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INTRODUCTION 

This textbook is intended for students of technical and economic universities.  

It is a result of my teaching of mathematical programming, optimization methods 

and operations research to students of Czestochowa University of Technology,  

including Erasmus+ Program students, for over ten years. This is the first part of  

a planned series (an intended series), limited to the presentation of issues related  

to linear programming. The second part will focus on non-linear programming 

problems. 

The textbook is divided into five main chapters. Chapter 1 is a reminder of some 

mathematical topics (the basics of linear algebra and systems of linear equations) 

that will help the readers understand the material discussed. Chapter 2 considers 

linear programming problems from its standard form to practical, highly common, 

with various examples of applications at the intersection of technology and eco-

nomics. In chapter 3, the transportation problem with applications will be consid-

ered. Chapter 4 deals with a special kind of linear programing, so-called integer 

programming. And finally, Chapter 5 shows how the Maple package can be used  

to solve any linear programming problems. 
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CHAPTER 1 
 

REVIEW OF LINEAR ALGEBRA 

This chapter will remind you of the basics of linear algebra and of systems of 

linear equations, which are used in the process of deriving a mathematical model 

and solving a given practical problem.  

1.1. Matrices. Matrix operation 

Definition 1. An m n  matrix A is a rectangular array of elements (numbers or 

functions, real or complex) with m rows (horizontal) and n columns (vertical): 

11 12 1

21 22 2

1 2

.. ..

.. ..

: : : : :

: : : : :

.. ..

n

n

m m mn

a a a

a a a

a a a

 
 
 
 
 
 
  

A  

We say that matrix A is of order m n  (where m n  is said “m by n”) if it has m 

rows and n columns. Usually, matrices are denoted by capital letters.  

ija   A  is shorthand notation for identifying the matrix whose element in row i  

and column j  is ija  for every 1,2,...,i m  and 1,2,..., .j n  For example,  

0 8

2 6

 
  
 

A  is a 2 2  matrix with elements 11 0,a  12 8,a  21 2,a  22 6,a   

1 2.4 1 0

4 2 0 3

 
  

 
B  is a 2 4  matrix. 

Definition 2. Basic operations with matrices 

Let A and B be two matrices having the same number of rows and columns. 

 Equal matrices: two matrices A and B of the same order are equal (A = B)  

if and only if all the corresponding elements are equal ( ij ija b  for all i and j). 
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 Addition: to add two matrices A and B, simply add the corresponding  

elements, so that .ij ija b    A B   

 Subtraction: to subtract two matrices A and B, simply subtract the correspond-

ing elements, so that .ij ija b    A B  

 Multiplication by a scalar: the operation of multiplying a matrix by a number 
(denote this number by k) is performed by multiplying each element of the  

matrix by k, so that .ijk ka   A  

Matrix product requires an additional restriction related to the size of matrices A 

and B: matrix multiplication AB is defined if and only if the number of columns  

of matrix A is equal to the number of rows of matrix B.  

 Matrix product: to find the element in row i, column j of the matrix resulting 
from multiplying matrix A times matrix B, it is necessary to multiply each  
element in row i of A by the corresponding element in column j of B and then  
to add these products. For example, if A is an m n  matrix, and B is an n s  

matrix, then their product is   

1

n

ik kj

k

a a


 
  
 
AB  

where this product is m s  matrix. Even when both AB and BA are defined, 

AB BA  in general.  

 Transposition: this operation involves nothing more than interchanging  

the rows and columns of the matrix. Thus, for any ,ija   A  its transpose is 

.T
jia   A  

Note that the operation matrix division is not defined.  

To illustrate: 

2 1
,

2 1

 
  
 

A
2

03

2 5 4

8 50

 
 
  

B  are equal because corresponding elements are equal, 

multiplication by a scalar: 

1
10 1 52 1

5 ,5
25 0 15

5 0 3

 
         

 

addition: 
2 1 3 1 5 2

,
2 1 5 3 7 4

     
      

     
 

and subtraction: 
2 1 3 1 1 0

,
2 1 5 3 3 2

     
            

 



Review of linear algebra 9 

matrix product and transposition operation: 

1 2
1 4 2 3 1 3 1

4 0
2 0 3 5 2 5 2

2 3

1 3 2 5 1 1 2 1 10 3

4 3 0 5 4 1 0 1 12 4 .

2 3 3 5 2 1 3 1 21 6

T  
                      

        
            
           

 

Fact 1. The matrix operations described here satisfy the following laws: 

  A B B A  

( ) ( )    A B C A B C  

( )  A B C AB AC   

( ) ( ) .A BC AB C  

Some special matrices 

1. A column vector or column is a matrix size 1.m  

A row vector or row is a matrix size 1 .n  

For example:  

1

2

3

 
   
  

C  is a 3 1  matrix, and cosxe x   D  is a 1 2  matrix with elements  

(as functions) 11 ,xa e 12 cos .a x  

2. Square matrix is a matrix size n n  or simply order n. 

3. Identity matrix I – is a square matrix whose elements are zeros except for  

the ones along the main diagonal. For any matrix A, , IA A AI  where the 

appropriate number of rows and columns is assigned in each case for the multi-

plication operation to be defined. Thus, 
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1 0 0 ... 0

0 1 0 ... 0

.0 0 1 ... 0

: : : : :

0 0 ... ... 1

 
 
 
 
 
 
  

A  

Let us now consider the set of n – vectors 1 2, ,..., mx x x  of the same type (they 

are either all row vectors or all column vectors).  

Definition 3. A set of n – vectors 1 2, ,..., mx x x  is said to be linearly dependent  

if there exist m numbers (denoted by 1 2, ,..., ),mc c c  some of which are not zero, 

such that 1 1 2 2 ...... 0.m mc c c   x x x  Otherwise, the set is said to be linearly  

independent.  

To exemplify, if m = 3 and  1 1 1 1 ,x   2 0 1 1 ,x   3 2 5 5x  then there 

exist three numbers: 1 2,c   2 3c   and 3 1,c    such that   

       
 

1 2 32 3 1 2 2 2 0 3 3 2 5 5

                             0 0 0

        



x x x
 

therefore, these vectors are linearly dependent. Unfortunately, sometimes finding 

these numbers is not easy but this equation also implies that 3 1 22 3 , x x x  and it 

means that they are linearly dependent because one of these three vectors is a linear 

combination of the others. 

Definition 4. The rank of a set of vectors is the largest number of linearly inde-

pendent vectors that can be chosen from the set.  

Definition 5. A basis for a set of vectors is a collection of linearly independent 

vectors taken from the set such that every vector in the set is a linear combination 

of the vectors in the collection (every vector in the set equals the sum of certain 

multiples of the vectors in the collection). A collection of r linearly independent 

vectors chosen from a set of vectors is a basis for the set if and only if the set  

has rank r. 

Definition 6. Consider the matrix A size .n n  If there exists at least one 

nonsingular square submatrix in A of order k, and if all square submatrices of order 

k + i, 1i   are singular, then the number k is called the rank of a matrix A and is 

denoted by ( ).r A  
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The rank of a matrix is equal to the maximal number of its linearly independent 

rows (or columns). 

A square matrix is nonsingular if its rank equals both the number of rows and  

the number of columns. Otherwise, it is singular. 

