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BOUNDARY VALUES OF THE SOLUTIONS 
OF THE PARABOLIC EQUATION

A b s t r a c t .  The paper deals w ith  th e  problem  of the  behaviour of a given 
solution of a quas i-linea r parabo lic  equation  n ea r  th e  parabo lic  boundary . Neces­
sary  and  sufficien t conditions fo r w eak an d  strong  convergence in  th e  Sobolev 
space Wp’ 1, P ^  2, a re  given.

1. I n t r o d u c t io n .  In the theory of partial differential equations the 
problem of t h e  behaviour of the given solution near the boundary arises 
in  a natural way. A problem arises while determining if the given solu­
tion has trace on the boundary. Several function spaces arise as the spa­
ces of traces of solutions of partial differential equations. The purpose of 
this paper is to obtain conditions giving LM races on the boundary of 
generalized solutions of a quasi-linear parabolic equation. Section 2 deals 
w ith  th e  problem of weak convergence of traces for solutions in the So­
bolev space W £1, p 2. Section 3 extends these results to  strong con­
vergence. The arguments which we give here are based partially on the 
references [1], [7] and [8].

2. W e a k  c o n v e r g e n c e .  Consider the quasi-linear parabolic equation 
of the form

n
(1) (a^ t, a;) uz) Xi ~ b (t, x, u, ux) - u t =  0

U - i

in a cylinder D =  (0, T] X Q, where Q C  Rn is a bounded domain with 
the boundary 3Q of the class C2, ux — Dx u, ux — (uXi, ux ). Let us 
denote r(x) =  dist (x, 3Q). We make the following assumptions:
(A) There is a positive constant y 1 such that
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for all |  e  R n and (t, x) e  D.
(B) The coefficients ai} belong to Cl(D).
(C) The function b ( t,x ,u ,s )  is defined for (t , x , u , s ) e D  X Rn+1 and sa­

tisfies the following conditions.
(i) for a.e. (t , x ) e D , b(t, x, •, •) is a continuous function on Rn+1,

(ii) for every fixed (u, s) e  Rn+1, b ( - ,  •, u, s) is a measurable func­
tion on D,

(iii) for all ( t ,  x, u, s) 6  D X Rn+1

|b(t, x, u, s)| <  f(t, x) -f L(\u\ +  |s|),

where L is a positive constant and /  : D -»  R is a non-negative- 
measurable function such that

J  f  f(t, x ) p  r(x)e dxdt <  oo
D

for some constants p, 0  for which 1 <  p <  p ^  0  <  2p— I... 
REMARK 1. Under the assumption (C) the composition b(t, x, u(t,x), 

s(t, a;)) is measurable when u{t, x), s(t, x) are measurable and the mapping,

b(t, x , •, : LJoc(D)n+i -> L^c (D)

is continuous, (see [6]).
In the sequel we use the notion of a generalized solution involving 

the Sobolev spaces: p (D), W£ #(D), W£°(D). We denote by p(D)' 
the Sobolev space of real functions u such that u and its distributional 
derivatives uXi, ..., uXn, ut belong to Lfoc(D) and by W£°(D) the Sobolev 
space of real functions u such that u and its distributional derivatives 
uXl, •••> uXn belong to Lp(D). The space of the functions u  which belong 
to W*,0(D) and such th a t supp u C  Int D we denote by W ^°D .

DEFINITION. A function u is said to be a weak solution of the equa­
tion (1) in D if u e  W &  p (D) and u satisfies

n(2) J  f  I E  Uii  ( t , x ) u xt v x .  d®dt +  J J b{t, x , u, ux) v  dxdt +  J j  u tv  dxdt =  0
D i ,j  =  1 D D

for every v e  W£,° (D ), where +  ~ 7  =  1-

It follows from the regularity of the boundary 3 Q that there is
a number d0 >  0 such that for d e  (0, <50] the domain Qt — Q ^  { x  :
: min \x—y\ >  5} with the boundary 3 Q ., possesses the following pro- 
y e a  Q

perty: to each x0e 3  Q we can assign a unique point x & (x0) — x 0—dv(x9)r 
where ^(x0) is the outw ard normal to 3 Q at x0. The inverse mapping to



x 0 ->x4 (x0) is given by the formula x0 =  x4 +  dv& (x4), where vs (x4) is the 
outward norm al to 3 Qs at x4.

Let x s denote an arb itrary  point of 3 Q5. For a fixed s >  0 intro­
duce the sets

A. =  3 Qs ^ {x : | x - x 41 <  e)
Bt =  {x : x — x4 +  dv8(x4),xs e3 Q s ^  {x : |x -x 4|< e }

and put

dSi (x4) =  lim
dS0 .-*•+ |B .|

where |A| denotes the Lebesgue measure of a set A. It was proved by 
Michailov [8] that there is a positive number y0 such that

<*S4 ^
(3) 
and

d S.
(4) lim - r= -  (x4(x0)) =  1

5 -> o+ u O o

uniformly w ith respect to x0 e  3 Q.
According to Lemma 1 in [3, p. 382], the distance r(x) belongs to

C2(Q—Q6 ) if <50 is sufficiently small. Denote by o(x) the extension of
the function r(x) into Q satisfying the following properties: o(x) =  r(x)

for x e Q  —Q4c, eeC ^ Q ), g(x) >  in Q4o, y -1 r ( x ) < 8 ( x ) <  n  r(x) in Q

for some positive constant yx, 3 Qs =  {x : o(x) =  d}, [gx(^)l =  1 for 
x e Q  — Qs , d €  (0, a0] and finally 3 Q =  {x : g(x) = 0 } ,  g ( x ) > 0  on Q. 

Introduce the surface integral for /u, d e  (0, d0] and u e  p (D)
T

M(ju, d) = f  I \u(t, x )[p  dSsd t+  j  \u{fi, x ) |p  (r(x) — 6) dx,
u d Qd Qd

where the values of the function u(t, x) on the n-dimensional manifold 
are understood in the sense of traces, (see [9]).

