KAZIMIERZ LICHAWSKI

BOUNDARY VALUES OF THE SOLUTIONS
OF THE PARABOLIC EQUATION

Abstract. The paper deals with the problem of the behaviour of a given
solution of a quasi-linear parabolic equation near the parabolic boundary. Neces-
sary and sufficient conditions for weak and strong convergence in the Sobolev

space Wp’l, P~ 2, are given.

1. Introduction. In the theory of partial differential equations the
problem of the behaviour of the given solution near the boundary arises
in a natural way. A problem arises while determining if the given solu-
tion has trace on the boundary. Several function spaces arise as the spa-
ces of traces of solutions of partial differential equations. The purpose of
this paper is to obtain conditions giving LMraces on the boundary of
generalized solutions of a quasi-linear parabolic equation. Section 2 deals
with the problem of weak convergence of traces for solutions in the So-
bolev space WE£1, p 2. Section 3 extends these results to strong con-
vergence. The arguments which we give here are based partially on the
references [1], [7] and [8].

2. Weak convergence. Consider the quasi-linear parabolic equation
of the form

@ (a™t, a)uz) ¥ ~b(t, x, u,ux)-ut= 10
U-i

in a cylinder D= (0, T] X Q, where QC Rn is a bounded domain with
the boundary 3Q of the class C2 ux —Dx u, ux — (uXi, ux). Let us
denote r(x) = dist (x, 3Q). We make the following assumptions:

(A) There is a positive constant y 1 such that
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for all | e Rnand (t, x) e D.
(B) The coefficients ai} belong to CI(D).
(C) The function b(t,x,u,s) is defined for (t,x,u,s)eD X Rn+l and sa-
tisfies the following conditions.
(i) for a.e. (t,x)eD, b(t x, ¢ ¢ is a continuous function on Rn+l,
(ii) for every fixed (u,s)e Rn+l, b(-, * u,s) is a measurable func-
tion on D,
(iii) for all (¢, x, u,s) 6 D X Rn+l

Ib(t, x, u, s)| < f(t, x) -FLQOU\+ |s]),

where L is a positive constant and / :D-» R is a non-negative-
measurable function such that

J f f(t, x)p r(x)e dxdt < o0
D

for some constants p, 0 for which 1< p< p”r 0 < 2p—I.
REMARK 1. Under the assumption (C) the composition b(t, x, u(t,x),
s(t, &)) is measurable when u{t, x), s(t, x) are measurable and the mapping,

b(t, x, , :Lloc(D)n+i-> L c (D)

is continuous, (see [6]).

In the sequel we use the notion of a generalized solution involving
the Sobolev spaces: p (D), WE#D), WE°(D). We denote by p(D)'
the Sobolev space of real functions u such that u and its distributional
derivatives uXi, ..., uXh ut belong to Lfoc(D) and by WE°(D) the Sobolev
space of real functions u such that u and its distributional derivatives
uXl, =>uXh belong to Lp(D). The space of the functions u which belong
to W*,0(D) and such that supp uC Int D we denote by W”°D.

DEFINITION. A function u is said to be a weak solution of the equa-
tion (1) in D if ue W& p(D) and u satisfies

(2) J f |E Uii(t,x)uxtvx. d®dt + \]J b{t,X, u, UX)V dth+ JJ utv dxdt = 0
D

D ij=1 D
for every ve WE?° (D), where +-7 =1

It follows from the regularity of the boundary 3 Q that there is
a number d0> 0 such that for de (0, ®] the domain Qt —Q " {x:
:yrgénQ \x—y\ > 5} with the boundary 3 Q., possesses the following pro-

perty: to each x0e3 Q we can assign a unique point Xx&X0 —x0—dv(x9r
where ~(x0) is the outward normal to 3 Q at x0. The inverse mapping to



x0->x4(x0) is given by the formula x0= x4+ dv&x4), where vs(x4) is the
outward normal to 3 Qs at x4.
Let xs denote an arbitrary point of 3 Q5. For a fixed s> 0 intro-
duce the sets
A- 3Qs™ {x:|x-x41< €)
Bt= {X :X — x4+ dB(x4),xse3 s~ {X :|x-x4|<e}

and put

dSi (x4) = lim
dso *et+ [B.|

where |A| denotes the Lebesgue measure of a set A. It was proved by
Michailov [8] that there is a positive nhumber yOsuch that

<kS4 AN
©)
and
. dS.
4) 5I_|> m -r=- (x4(x0) = 1

uniformly with respect to x0e 3 Q.
According to Lemma 1 in [3, p. 382], the distance r(x) belongs to

C2(Q—Q6) if @ is sufficiently small. Denote by o(x) the extension of
the function r(x) into Q satisfying the following properties: o(x) = r(x)
for xeQ —Q4& eeC"Q), 9(x) > in Q4 y-1r(x)<8(x)< nr(x) in Q
for some positive constant yx, 3Qs = {x:o(x) = d}, [ox(M = 1 for
xeQ —Qs, d€ (0,a0] and finally 3Q = {x:g(x) =0}, g(x)>0 on Q.