Definition 7. If A is nonsingular, there is a unique nonsingular matrix 1,
A  called 

the inverse of A, such that 
1 1 .  AA I A A  

If A is nonsingular and B is a matrix for which either AB I  or ,BA I  then 

1.B A  Only nonsingular matrices have inverses. 

1.2. Systems of linear equations. Methods of solution 

Definition 8. An m n  system of linear equations is a set of m equations in n  

variables 1 2, ,..., nx x x  of the form 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

......

......

                     

......

n n

n n

m m mn n m

a x a x a x b

a x a x a x b

a x a x a x b

   

   

   

⋮
 

where ija  and ib  are constants, and ix  are the unknown variables.  

If ib  are all equal to zero, the system is called homogeneous.  

Definition 9. A solution of the system of linear equations is a point in n
ℝ  whose 

coordinates satisfy the system of equations. 

This system of equations can also be written in matrix form as Ax b  where  

11 12 1

21 22 2

1 2

.. ..

.. ..

: : : : : ,

: : : : :

.. ..

n

n

m m mn

a a a

a a a

a a a

 
 
 
 
 
 
  

A    

1

2
,

n

x

x

x

 
 
 
 
 
 

x
⋮

   

1

2

m

b

b

b

 
 
 
 
 
 

b
⋮

 

Definition 10. An augmented matrix is formed by appending the entries of the 

column vector b (right-hand side of the equation) to those of the coefficient matrix 
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A, creating a matrix that is now of order ( 1).m n   The augmented matrix of  

system is 

11 12 1 1

21 22 2 2

1 2

.. ..

.. ..

[ | ] : : : : : : .

: : : : : :

.. ..

n

n

m m mn m

a a a b

a a a b

a a a b

 
 
 
 
 
 
 
 

A b  

Theorem 1. Kronecker’s-Capelli Theorem 

A set of linear equations Ax b  has the solution if and only if the rank of  

matrix A is equal to the rank of the augmented matrix  |A b  of the set: 

 ( ) | .rk rkA A b  

Based on this theorem, the number of solutions to a system of equations can be  

determined. Let Ax b  be the set of linear equations in n variables. Then: 

– if  ( ) | ,rk rkA A b  then the set has no solution (it is inconsistent); 

– if  ( ) | ,rk rk n A A b  then the set has a single unique solution (it is deter-

mined); 

– if  ( ) | ,rk rk r n  A A b  then the set has infinitely many solutions, which 

depend on p n r   parameters (it is underdetermined). 

The solution to the system of equations can be obtained by the Gauss-Jordan 

method of elimination. The process begins by first expressing the system in matrix 

form, ,Ax b  where A represents the coefficient matrix, and b the matrix of  

constant terms. The next step is to reduce it to an equivalent system by simple row 

operations. This row reduction continues until the system is expressed in what is 

called the reduced row echelon form. The matrix is in the reduced row echelon 

form if the first nonzero entry in each row is 1, and the columns containing these 

1’s have all other entries as zeros. The reduced row echelon form also requires that 

the leading entry in each row be to the right of the leading entry in the row above 

it, and the rows containing all zeros be moved down to the bottom. The solution  

is readily obtained from this form.  

Definition 11. The pivoting process is a process of obtaining a 1 in a location, and 

then making all other entries zeros in that column. The number that is made a 1 is 
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called the pivot element, and the row that contains the pivot element is called  

the pivot row.  

To summarize, the steps of Gauss-Jordan elimination are as follows: 

1. Write the augmented matrix. 

2. Interchange rows if necessary to obtain a non-zero number in the first row,  

first column. 

3. Use a row operation to get a 1 as the entry in the first row and first column. 

4. Use row operations to make all other entries as zeros in column one. 

5. Interchange rows if necessary to obtain a non-zero number in the second row, 

second column. Use a row operation to make this entry 1. Use row operations  

to make all other entries as zeros in column two. 

6. Repeat step 5 for row 3, column 3. Continue moving along the main diagonal 

until you reach the last row, or until the number is zero; 

and the three row operations the Gauss-Jordan method employs: 

1. Any two rows in the augmented matrix may be interchanged. 

2. Any row may be multiplied by a non-zero constant. 

3. A constant multiple of a row may be added to another row. 

Example 1: Solve the following system of linear equations by the Gauss-Jordan 

method 

2 3 7

2 5 2 1

3 5 10

x y z

x y z

x y z

  


  
   

 

Solution 

Step 1. Write the augmented matrix 

1 2 3 7

[ | ] 2 5 2 1

3 1 5 10

 
   
  

A b  

The element in the first row and first column is equal to 1, so you can move on to 

step 4. 

Step 4. Use a row operation to get a 1 as the entry in the first row and first column, 

use row operations to make all other entries zeros in column one: to make the  

element (2) a zero in row 2, column 1, multiply row 1 by –2 and add it to the  

second row 
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2 1 2
1 2 3 7 1 2 3 7

2 5 2 1 0 9 4 13

3 1 5 10 3 1 5 10

R R 
    
       
      

  

to make the element (3) a zero in row 3, column 1, multiply row 1 by –3 and add it 

to the third row 

3 1 3
1 2 3 7 1 2 3 7

0 9 4 13 0 9 4 13

3 1 5 10 0 7 4 11

R R 
    
         
       

  

Step 5. Move to the next diagonal element, row 2, column 2. To make the element 

9 a 1 in row 2, column 2, divide row 2 by 9 

2

9

1 2 3 7
1 2 3 7

4 13
0 9 4 13 0 1

9 9
0 7 4 11

0 7 4 11

R
 

           
        

  

next, make all other elements zeros in the second column 

  2 2 1
7 2 3

19 37
1 0

1 2 3 7 9 9

4 13 4 13
0 1 0 1

9 9 9 9

0 7 4 11 8 8
0 0

9 9

R R
R R


 

 
  
       
  
       
  

  

Step 6. Make the last diagonal element a 1, by dividing row 3 by –8/9  

9
3

8

19 37 19 37
1 0 1 0

9 9 9 9

4 13 4 13
0 1 0 1

9 9 9 9

8 8 0 0 1 1
0 0

9 9

R



   
   
   

      
   
   

    
      

  

and finally, make all other elements zeros in column 3 
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4
3 2

9
19

3 1
9

19 37 18
1 0

9 9 91 0 0
4 13 9

0 1 0 1 0
9 9 9

0 0 1
0 0 1 1 1

R R

R R






   
   
   

     
   
   
   
      

  

the solution is 2, 1, 1.x y z     

Example 2: Solve the following system of linear equations by using the Gauss- 

-Jordan method 

3 3

2 3 4 4

1

x y z

x y z

x y z

  
    
    

 

Solution 

Step 1. Write the augmented matrix 

1 1 3 3

[ | ] 2 3 4 4

1 1 1 1

 
    
   

A b  

By following the steps of the Gauss-Jordan method, we get:  

2 1 2
1 3

1 1 3 3 1 1 3 3

2 3 4 4 0 5 10 10

1 1 1 1 0 2 4 4

R R
R R

 
 

    
         
         

  

2

5
3

2
1 1 3 3 1 1 3 3

0 5 10 10 0 1 2 2

0 2 4 4 0 1 2 2

R

R



    
        
        

  

and finally 

2 3
1 1 3 3 1 1 3 3

0 1 2 2 0 1 2 2

0 1 2 2 0 0 0 0

R R
    
       
      

  
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because of the last row (which has only the elements equal to zero) this system of 

equations has infinitely many solutions, which depend on 3 2 1p     parameters, 

,pℝ  according to Kronecker’s-Capelli Theorem. 