Let us denote

D- = (m, T] X Q4, 3 D“ = (M, T] X 3Qd w {(l} X Q4>

3 D =  [0, Tj X 3 Q u  {0} X Q and Ds =  D*.

Here 3 means the parabolic boundary.
THEOREM 1. Let u be a weak solution of (1) for fixed p ^  2 and

f f u *  |u|p-2 t^dxdt <  oo for some / ? < 1 .  Then the following conditions
D

are equivalent:
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I. M(d, /u) is bounded on (0, 50] X ,(0, do], 

II. J J  u2 \u\p~2 r(x) dxdt <  oo.
D

P r o o f .  Let for ju .de  (0, 60]

v(t, x) u(t,a:)|u(t,x)|p-2(e(x ) -d ) , for (t ,x ) e D $
0, for (t, x ) e D - D j“ .

Using Holder’s inequality and the well known property of weak deriva­
tives \u\x — ,sgn U'UX it is easy to prove that v is an admissible test func­
tion in (2). Substituting v in (2) we obtain

(5)

ff aijuxi(u\u\p-2)Zi(Q-d)dxdt+j J at)uXi u \u\p~2 qx  dxdt +
y* 1.3 = 1 Js

+
J J b(t, x, u, ux) u |u |p - 2  ( g — 6 ) dxdt +  J J utu | u | p - 2 (g—d) dxdt =  0.

DS °s

By the Green’s formula we have

(6) I f  JlL ailUxiU Mp_2eXjdxdt
jyH i, j  — 1 
Ub

v f f  S  (a ^ M p ^ J) x ! d * d t +i,i = l
d Ss dt +

+

F p - f f  2  (a n S z ) J u \P d x d t  =  lv j  f  2  a « e * te * > l pDt i,i = 1 b 3 Qe i, j = Io

j r f f  E  (a n e x ) x M \ p d x d t  /  ! u ! p d s 6 d t + - ^ - J J | u | p d x d t ,
jM o Q&

where Cx = max 
(t, x) e d 2  (a»eXl)* 

t,j = i

Integrating by parts the last integral in (5) we obtain

1 TJ J utu \u\p~2 (q — 6) dxdt =  —  J  J \u\p (q— d) dxdt
u Qs

(7 )

=  J  |u (T ,x ) |p (e -a )d x -  Y  J  \u([i, x ) |p  ( g — S) dx.
P  Qi Q s
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Using the assumption (C) and Young’s inequality we have the estimate

<8) J J  bn |u |p -2 (g — S) dxdt J J  f  |u |p -! (q — d) d x d t- f

+ L J J  |h|p (q — <5)dxdt +  L J  J  |ttx| (uIp-1 (q— d) d x d t:

Ds

J J  fP(Q— d)a d x d t  +  J J l u j P  (ff— d)a dxdt +  L J J  |u|p (q — d) d x d t+
d£ d%

+  L e fj u*lujp-2 (q — 3) dxdt+— J J |u|p (q — d)dxdt,

W  6

p —&where a — —— —- and e is any positive. The assumption (C) implies that p - 1
• a >  —1.

The first integral in (5) we can estimate as follows

I f  atiu i 1(u lu lp_2)ii(?_ d ) dxdt
jyU u - i

ot  M - i

p - 1
/ /  u | i ulp_2 (e~5) dxdt.

-P - 1
V

Thus combining (5)—(9) we obtain 

J J  u* |u |p -*(g-d) dxdt +

1 T
-|----- J |u(T, x)|p (g — d) dx ^  —  J j |u]PdS{dt +

^  Qn ^  ft

- J |u(ju, x )|p (g— d) d x +  —  J J  Mp d x d t+  | l  +  A \  J J  |u|p (q—d) dxdt +
Qs P d'< D«

J J fp d x d t+  J J |tt|p (g — d)a dxdt +  Lf J J  u* |u|p-2 (g — <5) dxdt.

Ds
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p — 1Choosing e such tha t ^ —  =  Ls and reducing the last term  we obtain2 y
from th is inequality

(10) J  J  u*x |u |p-2 (Q -d ) dxdt +  C2 J  |u(T, x)|p (e - d ) dx  <
Di*O

< C 3JJ  |u|p (g -6 )‘ dxdt +  C4/ /  p r 9 d x d t+ C 5 J  J  Mpdxdt +  C6 M(M, 5),

Dt

2y__  r  = r ___ ?2Lwhere C2=  p(p-£ 1} , C3 =  C4= - ^ f j ,  C5 =  max

2Ciy 1 . r  _  [ 2y2 2yyx \ 
p ( p - l ) |  6 \ p ( p - l )  ’ P ( P -1 ) ) '

Let a e ( —1,0], d e |o , - y - j ,  / i€ (0 ,  d0] and x  e  QSi. From the defini­

tion of the function g it follows that (g(x)—5)" ^  thus we obtain

T T
J J  |u|p (g —d)a dxdt =  J  J  |u|p (g—d)“dxdt +  J J  |u|p (g—d)°dxdt +
dm io Qj, /•0
do T do

-+- /  /  lulp (<?“ d)“dxdt ^  J J |u|p<todt+ j" d t j  (v—d)“dv J  |ujPdS„ +
p Q$, ' i« Qs, t* *

+ f  f  !ulp fe- S ) d x d t^  l ^ \  f f |u|Pdxdt +
' ' v Qjo '  ' »• ««.

-f sup f f  |u|PdSadt+(-Y-i do sup J  l u ( / u , x ) l p ( f f - d )
a+  1 o < k j 0|; 8q, \ * /  o<A.<a. ^

—5) dx.