Introduce the surface integral for /u,de (0, d0] and ue p(D)
T
M@Gu, d) = f I \u(t, x) dSsdt+ j \uffi, x)p (r(x) —6) dx,
u dq Q

where the values of the function u(t, xX) on the n-dimensional manifold
are understood in the sense of traces, (see [9]).
Let us denote

D-=(MmT] X Q4, 3D“= MT] X 3Qdw {(I} X Q&
3D=[0,Tj X3Qu {0} X Q and Ds = D*

Here 3 means the parabolic boundary.
THEOREM 1. Let u be a weak solution of (1) for fixed p~ 2 and

ffu* |ulp-2 t*dxdt < oo for some /?<1. Then the following conditions
D
are equivalent:
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I. M(d, /u) is bounded on (0, 50] X ,(0, do],

. JJ u2\u\p~2 r(x) dxdt < oo.
D

Proof. Let for ju.de (0, 60]

\(t)9 u(t,a:)u(t,x)|p-2(e(x)-d), for (t,x)eD$
0, for (t,x)eD-Dj*“.

Using&lder’s inequality and the well known property of weak deriva-

tives — ,sgn U'UX it is easy to prove that Vs an admissible test func-
tion in (2). Substituting Vin (2) we obtain

ff de(i(LN)p—MQ—d)dthﬂJ M\u\p~2 gx dxdt+
=1

6 %13

.\ JJ t(t,xuwuum-z (g—6) dxdt+ \]\] L‘LIlulp-Z (g—gdxdt = 0.
3 °s

By the Green’s formula we have

6) I f JL ailuxiUMp_2eXjdxdt v ff

-S_I(a"M pA Jxld*dt+
pHoii—1 |,|—

- : = i = rce* d>S dt+
Fp f@lﬁzl(anSz)Ju\dedt Vo fb32(e|j:elte Py

tirff E (anex) xM \pdxdt / lulpdsédt+-~-JJ|u|lpdxdt,

Mo

where Cx= max *
txed t,j2=i(a»e><l)

Integrating by parts the last integral in (5) we obtain

JJ UU\u\p~2 (q—edxdt = —1 JT J \u\p (q— ddxdt
u Qs

(7)

J u(T ,x)|p(e-a)dx- v J (i, x)p (g—S) dx.
P Qi Qs



Using the assumption (C) and Young’ inequality we have the estimate

<8) JJ bn |ulp-2 (g—S) dxdt JJ flulp-! (g—d) dxdt-f

+L JJ |hjp (g—<5)dxdt + L J J |ttx| (ulp-1(q—d) dxdt:
Ds

JJ fP(Q—d)adxdt+ JJlujP (ff—d)adxdt+ L JJ |ulp (q—d) dxdt+

dE d%
+ Le fJ LﬂLjp’Zq—& d)(dt'l"_\]\] lulp (g— d)dxdt,
W 6
where a—p—Tl&—and e is any positive. The assumption (C) implies that

Q> —1.

The first integral in (5) we can estimate as follows

i i o)

w u

ot M -i
-1
P=% 11 ujiub_2 (e~5) dxdt.

Thus combining (5)—(9) we obtain

431/1 JJ u* Julp-*(g-d) dxdt+

0 T =B dx A — J ] pasgat+

AQn At

=3 JuGu, Ol (g—d) dx+ — JJ Mpdxdt+ |1 + A\ JJ jup (q—d) dxdt+
P d< D«

G
JJ fp dxdt+ JJ [ttlp (9—d)adxdt + LfJJ u* |u]p-2(g—<Hdxdt.
Ds
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Choosing e such that Rz%l = Ls and reducing the last term we obtain

from this inequality
JJ U |ulp-2 (Q-d)dxdt+ C2J |u(T,x)|p (e-d)dx <

PO
<C3JJ |up(g-6)“dxdt+ C4// prodxdt+C5JJ Mpdxdt+ C6M(M 5),

(10)

Dt
where C2= p(p@-1 , E3= d4=-~44 C5= max
2Ciy 1 .r _ [ 2y2 2yyx \
p(p-DI 6 \p(p-1) " P(P-1))

Let ae(—1,0], de|o,-y-j, /i€(0, d0] and x e QSi. From the defini-

tion of the function g it follows that (g(x)—5)"* thus we obtain

T T
JJ |ulp (@—d)adxdt = I J |ulp (g—d)“dxdt+ J I |ulp (g—d)°dxdt+

dg o Qi 3
0] T
) | UpE* dfdxdt A J J |ulp<todt+ jdtj (v—d)“dvJ |ujPdS, +
p QB DGy to
+ f f lupfe- S)dxdt® 1~ f f |ulPdxdt+
v Qo oy«

su f f|uPdSadt+(-Y-i  su J lu(/u,x)lp(fF=d) dX.
a+1o<kpj0|; 8q,II (\*/ o<A.Fia." 4 0tp (1)

For 0>0 we have (g—d)°~C7, where C7= max [g{X)—d]“ so we
obtain the following estimate Q
JJ |ulp (g—d)“dxdt < Cg