So, the solution is  

,z p  2 2 ,y p    1 ,x p   .pℝ  

Example 3: Solve the following system of linear equations by using the Gauss- 

-Jordan method 

2 5 9

2 3

3 4 7 1

x y

x y z

x y z

 


  
   

 

Solution 

Step 1. Write the augmented matrix 

2 5 0 9

[ | ] 1 2 1 3

3 4 7 1

 
   
   

A b  

By following the steps of the Gauss-Jordan method, we get:  

1 2
2 5 0 9 1 2 1 3

1 2 1 3 2 5 0 9

3 4 7 1 3 4 7 1

R R
   
      
         

  

2 1 2
3 1 3

1 2 1 3 1 2 1 3

2 5 0 9 0 1 2 3

3 4 7 1 0 2 4 10

R R
R R

 


    
   
   
       

  

2 2 1
2 2 3

1 2 1 3 1 0 5 3

0 1 2 3 0 1 2 3

0 2 4 10 0 0 0 4

R R
R R

 
 

     
   
   
      

  

this system is inconsistent (because in the last row is: 0 4),  which means that  

the system has no solution. 
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Exercises 

1. For given matrices A, B, C, add AB to AC and compare them with A(B + C): 

1 2
,

3 4

 
  
 

A    
1 0

,
0 1

 
  
 

B    
0 0

.
5 6

 
  
 

C  

2. Analyze the order of the product matrices or the factor matrices indicated in 

parts 1) – 3): 

1) If AB is a 4 5  matrix, how many columns does B have? 

2) If AB is a 4 9  matrix, how many rows does A have? 

3) If matrix A is a 2 6  matrix, and AB is a 2 4  matrix, what is the order of 

matrix B? 

3. Use the Gauss-Jordan elimination method to find the solution for the given  

system of equations: 

a) 
3 1

4 5 14

x y

x y

 


 
 b) 

2 1

3 2 11

x y

x y

 


 
 

c) 

4 4 2

2 3 2 2

2

x y z

x y z

x y z

  


  
   

 d) 

3 2

4

5 2 9 15

x y z

x y z

x y z

   

   

   
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CHAPTER 2 
 

LINEAR PROGRAMMING 

Mathematical programming is a field of knowledge that came into existence  

after World War II. There is a set of methods for finding the point that minimizes 

or maximizes the value of a real function in a subset of the space .n
ℝ  It is one of 

the most used parts of mathematical modeling – a mathematical technique that  

applies advanced analytical methods to help make better decisions. 

Mathematical programming is an effective tool widely used in science and  

engineering. First, through observation, we form hypotheses about the behavior of 

the world around us. Next, we develop mathematical models of those hypotheses 

that we can evaluate, improve, verify and validate. Mathematical models and 

methods provide a rigorous, systematic, and quantitative description of various  

real-world phenomena. There are many real-world problems in such different  

areas as industrial production, transport, telecommunications, finance, or personnel 

planning that may be transformed into the form of a mathematical programming 

problem. The problem of mathematical programming can be formulated in a general 

way as follows: 

 ( )   f x maximized or minimized  

subject to    ( ) 0;ig x       1,2,...,i m  

x 0  

where 1 2( , ,..., ) ,n
nx x x x ℝ  ( ),f x  ( ),ig x  1,2,...,i m  are real valued functions 

of .x   

The most crucial part of mathematical programming is to start with the right 

mathematical model to represent the problem. Generally, they consist of a set of 

variables, restrictions over these variables, and a function to be maximized or min-

imized. Mathematical programming problems are ordinarily classified according to 

the types of decision variables, constraints, and the function. If the functions ( ),f x  

( )ig x  are all linear, the problem is known as a linear programming problem. It is 

the most common type of mathematical programming – a well understood case for 
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which efficient algorithms are known. If these functions are non-linear, one of them 

or all of them, then the problems are called non-linear mathematical programming 

problems. They are more difficult, and there is no well-known method to find  

a solution to a given problem. Very often, approximation and heuristic methods  

are used to find good solutions for non-linear problems. 

2.1. Basic concepts and notation 

In this section, the important terms that are used to describe any linear pro-

gramming problems will be introduced and defined.  

Definition 1. A decision variable is a physical quantity represented by a mathe-

matical symbol and describes the decision to be made. It represents the unknowns 

to be determined by the solution to the model. 

Definition 2. A linear programming problem (also called LP) is an optimization 

problem that consists of the following components: 

1. A linear real-valued function : ,nf ℝ ℝ  of n decision variables, 1 2, ,..., .nx x x  

The function that is to be maximized or minimized is called the objective  

function. This function is linear and can be written in the form:  

1 2 1 1 2 2( , ,..., ) ....n n nz f x x x c x c x c x      

here, each ic ℝ  – the coefficients in the objective function are called the  

objective function coefficients.  

2. A set of m constraints, functional equalities, or inequalities, which describes 

the limitation that restrict our choices for decision variables. Each constraint is 

linear in that it takes the form: 

1 1 2 2

1 1 2 2

1 1 2 2

....

....

....

i i in n i

i i in n i

i i in n i

a x a x a x b

a x a x a x b

a x a x a x b

   


   
    

 

where 1 i m   and where each ija  and ib  belongs to .ℝ  

3. The sign restrictions are placed on any of the decision variables. If a decision 

variable can only assume nonnegative values, then we add the sign restriction 

1 2, ,..., 0nx x x   (non-negativity constraints). If a variable can assume both posi-
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tive and negative (or zero) values, then we say that this variable is unrestricted 

in sign (often abbreviated: urs).  

Definition 3. The feasible solution of the linear programming problem is the vector  

1 2( , ,..., ) n
nx x x x ℝ  

which satisfies all constraints and sign restrictions of LP.  

Definition 4. An optimal solution is a feasible solution whose corresponding  

objective function value is greater than or equal to that of any other feasible solu-

tion for a maximization problem and less than or equal to that of any other feasible 

solution for a minimization problem. 

Definition 5. The feasible region is the set of all feasible solutions. 

It can be shown that in linear programming problems, the feasible region is always 

a convex set. 

Definition 6. A subset K of n
ℝ is convex if K is empty or K is a single point, or if 

for each two points x and y in K, the line segment connecting the two points lies  

entirely in  the subset: (1 )x y K     for 0 1.   

A convex feasible set for a linear problem will have a shape with edges that are 

straight lines and corners where the edges meet.  

Definition 7. A point x is a corner point of convex set K if x is not an interior 

point for any segment line contained in K. 

Definition 8. If the convex feasible region corresponding to the linear program-

ming problem is nonempty, it must have at least one corner point. The corners of 

the feasible set are called extreme points.  

These properties of the feasible region and feasible solutions allow the formulation 

of the fundamental theorem of linear programming (Corner point theorem).  

Theorem 1. Let us consider the linear programming problem 

1 2 1 1 2 2( , ,..., ) .... max (min)n n nz f x x x c x c x c x       

subject to   

1 1 2 2

1 1 2 2

1 1 2 2

....

....

....

i i in n i

i i in n i

i i in n i

a x a x a x b

a x a x a x b

a x a x a x b

   


   
    

 

1 2, ,..., 0nx x x   

, , 1,2,...,ij ia b i m ℝ  
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If a linear programming problem has a solution, then there exists an extreme point 

of the feasible region which is optimal. 

