightarrow A \cap B \in \mathbb{Z}$) [2]. **Corollary 3.** A σ -half-field is a half-field and a family \mathcal{Z} is a σ -field (i.e. $\mathcal{Z} \neq \emptyset$; $A \in \mathcal{Z} \Rightarrow A' \in \mathcal{Z}$; $A_n \in \mathcal{Z}$, $n \in \mathbb{N} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{Z}$) iff \mathcal{Z} is a σ -half-field and \mathcal{Z} is a π -system.

Now let $\emptyset \neq \lambda \subset \Lambda^{\mathbb{N}}(\Lambda \neq \emptyset)$ and for a function $S: \Lambda \to \mathbb{R}$ we define

$$S(\lambda) = \{ (S(\lambda_i) : i \in \mathbb{N}) : (\lambda_i : i \in \mathbb{N}) \in \lambda \}$$

which will be called an operation on λ and

$$\langle S(\lambda) \rangle = \lim_{n \to \infty} \infty \frac{1}{n} \sum_{i=1}^{n} S(\lambda_i)$$

if the above limit exists for every $(\lambda_i : i \in \mathbb{N}) \in \lambda$ and it is identic for all these sequences. $\langle S(\lambda) \rangle$ will be called an *average* of the operation S on λ .

Definition.

A set $A \subset \Lambda$ will be called an *event* under the set $\emptyset \neq \lambda \subset \Lambda^{\mathbb{N}}$ (shortly λ -event) if there exists the average $\langle 1_A(\lambda) \rangle$, (where $1_A(x) = 1$ for $x \in A$ and $1_A(x) = 0$ for $x \notin A$) i.e. if for all $(\lambda_i : i \in \mathbb{N}) \in \lambda$ there exists common limit of the sequences

$$(\frac{1}{n}\sum_{i=1}^{n}1_{A}(\lambda_{i}):n \in \mathbb{N})$$

of frequences of the set *A*. This average will be called λ -probability of the λ -event *A* and will be noticed $P_{\lambda}(A)$.

For the family \mathcal{Z}_{λ} of all λ -events we have

$$P_{\lambda}(A) = \langle 1_{A}(\lambda) \rangle$$
 for $A \in \mathbb{Z}_{\lambda}$.

Proposition.

The family \mathbb{Z}_{λ} is a half-field in Λ and P_{λ} is nonnegative ($P_{\lambda}(A) \ge 0$ for $A \in \mathbb{Z}_{\lambda}$) normed ($P_{\lambda}(\Lambda) = 1$) and additive function on \mathbb{Z}_{λ} (i.e. $P_{\lambda}(A \cup B) = P_{\lambda}(A) + P_{\lambda}(B)$ for $A, B \in \mathbb{Z}_{\lambda}$ such that $A \cap B = \emptyset$).

Corollary 4. λ -probability has the following properties: $P_{\lambda}(B \setminus A) = P_{\lambda}(B) - P_{\lambda}(A), P_{\lambda}(B) \ge P_{\lambda}(A)$ for $A, B \in \mathbb{Z}_{\lambda}$ such that $A \subset B$; $P_{\lambda}(A') = 1 - P_{\lambda}(A)$ for $A \in \mathbb{Z}_{\lambda}$; $P_{\lambda}(A \cup B) = P_{\lambda}(A) + P_{\lambda}(B) - P_{\lambda}(A \cap B), P_{\lambda}(A \setminus B) = P_{\lambda}(A) - P_{\lambda}(A \cap B)$ for $A, B \in \mathbb{Z}_{\lambda}$ such that $A \cap B \in \mathbb{Z}_{\lambda}$. **Corollary 5.** The family Z_{λ} is complet under P_{λ} i.e.

 $B \in \mathbb{Z}_{\lambda}, A \subset B, P_{\lambda}(B) = 0 \Longrightarrow A \in \mathbb{Z}_{\lambda}(P_{\lambda}(A) = 0)$

and it has the following properties:

 $B \in \mathcal{Z}_{\lambda}, A \supset B, P_{\lambda}(B) = 1 \Longrightarrow A \in \mathcal{Z}_{\lambda} (P_{\lambda}(A) = 1);$ $B \in \mathcal{Z}_{\lambda}, P_{\lambda}(B) = 0 \Longrightarrow A \cap B \in \mathcal{Z}_{\lambda} (P_{\lambda}(A \cap B) = 0) \text{ for all } A \subset \Lambda;$ $A, B \in \mathcal{Z}_{\lambda}, P_{\lambda}(B) = 1 \Longrightarrow A \cap B \in \mathcal{Z}_{\lambda} (P_{\lambda}(A \cap B) = P_{\lambda}(A)).$

For $\emptyset \neq \lambda \subset \Lambda^{\mathsf{N}}$ we define the set R_{λ} of all realizations of λ by $R_{\lambda} = \{ x \in \Lambda : \exists (\lambda_i : i \in \mathsf{N}) \in \lambda \exists i \in \mathsf{N} \text{ such that } x = \lambda_i \}.$

Corollary 6. The family \mathcal{Z}_i has the following properties:

$$R_{\lambda} \in \mathcal{Z}_{\lambda} (\mathbf{P}_{\lambda}(R_{\lambda}) = 1),$$

$$A \cap R_{\lambda} = \emptyset \implies A \in \mathcal{Z}_{\lambda} (\mathbf{P}_{\lambda}(A) = 0),$$

$$R_{\lambda} \subset A \implies A \in \mathcal{Z}_{\lambda} (\mathbf{P}_{\lambda}(A) = 1),$$

$$A \in \mathcal{Z}_{\lambda} \implies A \cap R_{\lambda} \in \mathcal{Z}_{\lambda} (\mathbf{P}_{\lambda}(A) = \mathbf{P}_{\lambda}(A \cap R_{\lambda})).$$

Remark 1. There exist the set Λ and $\lambda \subset \Lambda^{\mathsf{N}}$ such that the λ -probability isn't σ -additive function on \mathbb{Z}_{λ} .