-f

(11)
fora> —1, Se (0, /ue(0, 50] where the constant C8is independent

of 5and /u
Now condition (10) implies the estimate

(12) JJ u\ [«Jp-* (g-5) dxdt< C9
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for d€ |o, -y-j and ne (0, do] which we can write in the followingg form

Jj u\u\p~2rj(t, x, n, by dxdt < C9

where
{tx a)=|e(*)-«, for (t,x)eDs

Hence and from the Monotone Convergence Theorem we obtain con-
dition Il what proves the implication | *>II.
To prove the implication Il =>1 we show first that condition Il im-

plies (11). Let a> —1, <5e(0, , fie (0, 50] and

T T
(14) JJ Jup (@—d)“dxdt = J f |up(g—d)“dxdt+ J I |ulp(g—d)“dxdt.

Integrating by parts we have

1 pt-eeidt —T I T QNP s 10 (Gr6Be—

—pJ J t\up-2uut(Q—dy*dxdt”T J fu(T, X)|pdx +
+P1/T f f f u2lu\p-2(Q-d)adxdt f f tl«|p-2u*da;dt|T
L &, \' /L 09 I

thus there is a constant C10such that for every de |0, -y-j, n e (0, <]
T
(15) f J |up (g—d)°dxdt < Cio-
r <5«0
From condition Il it follows that
X

[ | llufe]dxdt< 00
0 @a,

3
because r(x) — @ for xe Qband thus |ujpe 0((0, T) X Q4).

It is well known (see [9]), that such function has the trace on th*
parabolic boundary of (0, T) X Qit and

T
f J |updShkdt< oo.
0 3Q5,



As g(x) —30 for x € 3 Q@ thus there is a constant Cn such that

(16) f f \u\p(e-d)°dSSodt<cll
P 3«0

and juG (0, 60Q].

Using: th apping x  xs(x), <3) and integrating by parts we obtain
f f jypg-godd—I atj’ (-8ad/s urdsme
m QxQv fx d dQv
I atd (V—G)Ed/gJQ U600 ds

V—
+ T~ yoF] dtSIQ Ne> x,(x))lpdS  \/—8
J dts (v-d)=+iav 3 uct x»x))12 UKE X () L(t,x"x))—3x ®) s
i 5 3Q

ju
gatly2 T 2 T

J ] |updSjodt+ 3 odtd (v-6)“+idr T |ttjp-i \Wux\dSy
3 @b SQ

3 X
where we have used 1
»

Now using (16) and Holder’ inequality we have
0+l

T & 2 D2
/ [ M»<e-a>-dxdt< ~ ¢ , 1+/
K< Qa—Qjo

r T «Q "L r T Jo
./ dtJd f \ulp(v-d)“dSydv » J dtJ J |u|p~2J‘(V—éds'\dv|f

L« 6 dQy J LK< 3 3Q,

”+l Cu+

atl  2-iz— f T 11- f
A-92m ilL1j J jup(g—Sadxdt 2 jj uw\p~2r(x)dxdt

0+ 1 Lf* I d

From the last estimate it follows

T
17 f f  \u\p(e-d)“dxdt<C2R

m Q-8
for 6e (°'t] and ne (0, |®], C12being a convenient positive constant.

Now (14), (15) and (17) imply the condition (11).
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From the first part of the proof we have the following equality

<18) -i-f f jo auQXieXMpdSgdt+i- f |u(fi,x)p (q-6) dx =
B 3041, 1=1 vV Q

2 (axerj)*, lulpdxdt+ f f bit, x, u, ux)uju|p-2 (g-3) dxdt+

Aj-flu (T,x)fp(e-d)dx+ (p-1) ff JT atjuXtuXj\u\p-2ie~~b) dxdt.
P o Q. i,]~I

Using (A), (B), (C) and the estimate (8) with e = 1 we get

-i- j* f Jup dSsdt+ f \un,<)p (g-b)dx< ~ ff jupdxdt+
P 3Q P Q rf

+ ff Pie-d)e6xdt+ ff \u\p(g—S)°dxdt+ 2L ff |up ie-b) dxdt+

+y(p—1)JJ ullulp- 2 (—6) dxdt.

Condition Il and the assumption of the theorem imply

f |u(T, x)| p r(x) dx < o0.

Q
Thus from assumption (C), (11), condition | and the last inequality it
follows the boundness of the function M{/u, b) on JO, ~ J X (0, b0}

Let now be|y-, & and //€(0, 30]. A well known property (see [4])
of the traces is that for any function h e WJ(G)

WALIIR)< K \\h x\LHG),

where R is any submanifold of region G and constant K depends only
on region G. Taking advantage of this fact we get



T T
3 J |up (r—d)dSsdt” diam (Q) J J |ujpdSsdt”

F 3Q Fo3Q
T T
miam (Q) KJ J  Julp|dxdt” diam (Q) KpJ J  |ulp-» dxdt m
< <b«,,-Qs0 0 <3a,-Qjo0
a 2
- ST
A diam (Q) Kp f f u2ulP"2dxdt 2 f f  \updxdt

o 0 e

Thus, from condition Il and (17) if a= 0 and d= . we get that the

first component of the function M(”, d) is bounded. For the second com-
ponent we have the simple estimate

I u(m ®IpNe )-d) dx < I \ufn, X)lp (r(x)- j dx
Q ! ’ <

2

so from the previous case we get that the function M(/u, d) is bounded
in the region (0, &] x (0,4 what proves condition I. This ends the
proof of Theorem 1.