The fundamental theorem of linear programming reduces to a finite value the number 

of feasible solutions that need to be evaluated. 

The solution of any Linear Programming (LP) takes one of four general forms: 

1. The LP has a unique optimal solution. 

2. The LP has more than one optimal solution (an infinite number), so we say that 

it has alternative (multiple) optimal solutions. 

3. The LP is infeasible, meaning that its feasible region is empty set (the feasible 

set contains no points). 

4. The LP is unbounded. For a problem in which one seeks to maximize the object- 

tive function, this means that the objective function can be made as large as one 

likes, as there are points in the feasible region with an arbitrary large value of  

an objective function. For a minimization problem, this means that the objective 

function can be made as small as one likes.  

The matrix form of a Linear programming problem  

Typically, we describe linear models by writing them out fully. This is accepta-

ble for small linear programs, but it does not work when the linear models are very 

large. In this case, it helps to use an algebraic form (matrix form). It is a more 

compact form.  

z   c x max  

subject to  




Ax b

x 0
 

where: 

11 12 1

21 22 2

1 2

,

n

n

m m mn

a a a

a a a

a a a

 
 
 
 
 
 

A

…

…

⋯ ⋯ ⋯ ⋯

…

   

1

2
,

n

x

x

x

 
 
 
 
 
 

x
⋮

   

1

2
,

m

b

b

b

 
 
 
 
 
 

b
⋯

    1 2 .... nc c cc  

2.2. Linear programming problem formulation  

There are a few steps that can be helpful in the process of formulating the  

mathematical model for a linear programming problem: 
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step 1 – identify and define the decision variables precisely,  

step 2 – definite the objective function, 

step 3 – identify and express the right constraints mathematically. 

Let us look at some typical, practical examples, to better understand the idea of 

formulating linear programming problems. 

Example 4: Outdoor furniture factory “Patio Accessories” sells tables and chairs. 

They have two resources devoted to the production of tables and chairs: wood and 

labor. “Patio Accessories” makes $200 worth of profit from every table they sell, and 

$50 worth of profit from every chair they sell. Each table requires 10 units of wood 

and 3 hours of labor, and each chair requires 5 units of wood and 4 units of labor. 

Let us also assume that this factory has 100 units of wood and 60 units of labor 

available. For the sake of simplicity, let us assume that it is not possible to get more 

of any of these two resources.  

“Patio Accessories” wants to know how many tables and how many chairs to pro-

duce each month in order to maximize their profits. 

Solution: let us start by gathering all the information in table form: 

 Tables Chairs Available 

Wood 10 5 100 

Labor 3 4 60 

Profits [$] 200 50  

 

First step: determination of the decision variables 

let us denote by 1x  – number of tables produced 

2x  – number of chairs produced 

Second step: identification of the formula for the objective function 

“Patio Accessories” total profit will be the sum of the profit from selling tables and 

chairs. The profit from selling tables will be the product of the profit from each table 

times the number of tables sold. Similarly, we can define the profit from selling 

chairs. Because “Patio Accessories” wants to maximize their profit, the objective 

function will take the following form 

1 2 1 2( , ) 200 50 maxz f x x x x     

Third step: determination of the constraints: 

the wood constraint: if the production of tables is 1x  and chairs is 2x , “Patio  

Accessories” should use 1 210 5x x  units of wood 

1 210 5 100x x   
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the labor constraint: if the production of tables is 1x  and chairs is 2x , “Patio  

Accessories” should use 1 23 4x x  units of labor 

1 23 4 60x x   

and non-negativity constraint or sign restriction: 1 2, 0x x   

Finally, the mathematical model of the “Patio Accessories” problem is: 

1 2 1 2( , ) 200 50 maxz f x x x x     

s.t.   

1 2

1 2

1 2

10 5 100

3 4 60

, 0

x x

x x

x x

 


 


 

and in matrix form as: z   c x max  

s.t.   




Ax b

x 0
 

where  

3 4
,

10 5

 
  
 

A    
1

2

,
x

x

 
  
 

x    
60

,
100

 
  
 

b     200 50 .c  

Example 5: A company makes two products P1 and P2, using two machines, M1 

and M2. Each unit of P1 that is produced requires 50 minutes of processing time on 

machine M1 and 30 minutes of processing time on machine M2. Each unit of P2 is 

produced, requiring 24 minutes of processing time on machine M1 and 33 minutes 

of processing time on machine M2. 

Machine M1 is going to be available for 40 hours, and machine M2 is available 

for 35 hours. The profit per unit of P1 is $25, and the profit per unit of P2 is $30. 

Company policy is to determine the production quantity of each product in such  

a way as to maximize the total profit given so that the available resources will not 

be exceeded. 

Solution: table form of the problem: 

 P1 [min] P2 [min] Available [hour] 

machine M1 50 21 40 

machine M2 30 33 35 

profit per unit [$] 25 30  
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First step: identify the decision variables 

1x  – the number of units of P1 

2x – the number of units of P2 

Second step: determination of the objective function 

The total profit will be:   

1 2 1 2( , ) 25 30z f x x x x    

where $25 is the profit per each unit of product P1, $30 is a profit per unit of product 

P2, the production of product P1 is 1x  units, and the production of product P2 is 

2x  units. 

Third step: determination of the constraints 

the machine M1 constraint: if the production of P1 is 1,x  and P2 is 2 ,x  the com-

pany should use 1 250 24x x  minutes of M1 machine work, on the other hand,  

machine M1 is available for 40 hours 1 250 24 40x x   

the machine M2 constraint: if the production of P1 is 1x  and P2 is 2x  the com-

pany should use 1 230 33x x  minutes of  M2 machine work, and M2 is available for 

35 hours 1 230 33 35,x x   and non-negativity constraint or sign restriction  

1 2, 0.x x   

In addition, this example requires matching units (they are minutes and hours),  

so let us change all time units to minutes. Therefore, 40 hours is 2400 minutes,  

and 35 hours is 2100 minutes. 

Finally, this gives us the following mathematical model: 

1 2 1 2( , ) 25 30 maxz f x x x x     

s.t.   

1 2

1 2

1 2

50 24 2400

30 33 2100

, 0

x x

x x

x x

 


 


 

and in matrix form as: z   c x max  

s.t.   




Ax b

x 0
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where 

50 24
,

30 33

 
  
 

A    
1

2

,
x

x

 
  
 

x    
2400

,
2100

 
  
 

b     25 30 .c  

Example 6: Peter is in a hot-dog eating contest that lasts 1 hour. Each hot-dog that 

he eats takes 2 minutes. Each hot-dog with toppings that he eats takes 3 minutes. 

He receives 4 points for each hot-dog and 5 points for each hot-dog with toppings. 

What should Peter eat so as to get the most points?  

Solution: table form of the problem: 

 Hot-dog Hot-dog with toppings Available [min] 

time [min] 2 3 60 

points 4 5  

 
First step: the decision variables  

1x  – the number of hot-dogs eaten by Peter 

2x  – the number of hot-dogs with toppings eaten by Peter 

Second step: the objective function  1 2 1 2( , ) 4 5z f x x x x    

Third step: the constraints  1 22 3 60x x   

so, the mathematical model is: 

1 2 1 2( , ) 4 5 maxz f x x x x     

s.t.   
1 2

1 2

2 3 60

, 0

x x

x x

 


 

and in matrix form as: z   c x max  

s.t.   