For o > 0  we have (g—d ) ° ^ C 7, where C7 =  m ax [g{x)—d]“ so we 
obtain the following estimate Q

(11) J J  |u|p (g—d)“ dxdt <  Cg

for a >  — 1, S e  (0, /ue(0, 50] where the constant C8 is independent

of 5 and /u.
Now condition (10) implies the estimate

(12) J J  u \  |«|p-* (g -5 )  dxdt <  C9
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for d €  |o, -y-j and n  e  (0, do] which we can w rite in  the followingg form 

J  j  u2x \u\p~2 rj(t, X, n, b) dxdt <  C9

where
{t x  a) =  |e (* ) -« , for (t , x ) e D s

Hence and from the Monotone Convergence Theorem we obtain con­
dition II what proves the implication I -*> II.

To prove the implication II => I we show first that condition II im -

, fi e  (0, 50] and

T T
(14) J J  |u|p (g — d)“dxdt =  J  f  |u|p(g—d)“ d x d t+  J  J  |u|p(g—d)“dxdt. 

Integrating by parts we have

plies (11). Let a >  —1, <5e(0,

TJ J jujp (ff—d)a dxdt — T J \u(T, x)\p (Q—d)adx—p J  |u( ,̂ x)|p (q—d)a dx— 
>• <5«0

—p J  J  t \u\p- 2uut(Q—d)“d x d t^ T  J  fu(T, x)|pdx +

+  P 1 / T  f f  f  u2lu\p-2(Q- d ) adxd t f  f  t|« |p-2u*da;dt | T
L  Q«„ \ / L  0So I

thus there is a constant C10 such that for every d e  |o, -y-j, n  e  (0, <30]

T

(15) f  J  |u|p (g — d)° dxdt <  Cio-
r  <5«o

From condition II it  follows tha t
x

/  /  I lufe | dxdt <  00
0 ®a„

3
because r(x) — <50 for x e  Q4o and thus |u |p e  0 ((0, T) X Q4j).

It is well known (see [9]), that such function has the trace on th* 
parabolic boundary of (0, T) X Qit and

T
f  J  |u|p dS4o dt <  oo.
o 3QS„



As g(x) — 30 for x  €  3 Q6o thus there is a constant Cn such that

(16)

(**]
f  f  \u\p(e -d )°d S Sod t < c 11
/* 3 ««o

and juG (0, 60].

Using the mapping x  x s (x), <3) and integrating by parts we obtain
T  T  Sof f jujp (g—d)a dxdt — J  dt j  (v—8)adv J  lu^dS^^

m Qa-Q̂ o f* d d Qv
T  doy0J dt J (v—d)adv J \u(t,xv (x))|p dS

3 Q

+ T ~ yof  dt I  №> x ,(x ))lp dSn 3 Q

v — d0 
v — 8

3 x (x)J dt J  (v -d )“+i dv J  |u(t, x^x))!? ux(t, x (x)) u(t, x^x)) — dS :
ju 5 3 Q

2 T£a+ly2 T 
J  J  |u |p  d S j0 d t  +  J  d t  J  ( V - 6 ) “+ i d r  f  | t t |p - i  \ux\dSy

3 ©Jo 5 Qv

where we have used
3 x
3»

1.

Now using (16) and Holder’s inequality we have
0+1

T & 2 DV2
/  /  M»<e -a> -dxd t < ^ c , 1 + ^ .
/< Qa—Q j0

r  T  «Q "11_ r  T  Jo

• /  d t  J  f  \ulp(v-d)“dSydv * J  dt J J  |u |p  
L/« 6 d Qy J L/< 3 3Q„

~2 u*(v—d) dŜ dv I* ^lf
„ + 1  c “ +
a+1 2-iZ—  f  T 1 1 - f

-|- <9 2 m i l L l j  J  |u |p  (g—S)a dxdt 2 j  j  u 2x \u\p~2 r(x) dxdt
0  +  1 Lf* I d

From the last estimate it follows
T

(17) f  f  \u\p(e - d ) “d x d t < C 12

for 6 e
( ° 't ]

m Q‘-QSti
and n  e  (0, <50], C12 being a convenient positive constant.

Now (14), (15) and (17) imply the condition (11).
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From the first part of the proof we have the following equality 

<18) -i- f  f  j ?  auQXieXl Mp dSg d t + i -  f  |u(fi, x ) |p  (q -6 )  dx =
l> 3Q4 I, 1 = 1 V Qt

=  2  (a»erj)*, lulp d x d t+  f  f  bit, x, u, ux)u|u|p-2 (g -3 )  d x d t+

.+ j - f l u ( T,x ) fp ( e - d ) d x + ( p - 1) f f  JT  atju XtuXj\u\p-2 ie~~b) dxdt.
P Q> Q/. i , ] ~ l

Using (A), (B), (C) and the estim ate (8) w ith e =  1 we get

- i -  j* f  |u |p  dSsd t+  f  \u(n, x ) |p  (q -b )  dx <  ^  f f  |u |p  d x d t+
/• 3 Qi P Q, r f

+ f f  P i e - d ) e 6xd t+  f  f  \u\p (g—S)°dxdt +  2L f f  |u |p  ie - b )  dxdt +

+  y(p—1 ) J J  u | | u |p - 2 (g—6) dxdt.

Condition II and the assumption of the theorem imply

f  |u(T, x)| p  r(x) dx <  oo.
Q

Thus from assumption (C), (11), condition I and the last inequality it 

follows the boundness of the function M{/u, b) on jo, ~ j  X (0, b0].