Let us define the functions M(d) = M(d, d) and

Md)=/ J 2 a*". [ulp ds»dt+ J iu<3 X)P (e~ d) dx-
0 SQ,i,j=1 Qi

The assumption (A) implies
<19)

From the results of Gagliardo [2] it follows that if u e ~ p (D) then
the functions M(d) and M(6) are absolutely continuous on (0, do], (see [1]).

REMARK 2. Under the assumptions of Theorem 1 condition | can
be replaced by

I1l. M{d) is continuous on [0, 50]
or

IV. M(d) is bounded on (0, doJ-

Indeed, condition | follows from Il and (19). Using the Dominated
and Monotone Convergence Theorems we imply from (18) that there

exists lim  Ai(<5), thus we proved condition IlIl. Condition IV follows
3-> 0+
irom (19).

Let us consider the space Lp (3 D) of all functions such that

wm,  J J x)pdsdt+ | JO xjp r(x) dx p<ca
0 dQ Q
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For p> 1 the space Lp with the norm |e||p is a reflexive Banach
space and the space Lp' is dual to Lp, where = + A- = 1 Moreover

the space L2 is uniformly convex.
Let us denote

(f .x _ lu(t,xs(*), for (t,x)e (0, T] X 3Q
5N \u(3,x), for (t,x)e {0} X Q,

where u is a solution of (1), and %e (0, ])]. Here the values of the function
on the lower-dimensional manifold are understood as its trace on that
manifold (see[9]).

THEOREM 2. Let u be a weak solution of (1) for fixed p” 2 and

ffujjujp-21#dxdt <Coo for some fi< 1. Assume one of the conditions

D
I or Il holds. Then there is a sequence 0 as k -> 00 and a function
e Lp(8 D) such that

aim .JT J (u(t,x3{x))-.cp{t,x)g(t,x))dSdt +
Jk oo 0 dQ

+ J (u(dk, X) -<p(0,x)) sr(0, x) r(x) dx = 0

Q J
for each ge Lp(3 D).

Proof. From condition | of Theorem 1 and (3) we have
T

Cis | Ju(t, x)|pdS5dt+ J Ju(/u, X)|pr(x) dx *
0 3G Q
1
> —J J M* xi (X)IPdSdt+ J \u{fx, x)|pr(x) dx
0 5Q Q

for any 1), fie (0, ®] and some constant C13
Now taking d = fx we get |us|p< CI13 for 6e (0,50]. Thus the set
:5e(0, 50]} is weak compact in Lp(3D) and hence the result follows.
We need some lemmas in the following
LEMMA 1 Let us p(P), a> —1and for some constant /?< 1

JJ u2wu\p-2t&dxdt <! oo, Then there exists constants Cu and CI15 such

D

that

(20) JJ Julp (t—6)“dxdt < Ci*

and

(21) J K5, x)pdx < Cys
Q@

for de
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Proof. Integrating by parts we get

t=T E_dym'l
JJ |ulp (t—€)*dxdt = -— Jupdx  —JJ (Mpt =
Di G t=d D¢
(Ta'iyl— FIu(T, 0lp dx——=XT' 15 (t—da+L Julp-2uut dxdt sC
Qb Dt
'Va'hl 13 YT
" JIu<T, x)p dx + T* ]JJ u*|ulp-* (t- d) dxdt 2.
a Ldj
yorX
JJ Jup~2u(t—3)“dxdt 12 J|u(T, x)Pdx+
d> J a «
a+l
+ ol JJ u2ulp-2 dxdtj2 jjj julp (t-d)“dxdtj3
a

which implies (20).
Condition (21) follows from the estimate

J |uqd, X)|pdx = Jju(T, x)lp dX—IJ (Wp)tdxdt = Jju(T, x)|p dX-
Q DX Q

—p I julp-2uue dxdt ™ Jju(t, X)|p dx+

Ds

+p ff u?|ulp-2(t—dy dxdt]2 lulp(t-d)-fidxdt 12
Ds J Ld« J
at the basis of (20).
LEMMA 2. Under the assumptions of Theorem 1 condition Il implies

JJ u2r dxdt < oo.
D

Proof. By Theorem 1 condition Il implies the boundedness of the
T

p
function M(d) —J J (u2+ 1)2dSdt. Repeating the proof of the implica-

a agqgs
tion 1 = Il of Theorem 1 with

u(u2+D)~jT(f)—5), for (t, x) e Ds
0, for (t, x) g Da
as a test function we obtain

v(t, X) —

P~2
JJu2(u2+1) 2 rdxdt<Coo

D
and the result follows. N

Let us denote by K(t,x) = * aidt, x) ed(x) @4(%). Then we have
the following lemma. uj=1i
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LEMMA 3. Under the assumptions of Theorem 2 the function
G@d) = J u(t,xs(X) g(t, X) K(t, X) dSdt+ J u(8, X) g(0, X) g(x) dx
03Q Q
is continuous on [0, So] and