Ax b

x 0
 

where 

 2 3 ,A    
1

2

,
x

x

 
  
 

x     60 ,b     4 5 .c  

One of the most real problems solved by using linear programming is the  

so-called “diet problem”. It appears in the choice of healthy food. The problem of 
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the diet is to provide minimum daily nutritional demands by defining the mix  

of foods in the diet that minimizes total cost per day. It is an example of a linear 

programming problem, in which the objective function is to be minimized, and  

the constraints sign is “ ”. 

Define:   

m – number of nutrients 

n – number of sorts of food 

ija  – number of units of nutrient i in food j ( 1,2,..., ;    1,2,..., )i m j n   

ib  – number of units of nutrient i required per day ( 1,2,..., )i m  

jc  – cost per day of food j ( 1,2,..., )j n  

jx  – number of units of food j in the diet per day ( 1,2,..., )j n  

The goal is to find the values of the unknown variables to minimize the total 

cost per day. Therefore, the mathematical model for diet problem is: 

1 2 1 1 2 2( , ,.... ) .... minn n nz f x x x c x c x c x       

s.t.   

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

....

....

                     

....

n n

n n

m m mn n m

a x a x a x b

a x a x a x b

a x a x a x b

   
    


    

⋮
 

1 2, ,..., 0nx x x   

Example 7: Alina’s diet consists of four basic food groups: a chocolate muffin, 

strawberry ice cream, beetroot juice and cheesecake. Each chocolate muffin costs 

$0.5, each scoop of strawberry ice cream costs $0.2, each glass of beetroot juice 

costs $0.3, and each piece of cheesecake costs $0.8. Each day, she must take in at 

least 500 calories, 6 oz of chocolate, 10 oz of sugar, and 8 oz of fat. The content of 

nutrients in each of the food types (ounces per unit) is given in the table below. 

Formulate a mathematical model that can allow her to satisfy her daily nutritional 

requirements at minimum cost. 

 Calories 
Chocolate 
[ounces] 

Sugar 
 [ounces] 

Fat 
[ounces] 

Chocolate muffin 400 3 2 2 

Strawberry ice cream [scoop] 200 2 2 4 

Beetroot juice [1 glass] 150 0 4 1 

Cheesecake [1 piece] 500 0 4 5 
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First step: the decision variables  

1x  – the number of chocolate muffins eaten daily 

2x  – the number of scoops of strawberry ice cream eaten daily 

3x  – glasses of beetroot juice drunk daily 

4x  – pieces of cheesecake eaten daily 

Second step: the objective function  

1 2 3 40.5 0.2 0.3 0.8z x x x x     

Third step:  

the calorie constraints 1 2 3 4400 200 150 500 500x x x x     

the chocolate constraint 1 23 2 6x x   

the sugar constraint 1 2 3 42 2 4 4 10x x x x     

the fat constraint 1 2 3 42 4 5 8x x x x     

non-negativity constraint 1 2 3 4, , , 0x x x x   

so, the mathematical model is: 

1 2 3 40.5 0.2 0.3 0.8 minz x x x x      

s.t.   

41 2 3

1 2

1 2 3 4

1 2 3 4

1 2 3 4

400 200 150 500 500

3 2 6

2 2 4 4 10

2 4 5 8

, , , 0

x x x x

x x

x x x x

x x x x

x x x x

   
  


   
    



 

and in matrix form as: z   c x max  

s.t.   




Ax b

x 0
 

where  

400 200 150 500

3 2 0 0
,

2 2 4 4

2 4 1 5

 
 
 
 
 
 

A    

1

2

3

4

,

x

x

x

x

 
 
 
 
 
 

x    

500

6
,

10

8

 
 
 
 
 
 

b     0.5 0.2 0.3 0.8c  
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2.3. Graphical solutions to linear problems 

Linear programming problems with two or three decision variables can be 

solved using the graphical method. It is enough to draw a set of feasible solutions 

and then choose the optimal solution among the corner points. 

The graphical solution to linear problems is best explained by using an example. 

Let us recall Example 4: 

1 2 1 2( , ) 200 50 maxz f x x x x     

s.t.   

1 2

1 2

1 2

10 5 100

3 4 60

, 0

x x

x x

x x

 


 


 

To find the optimal solution to this problem, we must first find the feasible set 

that is a set of all points 2
1 2( , )x x ℝ  which satisfies the constraints. For this, we 

have to graph each of inequalities separately and the final feasible set will be the 

intersection of all these sets.  

We begin with a system of coordinates with 1x  on the horizontal axis, and 2x  

on the vertical axis. Since both 1x  and 2x  are constrained to be non-negative,  

we are only interested in the first quadrant. Let us start with the first constraint

1 210 5 100.x x   Geometrically, it is a half-space with the border given by this 

constraint which is the straight line 1 210 5 100.x x   There is a simple procedure for 

plotting the line by simply finding the points where it intersects the axes, the so-called 

“intercept”, and drawing a straight line through the points. To sketch the graph of 

straight line, two points are enough. The point where the line intersects the hori- 

zontal axis (x – intercept) has 2 0,x   so 1 10.x   The point where the line intersects 

the vertical axis (y – intercept) has 1 0,x   so 2 20.x   This line divides the plane 

into two regions, the upper and the lower one. The way to test whether the feasible 

area is below or above the line is to take a point and see whether the constraint  

is satisfied. Similarly, the second constraint gives us the constraint area for labor. 

The areas representing the constraints is shown in Figure 2.1. 

We want the constraints to be satisfied simultaneously, so they need to be repre-

sented in the same graph. Figure 2.2 shows the feasible area for the model from 

Example 4. One or more of the points in the feasible area will result in the max 

profit. Therefore, the next step is finding that point, or points. 
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Figure 2.1. First and second constraint for “Patio Accessories” 

 

Figure 2.2. Feasible region for “Patio Accessories” 

According to Theorem 1, the optimal solution is one of the corner points of the 

feasible region that gives the largest value of the objective function (the criterion  

is maximum). In Example 4, the feasible region has four corner points denoted by 

O(0,0),  A(10,0),  B(4,12),  C(0,15),  which are located at the intersection of the 

constraint boundary lines. Examining each corner point separately and finding  

the optimal solution is not too difficult since there are only four corner points in  

the problem under study (two decision variables and two constraints):  

0 (0,0) 0,z f   

A (10,0) 200 10 50 0 2000,z f        

B (4,12) 200 4 50 12 1400,z f        

C (0,15) 200 0 50 15 750.z f       
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The largest value is for point B with coordinates 1 2( , ) (10,0),x x   so the optimum  

is reached at this point, and the value of the objective function is 2000.z   

In problems with more constraints, the number of extreme points can be quite 

large, and calculating the extreme points and the objective function values for these 

points can be inconvenient. In those cases, it would be preferable to use a visual 

method by which we also need to graphically represent the objective function.  

The objective function is a linear function of two variables so that its contours 

form parallel lines referred to as the “isoprofit lines” – for maximization problems 

or “isocost lines” for minimization problems. The isoprofit line is shown as a dashed 

line in Figure 2.3. 
 

 
Figure 2.3. Feasible region with isoprofit lines for 0, 1000, 2000z z z     

To determine the optimal solution, the isoprofit line is moved parallel in the direc-

tion that increases value of the objective function until the last point intersecting 

the feasible region is obtained.  