Let now b e  |-y-, <30j  and / /€(0,  30]. A well known property (see [4]) 

of the traces is tha t for any function h e  WJ (G)

\\h\\LilR)< K \\h x\\LHG),

where R is any submanifold of region G and constant K  depends only 
on region G. Taking advantage of this fact we get



T T
J  J  |u|p ( r—d) dSs dt ^  diam (Q) J  J  |u|p dSs dt ^

l* 3 Qi /* 3 Qa
T T

■ diam (Q) K J  J  ||u|p | dxdt ^  diam (Q) K p J  J  |u|p-» dxdt ■
<* <5«„-Qs0 o <3a„-Qj0

a
T

2
- T

^  diam (Q) Kp f f u2|u|P"2 dxdt 2 f  f  \u\p dxdt
0 Qdo-QSo 

2
0 <?5o-Qdo 

2

Thus, from condition II and (17) if a =  0 and d =  we get tha t the
a

first component of the function M(^, d) is bounded. For the second com­
ponent we have the simple estimate

J \u(m, *)Ip № ) - d )  dx  <  J \u{n, x)|p ( r (x ) -  j  dx
O. Di ’ <Qi Qso

2

so from the previous case we get that the function M(/u, d) is bounded 
in  the region (0, <50] x  (0 ,<50] what proves condition I. This ends the 
proof of Theorem 1.

Let us define the functions M(d) = M(d, d) and

M(d) =  /  J  2  a ‘̂ .  |u|p ds»dt +  J iu(<3’ X)|P (e~ d) d x-
0 S Q,  i, j  = 1 Qi

The assumption (A) implies

<19)

From the results of Gagliardo [2] it follows that if u e ^ p (D) then 
the functions M(d) and M(6) are absolutely continuous on (0, do], (see [1]).

REMARK 2. Under the assumptions of Theorem 1 condition I can 
be replaced by

III. M{d) is continuous on [0, 50]
o r

IV. M(d) is bounded on (0, do]-
Indeed, condition I follows from III and (19). Using the Dominated 

and Monotone Convergence Theorems we imply from (18) that there 
exists lim Ai(<5), thus we proved condition III. Condition IV follows

<3 -> 0+
irom  (19).

Let us consider the space Lp (3 D) of all functions such that

ll/ll, J J |/(t, x )|pdSdt+  j  ]/(0, x)jp r(x) dx
0 d Q Q

p <C OO.
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For p >  1 the space Lp w ith the norm || • ||p is a reflexive Banach

space and the space Lp' is dual to L p, where ■—  +  A - =  1. Moreover

the space L 2 is uniformly convex.
Let us denote

(f „x _  I u(t, xs (*)), for (t, x) e  (0, T] X 3 Q 
5^ ’ \u(3,x), for (t, x ) e  {0} X Q,

where u is a solution of (1), and <5 e  (0, <30]. Here the values of the function 
on the lower-dimensional manifold are understood as its trace on tha t 
manifold (see[9]).

THEOREM 2. Let u be a weak solution of (1) for fixed p ^  2 and 
f  f  uj jujp-21# dxd t <C oo for some fi <  1. Assume one of the conditions
D
I or II holds. Then there is a sequence 0 as k  -> oo and a function  
<p e  Lp(3 D) such that

T
J J (u (t,x Sk{x))-.cp{t,x)g(t,x))dSdt +aim

Jc oo 0 d Q

J  (u(dk, X) -<p(0,x)) sr(0, x) r(x) dx =  0 
Q J

+
Q

for each g e  Lp'(3 D).
P r o o f .  From condition I of Theorem 1 and (3) we have

T

C13 |  |u(t, x)|p dS5dt +  J |u(/u, x)|p r(x) dx ^
0 3 Qs Q

1 T
>  — J J M*. x i (X))IP dSdt +  J  \u{fx, x)|p r(x) dx

0 5 Q Q

for any I), fi e  (0, <50] and some constant C13.
Now taking d =  fx we get ||us ||p <  C13 for 6 e  (0, 50]. Thus the set 
: 5 e (0 ,  50]} is weak compact in Lp(3D) and hence the result follows. 
We need some lemmas in  the following
LEMMA 1. Let u s  p ( P ) ,  a >  — 1 and for some constant /?< 1 

JJ u2 \u\p~2 t& dxdt <! oo, Then there exists constants Cu  and C15 such
D
that

(20) J J  |u|p (t—6)“ dxdt <  Ci*

and
(21) J k(<5, x) |p dx <  C15

for d e  
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P r o o f .  Integrating by parts we get

JJ |u |p  (t — d)* dxdt =  - — J |u |p  dx — JJi<- (Mp)t =
Di Qs t=d D#

t  = T [ t-d yiCt + 1

(T -d y
a +  1—  f |u(T, x ) |p  d x ----- XT' f  f  ( t—d)a+1 |u|p-2 uut dxdt

J flT 1 JJ
Qb Dt

sC

'Va'hl  13  ?~ ^  j" * *
J |u<T, x ) |p  d x +  T  * JJ u*|u|p-* ( t -  d)  dxdt
a Ldj

2 .

yo+X
JJ |u|p~2 u2(t—3)“ dxdt 12 J |u(T, x)|P d x +
d> J a «

a+l
+

a + l
JJ u2|u|p-2t d x d t j2 j j j  |u |p  ( t - d ) “ d x d tj3

which implies (20).
Condition (21) follows from the estimate

J |u ( d ,  x)|pdx = J |u ( T ,  x ) |p  dx— JJ (|w|p)t dxdt =  J |u ( T ,  x ) |p  dx-
Q« Dt Qd

— p  JJ |u |p - 2 u u t  dxdt ^  J |u ( T ,  x)|p dx +
Ds

+ p ff u?|u|p-2 (t — dy  d x d t]2 |u|p ( t - d ) - f 1 dxdt 1 2 
Ds J  Ld« J

at the basis of (20).
LEMMA 2. Under the assumptions of Theorem  1 condition II implies

JJ  u2 r  dxdt <  oo.
D

P r o o f .  By Theorem 1 condition II implies the boundedness of the
T p

function M(d) — J  J (u2 + 1 )2 dSdt. Repeating the proof of the implica-
a a q s

tion I => II of Theorem 1 with

v(t, x) — u(u2+l)~jT(f)—5), for (t, x) e  Ds
0, for (t, x) g Da

as a test function we obtain
P~2

JJu2(u2+ l)  2 rdxdt<Coo
D

and the result follows. n
Let us denote by K(t, x) =  ^  ai3(t, x) eXl(x) QXj(%). Then we have 

the following lemma. u j = i
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LEMMA 3. Under the assumptions of Theorem  2 the function