(22 limG(d) —3 J i, X) g(t, X) K(t, X) dSdt+ J e3(0, X) g(0, X) g(X) dx
09Q

for any function g in Lp 1 (3 D).
Pr oof. Of course, G<5) is continuous on (0, &)] so it suffices to pro-
ve continuity at 5= 0. Since |ju{|p< C13 for de (0, d0] and elements of

_p_
CAD) restricted to 3 D are dense in Lp-1(3D) we can assume that there
isage C\D) such that y\dQ=g. From (2), taking v = g(g—38) for (t,x) e D&
and v = 0 for (t, x) g Ds as a test function we have

(23> JJ B auux,9x,(e~d)+ ~ aiiux.yQx, + b9(Q~b)+
Dj Lb,j— li=1

+ utfle—5) dxdt = 0.

By the Green’s formula we have

(29) ” N | J £ aaQXiex,uy dS&dt-
Dj £J=1 ! =
n T
“J) S (aMB*ffkuda:dt = “ J J «(* **(*)) 0(tj*)K(t,x) dSdt-
Ds tj=1 i 30Q

J J «(t, xa(x) ?jix (*6(x)) 9(t, x s()) K(t, x (x))-g(t, x) K{t,x) dSdt
j 8Q

“JJ H (o«eXB)lt«dadt-
Bij=1
Integrating by parts the last term in (23) we get

JJ «ty(e-5)dxdt = J u(T,x)y(T,x)(e(x)-d)dx—
1) Q

- [ u(6,x)y(5,x)(e(x)-6)dx- ffuyt(g—8) dxdt =
(20) & b
= Ju(T, X) y(T, X) (e(x)-5) dx- Ju(d, X) p(0, X) (g(x)-d) dx—
Qfi Qa
—Ju(B, x) (8(x)-3) [y(d, x)—g{0, X)] d x- JJ uyt{s~d) dxdt.
«4
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From (23), (24) and (25) we obtain

G@B) —ij j ut>xs(*)) 9t x) K(t,x) dsdt+ J u(3,x)g(0, x) q(x) dX +

0 aq Q—Qa

(26) +3J u(3,x)gr(0,x)dx+JJ auuxi'gxj(g-d) dxdt-

Qt ps lLi1=1

fJ u(t,x4(Xx)| ddSS# (x. (X)) y(t, a6(x)) K(t, xa(x))- or(t, x) K(t, X) d<Sdt—
as q L

-JJ JT (aijeXjy)Xudxdt+JJ by(g—3)dxdt+ J u(T, x) y(T,x) (g(x)—3)dx-

Dji,j=1 Ds Qe

—JJ uyt(g—3) dxdt- J u(3, x) (e(x)—3) [y(3,x)-gr(0, x)] dx.
5} Q@
Let us denote the integrals on the right side of (26) respectively by
J\,J2  Jio We have the following estimates
p-1
kil < [J Jl«t.*, (*))lpdsdt] i ff J JgK\*>'dSdt

LO 3Q JL oSQ
and

p-1
W <  fluGapex)dx1P f jy(, x)|p-Je(x)dx P
Lqg J LQ-Qs
so condition I implies
lim Jj = limJ2= 0.
S a0+ «*0OF
Similarly from (4), Lemma 1 and uniform continuity of the func-
tions K and y we get
lim J3= lim J5= lim J10O= 0.

a ot & * o+ S-+ot

Continuity at 3 = 0 of J6 follows from the integrability of u.

Applying assumption (C) and the result of Lemma 1 we can easily
show that other integrals have the integrable majorants independent of 3
and the integrands are continuous for almost all (t, x)e D or xe Q re-
spectively, thus from the Monotone and Dominated Convergence Theo-
rems follows their continuity at 3= 0. So we proved the continuity of
G(3) on [0, o).

Now, the equality (22) is a simple consequence of Theorem 2.

Let us define the following norm in Lp(3 D)

Mi“ T 31X K(t, x) dSdt+ J |/(0, x)[pg(x) dx
m 3« e
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Since y~I" K(t,x)*y and y"1r(x)» ("™ ytr(x) it follows that the
norm |** is equivalent to the norm jejp in Lp(3 D). Thus Lemma 3 im-
plies the following theorem.

THEOREM 3. Under the assumptions of Theorem 2 ub weakly con-
verges in Lp( 3) to the function < as d-> 0+, where <pis defined in Theo-
rem 2.

3. Strong convergence. We begin with a theorem on I”-conver-
gence.

For de (0, ®] we can extend the mapping x,:3Q->3Qs on Q-Q,
in such a way that for xeQ ~Q } we have xs(x) = x4(x'), where x'e3 Q
and x'—x —nv(x") for some e (0,5]. Now we can define the mapping
Xs:Q = by

X , for xeQ,,

qu) = **(*)+ |2_ (*“ *«(*))» for *e Q - Q S.