In this example, the optimum point is reached as single point 1 10,x   2 0,x   

and the value of the objective function is 2000.z   This means that “Patio Accesso- 

ries” will need to produce all tables (10 of them), and no chairs in order to  

maximize profits. The profit in this case is 2000.z   

Example 8: Graphically solve the following problem 

1 2 1 2( , ) 4 minz f x x x x      

s.t.   

1 2

1 2

1 2

1 2

3 5

 4

2

, 0

x x

x x

x x

x x

 


 
  


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Figure 2.4. Feasible region with isocost lines for 1, 10, 20, 30z z z z     

The objective function line (in minimization problem called “isocost”) minimizes 
its value by moving parallel in the down-right direction. The optimal solution is  
the intersection point of two constraint lines, the second and the third, with  
coordinates: 1 3,x   2 1,x   and the minimum value of the objective function 

(3,1) 1 3 4 1 1z f        (Fig. 2.4). 

Example 9: Graphically solve the following problem 

1 2 1 2( , ) 6 4 maxz f x x x x     

s.t.   

1 2

1

2

1 2

3 2 18

4

6

, 0

x x

x

x

x x

 



 



 

 

 
Figure 2.5. Feasible region with isoprofit lines for 5, 20, 36z z z    –  

alternative optimal solution 
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The isoprofit line (maximization problem) is parallel to the entire line segment 

joining the corner points 1 4,x   2 3x   and 1 2,x   2 6.x   This means that any point 

on this line segment is an optimal solution. The problem has a so-called “alterna-

tive optimal solution” that belongs to the segment line (4,3) (1 )(2,6)t t    

(2 2 ,6 3 );t t    0 1,t    and gives the same value of the objective function 

36z   (Fig. 2.5). 

Example 10: Graphically solve the following problem 

1 2 1 2( , ) 2 3 maxz f x x x x      

s.t.   

1 2

1

1 2

4 6 24

6

, 0

x x

x

x x

 





 

 
Figure 2.6. Feasible region with isoprofit line for 12, 18, 24z z z    –  

unbounded problem 

Moving parallel to the isoprofit line in the direction of an increasing value of 

the objective function, we see that any isoprofit line we graph will never lose con-

tact with the feasible region. Thus, there are points in the feasible area that have an 

arbitrary large value of the objective function. Then the linear programming prob-

lem is unbounded (Fig. 2.6). 

In summary, the steps of the graphical method used to solve linear program-

ming problems are as follows: 

1. Draw all the model constraints as equations on the graph.  

2. Determine the feasible region. 

3. Represent the objective function graphically, then move this line parallel in the 

direction of the increasing value of the objective function to find the optimum. 
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An optimal solution to the LP is the last point in the feasible region that contacts 

an objective function line. 

4. Find the coordinates of the optimum point by solving a system of two equations 

with two unknown variables. 

2.4. The Simplex Method 

Considered to be the classical approach for solving linear problems, the simplex 

method was developed in 1947 by George Dantzing, who used it to solve pro-

gramming problems for the Air Force. It is a theoretically and practically efficient 

technique that enables us to solve any linear problems relatively easily. 

2.4.1. Introduction to the Simplex Method – the algebraic approach 

It is known from previous considerations that a feasible region of the linear  

programming problem has “corner points” or “extreme points”, one of which is  

the optimal solution. The simplex method is a linear, algebra – based method that 

graphically corresponds to starting at one extreme point on the boundary of the  

feasible region, typically (0,0), and moving to neighboring (adjacent) extreme points 

through the iterative process until an optimal solution is obtained.  

Before the simplex method can be applied, the linear program must be converted 

into “standard form”. 

Definition 1. The linear programming problem is said to be in standard form  

if a linear model fulfills the following condition: all constraints are equations with  

a non-negative right-hand side and all variables are nonnegative.  

The process of converting a linear program to its standard form requires a few 

steps: multiplying by (–1) both sides of the constraint (note that the multiplying by 

(–1) changes the sign of the inequality to the opposite sign), if the right-hand side 

of a constraint is negative, and adding a so-called “slack variable” to the left-hand 

side of  “ ” constraint. 

Definition 2. A slack variable is  is an additional variable that represents the 

amount not used in the i-th “ ” constraint. 

It is usually assumed that the slack variables make no contribution to the objective 

function; they appear in the objective function with zero coefficients. 
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Example 11: Convert the given LP to its standard form: 

1 2 1 2( , ) 120 160 maxz f x x x x     

s.t.   

1

2

1 2

2 10

3 11

5

x

x

x x



  
  

  1 2, 0x x   

Solution: first multiply by (–1) the second constraint and then add the appropriate 

slack variable. Finally, the standard form of given LP problem is 

1 2 1 2 1 2 3( , ) 120 160 0 0 0 maxz f x x x x s s s        

s.t.   

1 1

2 2

1 2 3

2 10

3 11

5

x s

x s

x x s

 


 
   

  1 2 1 2 3, , , , 0x x s s s   

In matrix notation, a linear programming problem in standard form can be written 

as: 

z   c x max  

s.t.   ;m

 
     

 

x
A I b

s
 , 0x s  

where mI  denotes the “m by m” identity matrix, and  

11 12 1

21 22 2

1 2

,

r

r

m m mr

a a a

a a a

a a a

 
 
 
 
 
 

A

…

…

⋯ ⋯ ⋯ ⋯

…

   

1

1

,
n

m

x

x

s

s

 
 
 
 

  
 
 
 
  

x

⋯

⋯

   

1

2
,

m

b

b

b

 
 
 
 
 
 

b
⋯

    1 2 .... nc c cc  

then the constraints of the standard form of an LP can be simply represented by  

a system of simultaneous equations , A x b  involving m equations and  r m n   

unknown variables (the vector x contains the original set of decision variables and 

a new collection of variables – slack variables introduced to convert the inequalities 

to equalities).  

Thus, the optimal solution to the optimization problem must be a solution to this 

set of linear equations. But, since ,m r  this system will have an infinite number 
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of solutions. However, in the simplex method, only a finite number of these solu-

tions will be of interest; it is the so-called “basic solutions set”. 

Definition 3. The basis matrix is any m by m nonsingular submatrix of A, selected 

for a given system of equation . A x b  

Definition 4. A basic solution Bx  to the system of m linear equations with r  

unknowns is found by setting to zero r – m variables (referred to as the non-basic 

variables) and solving the system of m equations for remaining m variables  

(referred to as the basic variables).  

Definition 5. A basic feasible solution is a basic solution where all basic variables 

are nonnegative. The optimal solution will be one of the basic feasible solutions 

with the best value of the objective function (the largest for the maximization  

problem, and the smallest for the minimization problem).  

The number of basic solutions is limited by the formula:  

!

!( )!

r

m r m
 

Denoting the basis matrix by B, the resulting system after setting r m  variables 

to zero may be written in matrix form as:  BB x b  or 1 . Bx B b   

Example 12: Determine all basic solutions and basic feasible solutions for the  

linear problem in Example 11. 

Let us start the solution with the standard form of the problem: 

1 2 1 2 1 2 3( , ) 120 160 0 0 0 maxz f x x x x s s s        

s.t.   