G(d) = j  J u(t, x s (x)) g(t, x) K(t, x) dSdt + J u(8, x) g(0, x) g(x) dx
0 3 Q Q

is continuous on [0, So] and
T

(22) lim G(d) — J J <p(t, x) g(t, x) K(t, x) dSdt +  J 93(0 , x) g(0, x) g(x) dx
0 9 Q

for any function g in L p_1 (3 D).
P r  oo f .  Of course, G(<5) is continuous on (0, <50] so it suffices to pro­

ve continuity at 5 =  0. Since ||u{ ||p <  C13 for d e  (0, d0] and elements of
_p_

C1(D) restricted to 3 D are dense in Lp-1 (3D) we can assume that there 
is a g e C \D ) such tha t y\dQ=g. From (2), taking v  =  g(g—8) for (t, x) e D & 
and v  =  0 for (t, x) g  Ds as a test function we have

(23> JJ JE* auux,9x,(e~d)+  ^  aiiux..yQx, +  b9(Q~b) +

dxdt =  0.

Dj Li, j — 1 1. i = 1

+  u tfl'(e—5)

By the Green’s formula we have

(24) I f  ^  |  J £  aaQXiex,uy dS& d t -
Dj £, J =  1 ! =  l

n  T

“ JJ S  (aM8*,ffkuda:dt =  “ J J «(*. **(*)) 0(tj*)K(t,x) dSdt-
Ds t, j  =  1 i  3 Q

J J «(t, xa(x))
j 8Q

dSx
dS (*6 (x )) 9(t, x s (»)) K(t, x  (x ))-g (t, x) K{t, x) dSdt

“ JJ H  (o«eXJS)I t«dadt-
Ds i, j = 1

Integrating by parts the last term  in (23) we get

JJ «ty(e-5)dxdt = J u ( T ,x )y ( T ,x ) ( e ( x ) - d ) d x —
D6 Qa

-  [ u ( 6 ,x ) y ( 5 ,x ) ( e ( x ) - 6 ) d x -  f f uyt(g—8) dxdt =  
(2d ) j  j jQt Da

=  Ju(T, x) y(T, x) (e(x)-5) d x -  J U(d, x) p(0, x) (g (x)-d )  dx—
Qfi Qa

— J u(3, x) (§(x)-3) [y(d, x)—g{0, x)] d x -  JJ uyt{s ~ d )  dxdt.
«4
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From (23), (24) and (25) we obtain

G(3) — j  j  u(t> x s (*)) 9(t, x) K(t, x) dSdt +  J  u(3, x ) g(0, x) q ( x )  dx +-
o a q Q — Q  a

(26) +  3 J  u (3 ,x )gr(0 ,x)dx+JJ  auuxi'gxj(g -d )  d x d t -
Q t  D s  i, J  = 1

f J  u ( t ,x4 (x))| 
a s  q L

dS# 
dS (x. (x)) y(t, a: 6 (x)) K(t, x a (x)) - gr(t, x) K(t, x) d<Sdt —

-JJ J T  (aijeXjy)Xiu d x d t+ JJ  by(g—3)dxdt +  J  u(T, x) y(T,x) (g(x) — 3)dx-
D j i, j  =  1 Ds Qe

— JJ  uyt(g—3) d x d t -  J  u(3, x) (e(x)—3) [y(3,x)-gr(0, x)] dx.
Da Qa

Let us denote the integrals on the right side of (26) respectively by 
J\, J2, J io- We have the following estimates

and

kil <  [  J J l«(t. * , (*))lp dSdt |  i f f  J  ]gK\*>-' dSdt
L 0 3 Q J L o SQ

W  <  f lu(5> ac)lp e(x) dx 1 P f jy(0, x)|p -J e(x) dx
Lq  J L Q -Q s

p-1

p-1
p

so condition I implies

lim J j =  lim J2 =  0.
S -*■ 0+ « -* 0+

Similarly from (4), Lemma 1 and uniform continuity of the func­
tions K  and y  we get

lim J 3 =  lim J 5 =  lim J 10 =  0. 
a o+ & -* o+ s -+ o+

Continuity at 3 =  0 of J 6 follows from the integrability of u.
Applying assumption (C) and the result of Lemma 1 we can easily 

show that other integrals have the integrable m ajorants independent of 3 
and the integrands are continuous for almost all (t, x) e  D or x  e  Q re ­
spectively, thus from the Monotone and Dominated Convergence Theo­
rem s follows their continuity at 3 =  0. So we proved the continuity of 
G(3) on [0, So].

Now, the equality (22) is a simple consequence of Theorem 2.
Let us define the following norm in Lp (3 D)

Mi “ j  J  |/(t, x)|p K(t, x) dS d t+  J |/(0, x)|pg(x) dx
■ 3« e

79



Since y~l ^  K(t, x ) ^ y  and y” 1 r(x) ^  £>(x) ^  yt r(x) it follows that the 
norm ||*||* is equivalent to  the norm j| • j|p in Lp(3 D). Thus Lemma 3 im­
plies the following theorem.

THEOREM 3. Under the assumptions of Theorem  2 ub weakly con­
verges in  Lp( 3) to the function <p, as d -> 0+, where <p is defined in Theo­
rem  2.