Thus xax) = x for each x e Qaand x4(x) = x 4(x) for each xe 3 Q. Mo-

AN
reover ~(x8 * iand y~*N |3 4(x)| ™~ y8, where constant y2 is indepen-

dent of d and J” (X) is the Jacobian of the mapping xi(*)-
Let us denote
t, for te [6, T],

O 1ty ys, far te [0 5]

LEMMA 4. Let h be a non-negative function in L'jDj —Dg. Then

(27) JJ 2Atd xgdxdt ~ max (2y22) Jj h(t, x) dxdt
D —Ds D g —Da
T
and if iie LY(D) then lim JJ h(ts,x5dxdt = 0.
5“m0+ D—Di
Proof. By change of variables we get

t S
1) Migkeaxdt = j 5 MExsx)dxdt+s 5 H{§x) dxdt+

D-Ds 5 Q—Q 0 Q—Qi
6 T
) (M) axdi=0 1 Kty ;SR dxdt+
0 Qa 5 x6(Q-Q«)
t 5 T
+23 1 Mtworwaxdt+27 3 MEx) dxdt~r Y200 1 hdxdt+
é\XS(Q—Qd) L Q4 5 Qsm-es

6 6 ’
+223 ) hdxdt+23 3 Pdxdt” max 222 3 hoxat



Now the second part of the assertion is obvious by the well known pro-
perty of integral.

THEOREM 4. Let ubea weak solution of (1) for p = 2, JJ uH?dxdt <

D
< oo for some p < 1 and let one of conditions | or Il hold for p = 2. Then
there is a function gbelonging to Lp(3 D) such that

lim «a= 9@ strong in L\dD).

£r0+
Proof. As |+ft and ||<[J are equivalent it suffices to show that the-
re is a (pe L2(3 D) such that 8Mm = 0. By Theorem 3 there is
%

0+
aye L2f3 D) such that lim u4= @ weakly in L2 Since L~d D) is uni-
&
formly convex it suffices to show that lim |juj* = |<q.
30+

Let us denote by <e, > the inner product L\ 3D) with the norm

Mia and
n n

v(9)= 2 2 (ave.T,9)Xiu +h9 e - uAQ-
U=i i,i-1
Ohserve that if ue Wj» p(D) then u(t] x4 e VP-1(D), thus, as in the
proof of Lemma 3 (see [26]), we find that

(0 9) = Jy(g)dxdt+ [U(T,x) g(T, x) qfx) dx
D Q

for any g e CJ(D) and hence for any ge D).
Taking g = u(t}, x8 we obtain

(28) {<p, u(td x8) = JJ yj(uft, X)) dxdt4 J u(T, x) g(x) dx+
Da Qa
+ J) yj(u(ts x@x))) dxdt+ j u(T, x) u(T, x5X)) q(x) dx
D—Da Q—Qa

as XGX) = X and t6t) —t for Xe Q6 and te [GT}
We show that

(29) lim ff x6) dxdt —0
5-*0+ D-Di

(30) lim j U, x) u(T, xs(x)) g(x) dx = 0

and 5~>0+ Q-Qs

dx] = lim (Juj*)2
J aYo+

From Theorem 3 we have that

(MI)2=" lim (R u (11x5)
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because x®X) = xs_(x) on 3 Q and t40) = fd’ so from (28)—(31) it follows

2
that lim |jua(]| = [le?| as required.
4 -»

To r;rove (299—(31) set

.x)(e_ H. for (t,x)eDs,

> *>={ for (t,x)eD —Ds

in equation (2) and thus we obtain

(32> JJ .2 a«uxiux)(e” d> 2_ aijuxiuexi+bu(e~d)+
ps L,j“1 (e

+ UtUQ—>5) | dxdt = 0.

Condition Il and equality

lim /3 2 awu”™u”te-djdxdt = JJ J? oyu”u”edxdt
] S-*o+ Ds Lj=1 D i,)-1
imply
It
lim dJJ JT aljux uxjdxdt = Q.
S«Ot p jj=1

Similarly using (11), Holder’ inequality we obtain that

lim § ff budxdt = 0.
>+ DS

From the assumption of the theorem and (11) we get

dJJuutdxdt A d [J u2dxdt+ 6 (J uRdxdt

Dj r>6 Da
:dJJ u2axdt + di- IS tPu2 dxdt
D Da

thus

lim 6 CCuutdxdt —O0.
a*ot

Hence and from (32) we have
lim, [£fy>(u)dxdt+ A uT, X) g(x)dxh=
"+, 0 R

n

Hm 33 * H a«UTue*r 'y (aljéxu)x u-2uut(Q-d) dxdt+
S0 ps 1)=1 =1

+ J uzT, X) (e(X)—3dx = Ilim

D 4j=1
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JJ(u2)t (e—d) dxdt+ | u2(T, x) (e(x)-S) dx| =
Da Qa J