1 1

2 2

1 2 3

2 10

3 11

5

x s

x s

x x s

 


 
   

 

1 2 1 2 3, , , , 0x x s s s   

the coefficients matrix for this system of equations is as follows: 

2 0 1 0 0

0 3 0 1 0 ;

1 1 0 0 1

 
   
  

A    r = 5;   m = 3 
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There are 10 possible basic solutions:  

 
! 5! 5! 4 5 20

10.
!( )! 3! 5 3 ! 3! 2! 2 1 2

r

m r m


    

    
 

The basic solution is determined by setting to zero r – m = 2 variables and solving 

the system of m = 3 equations for the remaining m variables.  

The first possible basis can be for example: 

 1 1 2 3a a aB

2 0 1

0 3 0 ;

1 1 0

 
   
  

 

2 0 1

0 3 0 3 0;

1 1 0

    

Meaning that 1B  is a nonsingular matrix, so 1B  is a basis matrix, and 1 2 1, ,x x s   

are basic variables, 2 3 0s s    are non-basic variables. 

For this basis matrix the basic variable can be obtained by using the formula 
1 Bx B b  

1

2 0 1

0 3 0 ,

1 1 0

 
   
  

B    1
1

0 0 1

1
0 0 ,

3

2
1 2

3



 
 
 
 
 
 
 
 

B  

and 
1 1

1

1 4
0 1

3 310
1 11

0 0 11
3 3

5
2 22

1 2
3 3



   
   

    
            
     

   
      

Bx B b  

or by solving the system of equations: 

1 1

2

1 2

2 10

3 11

5

x s

x

x x

 



  

   1 1 2

23 4 11
; ;

3 3 3
s x x     
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and the basic feasible solution is: 

1

4 11 8
0 0 ;

3 3 3

T     
Bx    

1

2240
( )

3
z Bx  

the next possible basis is: 

 2 1 2 4a a aB

2 0 0

0 3 1

1 1 0

 
   
  

 

2 0 0

0 3 1 2 0

1 1 0

      2 B  – non-singular, is a basis matrix 

1 2 2, ,x x s   basic variable 

1 3 0s s    non-basic variable 

for this basis matrix the basic variables are obtained as follows: 

1

2 2

1 2

2 10

3 11

5

x

x s

x x


  
  

   2 1 211; 5; 0s x x     

and the basic feasible solution is: 

 
2

5 0 0 11 0 ;T Bx    
2

( ) 600z Bx  

 3 1 2 5a a aB

2 0 0

0 3 0

1 1 1

 
   
  

 

2 0 0

0 3 0 6 0

1 1 1

        3 B  – non-singular, is a basis matrix 

1 2 3, ,x x s   basic variable 

1 2 0s s    non-basic variable 

For this basis matrix the basic variables are obtained as follows: 

1

2

1 2 3

2 10

3 11

5

x

x

x x s


 
   

   1 2 3

11 11
5; ;

3 3
x x s


     
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3

11 11
5 0 0 ,

3 3

    
Bx  infeasible basic solution, because of the negative value  

 4 1 3 4a a aB

2 1 0

0 0 1

1 0 0

 
   
  

 

2 1 0

0 0 1 1 0

1 0 0

     4 B  – non-singular, is a basis matrix 

1 1 2, ,x s s   basic variable 

2 3 0x s    non-basic variable 

For this basis matrix the basic variables are obtained as follows: 

1 1

2

1

2 10

11

5

x s

s

x

 
 
 

   1 1 25; 0; 11x s s     

and the basic feasible solution is: 

 
4

5 0 0 11 0 ;T Bx    
4

( ) 600z Bx  

 5 1 3 5a a aB

2 1 0

0 0 0

1 0 1

 
   
  

 

2 1 0

0 0 0 0

1 0 1

    5 B  – singular, is not a basis matrix 

 6 1 4 5a a aB

2 0 0

0 1 0

1 0 1

 
   
  

 

2 0 0

0 1 0 2 0

1 0 1

     6 B  – non-singular, is a basis matrix 
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1 2 3, ,x s s   basic variable 

2 1 0x s    non-basic variable 

For this basis matrix the basic variables are obtained as follows: 

1

2

1 3

2 10

11

5

x

s

x s


 
  

   1 2 35; 11; 0x s s     

and the basic feasible solution is: 

 
6

5 0 0 11 0 ;T Bx    
1

( ) 600z Bx  

 7 2 3 4a a aB

0 1 0

3 0 1

1 0 0

 
   
  

 

0 1 0

3 0 1 1 0

1 0 0

     7 B  – non-singular, is a basis matrix 

2 1 2, ,x s s   basic variable 

1 3 0x s    non-basic variable 

For this basis matrix the basic variables are obtained as follows: 

1

2 2

1 2

10

3 11

5

s

x s

x x


  
  

   1 2 210; 5; 4s x s      

 
7

0 5 10 4 0 ;T  Bx  basic, but not basic feasible solution 

 8 2 3 5a a aB

0 1 0

3 0 0

1 0 1

 
   
  

 

0 1 0

3 0 0 3 0

1 0 1

      8 B  – non-singular, is a basis matrix 
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2 1 3, ,x s s   basic variable 

1 2 0x s    non-basic variable 

For this basis matrix the basic variables are obtained as follows: 

1

2

1 3

10

3 11

5

s

x

x s


 
  

   1 2 3

11 4
10; ;

3 3
s x s     

and the basic feasible solution is: 

8

11 4
0 10 0 ;

3 3

T     
Bx    

8

1760
( )

3
z Bx  

 9 2 4 5a a aB

0 0 0

3 1 0

1 0 1

 
   
  

 

0 0 0

3 1 0 0

1 0 1

    9 B  – singular, is not a basis matrix 

and the last one  

 10 3 4 5a a aB

1 0 0

0 1 0

0 0 1

 
   
  

 

1 0 0

0 1 0 1 0

0 0 1

     10 B  – non-singular, is a basis matrix 

1 2 3, ,s s s   basic variable 

1 2 0x x    non-basic variable 

For this basis matrix the basic variables are obtained as follows: 

1

2

3

10

11

5

s

s

s


 
 

   1 2 310; 11; 5s s s     
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and the basic feasible solution is: 

 
10

0 0 10 11 5 ;T Bx    
10

( ) 0.z Bx  

Finally, the eight basic feasible solutions were obtained.  

The optimal solution is the basic feasible solution with the best value of the  

objective function, so in this example it is the following solution 

4 11 22
0 0

3 3 3

T     
xopt  with  

2240
( ) .

3
z Bx

opt
 

2.4.2. The Simplex Algorithm – step by step 

Up to now, in the search for the optimal solution, all basic solutions were  

analyzed, and the optimal solution was obtained by selecting the point with the best 

value of the objective function, the largest for the maximization problem and the 

smallest for the minimization problem. The simplex algorithm examines only a few 

basic solutions, selected according to the rule defined in this method. It always 

starts with basic feasible solutions and moves through other basic feasible solutions 

that successively improve the value of the objective function. The algorithm termi-

nates once the optimal value is reached. This procedure is best executed with the 

help of simply tableau with the most important information about the analyzed  

linear program. Sometimes this tableau is referred to as “simplex tableau”. 

Example 13: A carpentry company builds and sells wooden tables. They produce 

two types of tables using a combination of three types of wood, acacia, chestnut 

and larch. To construct the type 1 table, the worker requires 2 board foot (bf)  

acacia and 1 bf chestnut. To construct the type 2 table, they require 3 bf of larch 

and 1 bf of chestnut. Given that they have 10 bf of acacia, 5 bf of chestnut and 

11 bf of larch and they can sell type 1 of table for $120 and type 2 table for $160,  

how many of each table type should they make to maximize revenue?  