3. Strong convergence. We begin with a theorem on I^-conver- 
gence.

For d e  (0, <50] we can extend the mapping x , : 3 Q -> 3 Qs on Q - Q ,  
in  such a way that for x e Q ~ Q } we have xs(x) =  x4(x'), where x ' e 3  Q 
and x '—x  — r) v(x') for some rj e  (0, 5]. Now we can define the mapping
.Xs : Q  —> by

x , for x e Q , ,
x6(x) = **(*)+ | - (*“ *«(*))» for * e Q - Q s.2

Thus x a(x) =  x  for each x  e  Qa and x4(x) =  x  4 (x) for each x e  3 Q. Mo-
d  ̂reover ^(x8) ^  — and y~* ^  |J 4(x)| ^  y8, where constant y2 is i n d e p e n -

dent of d and J ^  (x) is the Jacobian of the mapping xi(*)- 
Let us denote

t, for t e  [6, T],

| t + y 5 ,  for t e  [0, 5].t»(t) -  „ , — «« - i^ j.

LEMMA 4. Let h be a non-negative function in L ' jDj  —Daj. Then

(27) J J  ?i(td, x6) dxdt ^  max (2y2, 2) Jj h(t, x) dxdt
D —D s  D  g —Da

T
and if ii e  L!(D) then lim J J  h(ts, x'5) dxdt =  0.

5 “*■ 0+ D —Di

P r o o f .  By change of variables we get
t  s

J J h(td, x6) dxdt =  j J h(t, x5(x)) dxdt +  J J  h(ts, x*) dxdt +
D - D s  5 Q—Qtt 0 Q—Qi

6 T

+  J (" h(td(t), x) dxdt =  J J h(t, x) J~&{x) dxdt +
0 Qa 5 x 6(Q-Q«)

t  5 T

+  2 J J h(t, x) J - (̂x) dxdt +  2 J J h(t, x) dxdt ^  y2 J  J hdxdt +
A. XS(Q—Qd) 1  Q 4 5 Q $ ”~<̂ 5
2 2 —26 6 
+  2y2 J  J  h dxdt +  2 J J h dxdt ^  max (2y2, 2) Jj h dxdt.



Now the second part of the assertion is obvious by the well known pro­
perty of integral.

THEOREM 4. Let u b e a  weak solution of (1) for p =  2, JJ uH? dxdt <
D

<  oo for some p <  1 and let one of conditions I or II hold for p =  2. Then 
there is a function <p belonging to Lp(3 D) such that

lim «a =  9? strong in L \dD ).
{-►0+

P r o o f .  As || • ft and || • |]J are equivalent it suffices to show that the­
re is a (p e  L2(3 D) such that Mm =  0. By Theorem 3 there is

8 -*• 0+
a y e  L2f3 D) such that lim u4 =  cp weakly in L2. Since L^d D) is uni-

«-►0+
formly convex it suffices to show that lim ||uj* =  ||<p||‘.

3-*0+
Let us denote by < • ,  • >  the inner product L \  3D) with the norm 

Mia and
n n

v (9 )=  2  2  (ave.T,9)Xiu + h9 e - u9tQ- 
U * i  i, i -1

Ohserve that if u e  Wj^ p (D) then u(tJ, x4) e  VP-1 (D), thus, as in the 
proof of Lemma 3 (see [26]), we find that

(<p, g) =  JJ y.’(g)dxdt+  [ U(T, X )  g(T, x) q { x )  dx
D  Q

for any g e  CJ(D) and hence for any g e  1(D).
Taking g =  u(t}, x8) we obtain

(28) {<p, u(td, x8)) =  J J  yj(u{t, x)) dxdt 4 J  u2(T, x) g(x) d x+
D a Qa

+  JJ  yj(u(t5, x6(x))) dxdt + j u(T, x) u(T, x5(x)) q ( x )  dx
D —D  a Q —Qa

as x6(x) =  x and t6(t) — t for x e  Q6 and t e  [<5, T}.
We show that

(29) lim f f x6)) dxdt — 0
5 - * 0+ D - D i

(30) lim j U(T, x) u(T, xs(x)) g(x) dx =  0
5 ~> 0 +  Q - Q s

and
dx] =  lim (||uj*)2.

J a-*o+

From Theorem 3 we have that

(!MIJ)2 =  lim (<P, u ( t \ x 5))
S-+0+
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because x®(x) =  x s (x) on 3 Q and t4(0) =  — d, so from (28)—(31) it follows
— Z
2

tha t lim ||ua(|| =  ||9 ? | as required.
4  - »  0 +

To prove (29)—(31) set

» « ,* > = { “ “ ■ 

in equation (2) and thus we obtain

x ) ( e _ <5). for ( t ,x ) e D s,
for ( t , x ) e D —Ds

(32> JJ  2  a«uxiux)(e” d>+  2  ai}uxiuexi+ b u ( e ~ d) +
Ds Li, j  “ 1 l , j  = l

+  UtU(Q— 5) I dxdt =  0.

Condition II and equality

imply

lim /J 2  awu^u^te-djdxdt =  JJ J ?  oyu^u^edxdt
s -* 0+ Ds i, j = 1 D i, ) -  1

It
lim d J J  JT  aljux uxj dxdt =  0.

s-«-o+ Ds i, j = 1
Similarly using (11), Holder’s inequality we obtain tha t

lim § f f bu dxdt =  0.
«-*<>+ JDJS

From the assumption of the theorem and (11) we get 

d JJ uut dxdt ^  d [J u2 dxdt +  6 ("J u2t dxdt
Dj

thus

r>6 Da

: d J J  u2 axdt + d1-
D  Da

IS
tPu2 dxdt

lim 6 C C uut dxdt — 0.
a-*o+ Ds

Hence and from (32) we have

lim [ f  f y>(u) dxd t+  f u2(T, x) q(x ) dx l =« -° +L o. Qj J
n  n

JJ  "  H  a«UT, ue * r  y  (alj6xu)x u - 2 u u t(Q-d)lim
s-*o+ Ds 1, )  =  1 i. j  =  1

dxdt +

+  J  uz(T, x) (e(x) —<3) dx =  lim
D 4. j  =  1
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=  lim (||u j|i)2
S->-0+