= lim |f f uat, x) K(t, x) dSdt+ f uz(d, x) (e(x)—d)dx| =
*.°+1j 5Q4 Q J

= lim If f u(t, xd(x)) K(t, x)dSdt+ fu2(d, x) £(x) dx +
; Lo 8Q Q
+ f f uat, xfi(x)) [K(, x,,(X))—K(t, X)] dxdt— f u2d, x) g(x) dx —

5 3Q Q-Qa
a

—d J uz(6,x)dx—J J uz(t, xa(x)) K(t, x) dSdt = lim (J|uj|i)2
Qa 03Q S>0+
because the four last terms tend to zero as <5-»-0+. So we proved (31).
It follows from assumptions (B) and (C) that

(33) || y(u(t8 x@)dxdt <C s || [Jwx|ux(ts,xi)|e+ |u]lu(taxs)+
D—ba D—ba

+\U\ \ux{th x "I+ Zlu®, X5l e+ H |li(t4 X9| e+ [tt*] \u(t\ X5)| Q+
-fju] jut(ts, x A g] dxdt

for some positive constant Cis independent of S. Let us denote the inte-
grals on right respectively by Pi, P2, P 7.
Since g(x*(x)) * g(x) for x e Q we have

Pf(d)N JJ ulgdxdt || uz(ts, Xs) q(x6 dxdt
D —Da yv, M D-Da
thus from condition Il and Lemma 4 we get that lim Pi(d) =0.
a-*o+
Condition (11) implies uelL 2D) thus quite similarly as above we
obtain that lim P2(§ = 0 and since Ps(s)” sup g(x) P2(3, lim Ps(S) = 0,
tQO «->0+ X's q a-*o+
We have the following estimation
T i
|| u2dxdt = | | u2dxdt+ | | uzdxdt =
D-Da 0 Q-Qa 0 Qa
t a a
= | dtJ ds J uz(t,x)dSdt+ | dt | ut, x) dx
0 0 3Q, 0 Qa
4 A
(34) A b osup |J [ uz(t, X) dSdt+d sup | u”t, x)dx "
se(0,a]i34s te(o,ai@

ldj sup f TuZt x)dSdt+ sup | uZt, x)dx
yse@dqs te (0,9 a(

by Theorem 2 and conditions (3) and (21) of Lemma 1.

83



Since g(x5x)) > y we have
< I hxn XPET(K)  j/ 2dxdt

thus by Holder’s inequality we get
P * (d JJ u2ftg x4 gxax)) dxdty JJ uZt, x) dxdt

D—Dd D—Da

so limP36)= 0 by (34) and Lemma 4. Using Holder’s inequality we

DA NS Mt 1) smsox

have
D-Di

thus 5I|210 Pi{d) = 0 by assumption (C), and Lemma 4.
<0+
In the same way we get

Pl JJ gurdxdt JJ utsx*)dxdt sup £4X

D —Da D —Da r £Q

thus lim = 0 by Lemma 4 and condition II.
6_’0+Pe(<‘3) y

Since ta® — we get

JJ |ut(ta x9| (192 |u] dxdt sup e(x)| |j-j <

sup e()3% 33 ux\ x5 (t'Y dxdt {22 Jj u2dxdt
ieq /| D- Di \ 1 d-Ds

and hence lim P76) = 0 by Lemma 4, assumption of this theorem and
S-»0+

condition (34), as 1—~—> 0. Thus we proved the condition (29).

Condition (30) follows from the estimation

f ou(T, x) u(T, x6x)) o(x) dx ~

L6-CQa
Isupe(X)J J uT, x)dx-y2 J u2T,x)dx
\x GQ I Q_Qj Q -Qt

and the fact that u(T, ¢) e L2Q). This completes the proof of Theorem 4.
In the case p > 2 we begin with the following result.
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LEMMA 5. Let u be a weak solution of (1) satisfying one of condi-
tions 1 or Il for a fixed p> 2 and jj u\ (ujp~2+I)~da:dt < oo for some

D
(I< 1. Then u6 converges to pin L<X3 D) for each g, where 0< q<Cp.
The function (pis defined in Theorem 2.
Proof. First we note that ui converges weakly to <pin J>(3 D)
by Theorem 2. We shall show that u} converges to pin L2Z3 D).

Let a(0) = 0 for p~r9 < p, a(0) = e P for jjr<=0 < 2p—1

and %(0) —0 —a(0). For 0 and %such that p: 0 < 2p—1 and 2

o< 3 we have

_ pa
JJ/IVd*dt< dxdt Jjg p~2dthF 00
D Lo D

pa
—2
Since p(D)d Wfc* 2(D), u is a weak solution of (1) for p = 2.
By Lemma 2, condition Il is fulfilied with p = 2. Thus we can use the
result of Theorem 4. Hence us converges to some function (p in LHd D)
SO Pp—<Ppae.
For measurable sets A dd D and s satisfying 4- + 9 — 1 we have

by assumption (C) as o < 1

J [ud HB< |A\s ] |ud- 9> J KI*
riais Ne

Thus ub—(p is equi-absolutely integrable and bounded in L<33D) so it
is compact for b such that 0< b~ <& Now for any sequence bk->0
there is a subsequence bf ->0+ with u4 -<p-+0 a.e. and the result
follows.