Proof. Let Λ be an infinite set, say $\{\lambda_1, \lambda_2, ...\} \subset \Lambda$. Let $\lambda = \{(\lambda_1, \lambda_2, ...)\}$ and $A_n = \{\lambda_n\}, n \in \mathbb{N}$. It is easy to see that

$$\bigcup_{n=1}^{\infty} A_n, A_n \in \mathbb{Z}_{\lambda}, n \in \mathbb{N}, A_i \cap A_j = \emptyset, i \neq j$$

and

$$P_{\lambda}(\bigcup_{n=1}^{\infty}A_n)\neq \sum_{n=1}^{\infty}P_{\lambda}(A_n)$$

because

$$P_{\lambda}(\bigcup_{n=1}^{\infty} A_n) = 1 \text{ and } P_{\lambda}(A_n) = 0 \text{ for all } n \in \mathbb{N}.$$

Remark 2. There exist the set Λ and $\lambda \subset \Lambda^{N}$ such that the family \mathbb{Z}_{λ} isn't a σ -half-field.

Proof. Let Λ be an infinite set and

 $\{\lambda_1, \lambda_2, ...\} \cup \{\lambda_1', \lambda_2', ...\} \subset A, \{\lambda_1, \lambda_2, ...\} \cap \{\lambda_1', \lambda_2', ...\} = \emptyset.$ For $\lambda = \{(\lambda_n : n \in \mathbb{N}), (\lambda_n' : n \in \mathbb{N})\}$ and $A_n = \{\lambda_n\}, n \in \mathbb{N}$ we have $A_n \in \mathbb{Z}_{\lambda}$ for $n \in \mathbb{N}$ because $P_{\lambda}(A_n) = 0$ for all $n \in \mathbb{N}$ and $A = \bigcup_{n=1}^{\infty} A_n \notin \mathbb{Z}_{\lambda}$ because

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} 1_{A}(\lambda_{i}) = 1$$

but

$$\lim_{n\to\infty} \infty \frac{1}{n} \sum_{i=1}^{n} 1_{A}(\lambda_{i}^{\prime}) = 0.$$

Remark 3. There exist the set Λ and $\lambda \subset \Lambda^{\mathbb{N}}$ such that the family \mathbb{Z}_{λ} isn't a field (π -system).

Proof. Let $\Lambda = \mathbb{R}$ and $\{\lambda_n : n \in \mathbb{N}\}, \{\lambda_n' : n \in \mathbb{N}\}$ be the sets such that $\{\lambda_n : n \in \mathbb{N}\} \cup \{\lambda_n' : n \in \mathbb{N}\} \subset [0,1], \{\lambda_n : n \in \mathbb{N}\} \cap \{\lambda_n' : n \in \mathbb{N}\} = \emptyset$

and

$$\frac{1}{n}\sum_{i=1}^{n}1_{(-\infty, x)}(\lambda_i) \to F(x), \quad \frac{1}{n}\sum_{i=1}^{n}1_{(-\infty, x)}(\lambda_i') \to F(x),$$

where

$$F(x) = \int_{-\infty}^{x} 1_{[0,1]}(t) dt, \ x \in \mathbf{R}$$

(see Glivenko-Cantelli theorem [2]). For $A = ((-\infty, \frac{1}{2}) \cap \{\lambda_n' : n \in \mathbb{N}\}) \cup ([\frac{1}{2}, +\infty) \setminus \{\lambda_n' : n \in \mathbb{N}\}), B = (-\infty, \frac{1}{2})$ and $\lambda = \{(\lambda_n : n \in \mathbb{N}), (\lambda_n' : n \in \mathbb{N})\}$ we have

 $A, B \in \mathbb{Z}_{\lambda}$ and $A \cap B \notin \mathbb{Z}_{\lambda}$

because

$$\langle 1_A(\lambda) \rangle = \frac{1}{2} = \langle 1_B(\lambda) \rangle$$

but

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} 1_{A \cap B}(\lambda_i) = 0$$

and

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} 1_{A \cap B}(\lambda_{i}') = \frac{1}{2}$$

REFERENCES

- [1] H. Bauer, Probability Theory and Elements of Measure Theory, Academic Press, London 1981.
- [2] P Billingsley, *Probability and Measure*, J. Wiley and Sons, New York 1986.
- [3] P.R. Halmos, *Measure Theory*, GTM 18, Springer Verlag, New York 1974.
- [4] R. Mises, Mathematical Theory of Probability and Statistics, Academic Press, New York 1964.