-  J J ( u2)t ( e —d) d xd t +  |  u 2(T, x)  ( e ( x ) - S )  d x |  =
Da Qa J

=  lim | f  f u2(t, x) K(t, x) dSdt +  f uz(d, x) (e(x)—d )d x l =
* - ° + l j  5Q4 Qa J

=  lim I f  f u2(t, x d (x)) K(t, x )dS d t +  f u2(d, x) £(x) dx +
Lo 8Q Q

T
+  f f u2(t, x fi(x)) [K(t, x,,(x))—K(t, x)] d x d t— f u2(d, x) g(x) dx —

5 3 Q Q-Qa
a

— d J  uz(6, x ) d x — J  J u2(t, x4 (x)) K(t, x) dSdt
Qa 0 3 Q

because the four last term s tend to zero as <5-»-0+. So we proved (31). 
It follows from assumptions (B) and (C) that

(33) | |  y(u(t8, x 6)) dxdt < C 16 | |  [|wx||ux(t8, x i )|e +  |u ||u (ta, x s)| +
D—Da D—Da

+ \u\ \ux{tb, x ’JI +  Zlu^, X5)! e +  H  |li(t4, X5)| e +  |tt*l \u(t\ X5)| Q +
-f ju| |ut(ts, xA)| g] dxdt

for some positive constant C16 independent of S. Let us denote the inte­
grals on right respectively by Pi, P 2, P 7.

Since g(x*(x)) ^  g(x) for x  e  Q we have

P f ( d ) ^  JJ u |g d x d t | |  u 2 (ts, Xs) q(x 6) dxdt
D —D a yv, M  D - D a

thus from condition II and Lemma 4 we get tha t lim P i(d) =0.
a-*o+

Condition (11) implies u e L 2(D) thus quite similarly as above we 
obtain that lim P 2 (<S) =  0 and since P 5(6 ) ^  sup g(x) P 2(<3), lim P 5(S) =  0, 
tQO «->o+ x s q  a-*o+

We have the following estimation
T  i

| |  u2 dxdt =  |  j  u2 dxdt +  |  |  u 2 dxdt =
D - D  a 0 Q - Q a  0 Qa

t  a a
=  |  dt J ds J u 2(t, x) dSdt +  |  d t |  u2(t, x) dx ^

0 0 3 Q , 0 Qa

(34) J , , ^
^  b sup |  | u2(t, x) dSdt +  d sup |  u^ t, x) dx ^

s e ( o , a ] i 34 s t e ( o ,a iQJ4

I d j sup f T u2(t, x) dSdt +  sup |  u2(t, x) dx 
ĵ s e (o, a] q 3 t e (0, a) q(

by Theorem 2 and conditions (3) and (21) of Lemma 1.
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jP3(3) <  JJ Inx{ t\ X5)! eT (x*(x)) j / 2 dxdt

thus by Holder’s inequality we get

P * ( d JJ u2 ft6, x4) g(xa(x)) dxdt y  JJ u2(t, x) dxdt
D —Dd D —Da

so lim P 3(6) =  0 by (34) and Lemma 4. Using Holder’s inequality we 
»-*o+ 

have

Since g(x5(x)) >  y  we have

p 2 (d )<  JJ  S ^ dxdt J J  f 2e S d x d t
D - D ,  '  D - D i

thus lim Pi{d) = 0 by assumption (C), and Lemma 4.
5 -*0+

In the same way we get

P | (3) ^  JJ gu*dxdt JJ u2(ts,x*) dxdt sup £>(x)
D —D a D —Da r  £  Q

thus lim Pe(<5) =  0 by Lemma 4 and condition II.
6 -► 0+

Since ta ^  — we get

JJ  |ut(ta, x5)| (t5) 2 |u| dxdt sup e(x)| | j - j  <

\ 2 / 2 \— 
sup e(x)J JJ u*(t'\ x 5) (t'Y  dxdt I — j 2 J j u2dxdt
i  e q /  D- Di \  1 d -D s

and hence lim P 7(6) =  0 by Lemma 4, assumption of this theorem and
s-»o+

condition (34), as 1 — ~~ >  0. Thus we proved the condition (29).

Condition (30) follows from the estimation

f u(T, x) u(T, x6(x)) o(x) dx ^
L 6-Qa

I sup e(x) J J u2(T, x) dx-y2 J u2(T, x) dx
\ x  G Q I  Q_ Qj Q - Q t

and the fact that u(T, •) e  L2(Q). This completes the proof of Theorem 4. 
In the case p >  2 we begin w ith the following result.
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LEMMA 5. Let u be a weak solution of (1) satisfying one of condi­
tions I or II for a fixed p >  2 and j j  u \ (|u|p~2+ l)^ d a :d t  <  oo for some

D
(I <  1. Then u6 converges to <p in L<*(3 D) for each q, where 0 <  q <C p. 
The function (p is defined in Theorem  2.

P r o o f .  F irst we note that u i converges weakly to <p in J>(3 D) 
by Theorem 2. We shall show tha t u} converges to <p in L2(3 D).

Let a(0) =  0 for p ^ 9 <  p, a(0) =  - — — P for -jr <= 0  <  2p —1p ^

and %(0) — — 0 —a(0). For 0  and % such tha t p : 0  <  2p —1 and 2

■ % <  3 we have

J J / V d * d t <
D  L D

pa

dxdt
_  pa

J j g  p~2 dxdt
D F<  oo

by assumption (C) as p —2 <  1.

Since p (D) d  Wfc* 2 (D), u is a weak solution of (1) for p =  2. 
By Lemma 2, condition II is fulfilied w ith p =  2. Thus we can use the 
result of Theorem 4. Hence us converges to  some function (p in LHd D)
so cp — <p a.e.