To prove LP-convergence we shall need the following theorem on
Nemytsky Operators (see [10], p. 155).

THEOREM. If f(t, x, u), defined on 3 D X R, satisfies Caratheodory
conditions, conditions (i) and (ii) of assumption (C) and

|/(t, x, u)l < g(t, x)+Klul*,

where ge I/f(3D), 1~ s,t< o0 and K is a positive constant, then f gene-
rates a continuous operator from L*(3 D) into L‘(3 D) given by the for-

mula hou(., )-+5(, ,«(e, *)e

This operator is called the Nemytsky Operator.
We now establish the following Lp-convergence theorem.
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THEOREM 5. Let u be a weak solution of (1) satisfying one of condi-
tions | or 1l for fixed p > 2, JJ (uX]Ju|p-2+1) t*dxdt for some /2< 1, then

D
ugconverges to the function ¢g=in Lp(3 D).
Proof. Let us denote by ud the trace of the composition u(t\t),
xa(x)) on 3 D. It is clear that ud= us_ for de (0,d0].
2

We begin with the following
REMARK. If udis bounded in Lp(3 D) and us—tp in L<J@D) for

\%
g< p then uguep~2 <p\p\pi weakly in (3 D). This means that the
mapping given by the formula
f(t, x, uh = uqufp-2
p-i
is continuous from L{3 D) to L 9 (3 D) by Theorem on Nemytsky Ope-
rators.

Hence uguap~2-> Ppv2 as <5->0+

in L pgl (3D), where we take p—_9]—>- 1 Also usu&~z is bounded in

p
L p-i (0 D) and so it is weakly compact and the result follows.

The rest of the proof is similar to that of Theorem 4. For every
g6WJi)1 (D) we get

p-i

J J gKdSdt+ J e, x) g(0, x) g(x)dx

0 aq
= JJ rp{g) dxdt+ J u(T, x) g(T, x) q(x) dx
D Q

since u6-> pas d 0+ weakly in Lp(3 D) (see the proof of Lemma 3).
Set g = u(ts, xP) \u(td x*Ip-2 in the above equality and noting that

P
u(t\x9 = u on Ds and uguap-2-> " Ip-2 weakly in Lp-1(3D) we
obtain
= i J J 9uJulp“2K dSdt+
(IMip)p = lim 5 < U,ulp

2Q
+ fo(o,x) ttao, X) [tiao, X)|p-2 LK dx = lim  JJ yj{ulu\p~2) dxdt +
/(n 3 0 a~*0+ Dt
+ fu(T, X)pg(x)dx + lim ff yj{u(t\x") Ju(ta xa)|p~2 dxdt -
L J fi-° + LD-Da

+ J u(T, x) u(T, xax)) |u(T, xa(x))|p-29(x) dx.
Q-Q



Settin .
g ululp-2(e-S), for (t,x)eDa,

0, for (t,x)eD —Dy

in (2) we obtain

12 aijux(ululp-a)xjte” a)dxdt+ JJ £ auwul uju|p-2exdxdt+
D, i,j"1 Dt I,j-1I

H JJ buju|p-2 (g—d) dxdt + JJ utuju[p-a (g—d) dxdt = O.
Da Dt

As in the proof of Theorem 4 it is obvious that

im5||]| aiiul (ulu|p-2°+bululp-2+ ntulu[p-J| dxdt+
8- 0+ d. Lti=1 ‘ J
+8| |u(T,x)pdx =0
thus &

lim ffV (uulp~2dxdt+ f |u(T,x)pgxX)dx | =
»-»+Ld; | J

=lim —JJ j? (angXuulp)xdxdt- JJ (Julp)t(g-d) dxdt-f
*»0tL Djij=1 Dt

w fu(T, X)lp (@(x) d)ydx1= lim If f |upK dSdt+

1 J 4->0+ L»

+ f |u(d,x)|p(g(x)-3)dx = lim (|JusP)p.
Q o+

>»

Thus, it suffices to show that second component on the right of (36)

tends to zero as d-> 0+. It is easily seen that this integrand can be esti-
mated by

K (le*! jwi(d)] Ju(5)|P-2g+|u| M 1p-d + lul]ux(5)| |u.(d)jp_2+
+/|u(d)|P-1g+]|u| [u(6)|p-i g+\ux\|u(6)|*-i g+\u\ |ut(«)| [u(d)|p- 2

where K is a suitable constant and we denote u(d) = u(ts, xs).

Estimation of the integrals of the first, second, fourth, fifth and

sixth terms is similar to the previous calculations (see the proof of Theo-
rem 4).

We have the following inequality
abcP-2~ const (ap+ bZxp~2+ cp

for each positive a, b, c and p> 2

Set a= |u], b= |ux(3) or b = jut6)] and ¢ = |u{d)]. Now we can esti-
mate the third and seventh terms analogously as in the proof of Theo-
rem 4. This completes the proof of Theorem 5.
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