For measurable sets A d d  D and s satisfying 4- + q _ 1 we have

J |u4 -  9>|<3 <  |A\s J  |u4 -  <p\*> J Kl*

; iais №

Thus ub — (p is equi-absolutely integrable and bounded in  L<3(3 D) so i t  
is compact for b such that 0 <  b ^  <50. Now for any sequence bk -> 0 
there is a subsequence b£ ->0+ w ith u4i -<p-+ 0 a.e. and the result 
follows.

To prove LP-convergence we shall need the following theorem on 
Nemytsky Operators (see [10], p. 155).

THEOREM. I f f(t, x , u), defined on 3 D X R, satisfies Caratheodory 
conditions, conditions (i) and (ii) of assumption (C) and

|/(t, x, u)| <  g(t, x)+K|u |*,

where g e  I/f(3 D), 1 ^  s, t <  oo and K  is a positive constant, then f  gene­
rates a continuous operator from  L*(3 D) into L‘(3 D) given by the for­
mula , . . , . , ..

h : u ( . ,  ') - + f ( ' ,  • ,«(•,  •))•

This operator is called the N em ytsky Operator.
We now establish the following Lp-convergence theorem.
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THEOREM 5. Let u be a weak solution of (1) satisfying one of condi­
tions I or II for fixed  p >  2, J J  (u2(]u|p-2+1) t^dxdt for some /? <  1, then

D
ug converges to the function q> in Lp(3 D).

P r o o f .  Let us denote by ud the trace of the composition u(t\t),
xa(x)) on 3 D. It is clear that ud =  us_ for d e  (0,d0].

2

We begin w ith the following
REMARK. If ud is bounded in  Lp(3 D) and us—>tp in L<J(3 D) for

V
g <  p then u 6|u 6|p ~ 2 <p\(p\p-i weakly in (3 D). This means that the 
mapping given by the formula

f(t, x , ub) =  u6|u6|p-2 

p-i
is continuous from L<3(3 D) to L 9 (3 D) by Theorem on Nemytsky Ope­
rators.

Hence ua|ua|p~2 -> <p\cp\v~2 as <5->0+

- g qin L  p_1 (3 D), where we take —-—- >■ 1. Also u s\u &\p ~z is bounded in \ p _ j

p
L  p-i (0 D) and so it is weakly compact and the result follows.

The rest of the proof is similar to that of Theorem 4. For every 
g 6 W 1’1 (D) we getp

p - i

J J  g K  dSdt +  J 93(0 , x) g(0, x) q(x ) dx
0 a q

=  JJ  rp{g) dxdt +  J u(T, x) g(T, x )  q ( x )  dx
D  Q

since u6 -> <p as d 0+ weakly in L p(3 D) (see the proof of Lemma 3).
Set g =  u(ts, xP) \u(td, x^Ip-2 in the above equality and noting that

p_
u (t\ x 5) =  u on Ds and ua|ua|p-2 -> ^^Ip-2 weakly in Lp-1 (3 D) we 
obtain

(IMIp)p =  lim
d -+■ 0+

+

J J <p u,,|u'1p“2 K dSdt +
0 2 Q

J J  yj{u\u\p~2) dxdt +
D t

f 93(0 , x) tta(0 , x) |tia(0 , x)|p- 2  {>(x) dx =  lim
«3 a~*0+

/OC\ "1
+  f |u(T, x)|p g(x) dx +  lim f f yj{u(t\x' ) |u(ta, xa)|p~2) dxdt -

L  J  f i - ° + L D - D a

+  J u(T, x) u(T, xa(x)) |u(T, xa(x))|p-2 g(x) dx.
Q—Qi



Setting , , .
u |u |p -2 (e-S ), for ( t , x ) e D a,
0, for ( t , x ) e D —D

v  —

in (2) we obtain t

!!  2  aijux,(ululp-a)xjte“ a)dxdt+ JJ £  auuI u|u|p-2exdxdt+
D, i, j  “  1 Dt l , j - I

!+ JJ bu|u|p-2 (g—d) dxdt + JJ utu|u[p-a (g— d) dxdt =  0.
D a  D t

As in the proof of Theorem 4 it is obvious that

8

thus

im 5 | | |  aiiuI  (u|u|p-2)^+ b u Iu |p -2+ n tu|u[p-J | dxdt +
- 0+ d. Lt. i = 1 ‘ J

+  8 |  |u(T, x ) |p  dx =  0
Q>

lim f f V (u|u|p~2) d x d t+  f |u(T, x ) |p  g(x) dx I =
» - » + Ld; I  J

=  lim — JJ j ?  (an gX)u|u|p)x d x d t -  JJ (|u|p)t(g -d ) dxdt-f
*-»0+ L Dj i, j = 1 Dt

1+  f |u(T, x)|p (g(x) d) dx 1 =  lim I f f |u|p K  dSdt+
i  J 4 ->0+ L»

+  f |u (d ,x )|p (g (x )-3 )dx  =  lim (||usP )p .
Qj 4 -»• 0+

Thus, it suffices to show th a t second component on the right of (36) 
tends to zero as d -> 0+. I t is easily seen tha t this integrand can be esti­
mated by

K  (l« * l |w i(d ) | |u ( 5 ) |P - 2 g + | u |  Im^ ^ Ip - J  +  Iu I |u x(5 )| |u .(d)|p _ 2 +  

+ /|u (d ) |P -1g + |u |  |u(6)|p-i q + \ u x \ |u(6)|*-i q+\u\  |u t(«)| |u(d)|p- 2,

w here K  is a suitable constant and we denote u(d) =  u(ts, X s).

Estimation of the  integrals of the first, second, fourth, fifth and 
sixth term s is similar to the previous calculations (see the proof of Theo­
rem  4).

We have the following inequality

abcP-2 ^  const (ap +  b2cp~2+  cp)

for each positive a, b, c and p >  2.
Set a =  |u|, b =  |ux(3)| or b =  jut(6)| and c =  |u{d)|. Now we can esti­

m ate the th ird  and seventh term s analogously as in the proof of Theo­
rem  4. This completes the proof of Theorem 5.
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