Solution: let us start by gathering all the information in table form: 

 table type 1 table type 2 Available 

acacia 2 0 10 

chestnut 1 1 5 

larch 0 3 11 

Profits [$] 120 160  
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next, formulate the mathematical model: 

determination of the decision variables: 

let us denote by x – number of type 1 tables to be built 

y – number of type 2 tables to be built 

determination of the objective function: 

the revenues are a function of the number of tables of each type sold, the objective 

function will take the following form:  

( , ) 120 160z f x y x y    

determination of the constraints: 

the acacia constraint: if the production of type 1 tables is x, and type 2 tables is y,  

the woodworker should use 3x  units of acacia wood, so the first constraint is 

3 10x   

the chestnut constraint: if the production of type 1 tables is x, and type 2 tables is 

y,  the woodworker should use 3y  units of chestnut wood, so the second constraint 

is 3 11y   

the larch constraint: if the production of type 1 tables is x, and type 2 tables is y,  

the woodworker should use x y  units of larch wood, so the third constraint is 

5x y   

and sign restriction , 0.x y   

Finally, the mathematical model of the problem is: 

( , ) 120 160 maxz f x y x y     

s.t.   

2 10

3 11

5

, 0

x

y

x y

x y





  



 

and in matrix form as: maxz   c x  

s.t.   




Ax b

x 0
 

where  

2 0

0 3

1 1

,

 
 
 
  

A    ,
x

y

 
  
 

x    

10

11 ,

5

 
   
  

b     120 160c  
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Step 1. Convert the linear program into standard form. The linear program in 

standard form is: 

1 2 3( , ) 120 160 0 0 0 maxz f x y x y s s s        

s.t.   

1

2

3

2 10

3 11

5

x s

y s

x y s

 


 
   

 

1 2 3, , , , 0x y s s s   

The initial simplex tableau should fulfill the following conditions: one basic 

variable per row, the coefficients of all basic variables are +1, and the coefficients 

above and below the basic variables are zero, the objective function should be  

written in the form where all variables are on the left-hand side 120 160 0.z x y    

It will be the first row of the table (also called row 0). If  the table is in proper 

form, then the solution can be read directly by looking at the table and the  

right-hand side value.  

To determine whether a basic feasible solution is optimal, we need to determine  

if any of the non-basic variables (who have a value of zero) can be increased to  

improve the value of the objective function.  

Theorem 1. In a maximization problem the basic feasible solution is optimal if all  

coefficients of non-basic variable in row 0 in initial simplex tableau are more than 

or equal to zero – it is known as the optimality condition. This means that there 

are (in row 0) no negative signs, indicating that the maximum value of the objective 

function had been found. 

In a minimization problem, the optimality condition is fulfilled when none of  

the coefficients in row 0 are positive. Furthermore, in a minimization problem,  

the entering variable is chosen to be the non-basic variable with the highest posi-

tive coefficient in row 0. 

Definition 1. The non-basic variable with the most negative coefficient in row 0 is 

called the entering variable and is always selected as the non-basic variable that 

becomes a basic variable. The entering variable column is called the pivot column 

(see Chapter 1.2). 

Definition 2. The leaving variable is determined by using a “ratio test”. The “ratio” 

values are simply the ratio of the right-hand side values divided by the element in 

the pivot column (entering variable column) of the same row, but only by positive 

coefficients. A negative and zero are not important for the current value of the  
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objective function. The leaving variable is selected to be the basic variable in the 

row with the smallest ratio. This row is called the pivot row. The intersection of 

the pivot column and pivot row is called the pivot element.  

In other words, the smallest value of ratio is the largest value of the entering variable 

that will keep all current basic variables nonnegative.  

In the next step, just use elementary row operations to make the entering  

variable a basic variable, (coefficients 1 in that row and 0 in all other rows), in the 

row of the leaving variable. In other words, the pivot column should contain 1 in 

the pivot element and 0 in every other constraint row. These operations result  

in a new, basic feasible solution with the better value of the objective function. 

The new tableau shows a new feasible solution. After that, the algorithm returns 

to step 3 to check if the new basic feasible solution is optimal. These steps are  

repeated until the objective function value cannot be improved by increasing  

the value of any of the non-basic variables.   

Step 2. Obtain the basic feasible solution from the standard form (decision variable 

– non-basic variables – equal to zero – Table 2.1). 

Table 2.1. The initial simplex tableau 

Basic z  x  y  1s  2s  3s  RHS ratio 

z  1 –120 –160 0 0 0 0  

1s  0 2 0 1 0 0 10 none 

2s  0 0 3 0 1 0 11 11
3

 

3s  0 1 1 0 0 1 5 5 

 

the actual basic feasible solution is  1 0 0 10 11 5 .T
x  

Step 3. Determine if the basic feasible solution is optimal (from Table 2.1, sign of 

the coefficients in row 0).  

Step 4. The current solution is not optimal. There are negative coefficients in row 

0. Since y  has the most negative coefficient in row 0, and 2s  has the lowest ratio, 

the entering and leaving variables are y  and 2 ,s  respectively.  

Step 5. Use elementary row operations to solve for the new basic feasible solution. 

Return to step 3. The new basic feasible solution is shown in Table 2.2. 
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Table 2.2. The tableau for the new basic feasible solution in the first iteration 

Basic z  x  y  1s  2s  3s  RHS ratio 

z  1 –120 0 0 160
3

 0 1760
3

  

1s  0 2 0 1 0 0 10 5 

y  0 0 1 0 1
3

 0 11
3

 none 

3s  0 1 0 0 1
3

  1 4
3

 4
3

 

 

The actual basic feasible solution is 2
11 40 10 0 ,

3 3
T  

 
x  with the objec- 

tive function value 1760 .
3

  

The new basic feasible solution is still not optimal. There is a negative coeffi- 

cient in row 0. The objective function value can be increased by increasing the value 

of x. Since x  has the most negative coefficient in row 0 and 3s  has the lowest  

ratio, the entering and the leaving variables are x  and 3,s  respectively.  

Step 5. Use elementary row operations to solve for the new basic feasible solution. 

Return to step 3. The new basic feasible solution is shown in Table 2.3. 

Step 3. Since there are no negative coefficients in row 0, we have reached the  

optimal solution where the objective function value is 2240 ,
3

 and the optimal  

solution is 4 11 22 0 0 .
3 3 3

T  
 

xopt   

Table 2.3. The tableau for the new basic feasible solution in the second iteration 

Basic z  x  y  1s  2s  3s  RHS ratio 

z  1 0 0 0 40
3

 120 2240
3

  

1s  0 0 0 1 2
3

 –2 22
3

  

y  0 0 1 0 1
3

 0 11
3

  

x  0 1 0 0 1
3

  1 4
3

  

 

Finally, the carpentry company should build 4
3

 type 1 tables and 11
3

 type 2 

tables to maximize the revenue to $ 746,67.  
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To summarize, the simplex algorithm can be described by the following steps: 

1. Convert the linear program to its standard form. 

2. Obtain a basic feasible solution from the standard form (an initial basic feasible 

solution can be found by setting all decision variables equal to zero). 

3. Determine whether the basic feasible solution is optimal by using the optimality 

condition. 

4. If the current basic feasible solution is not optimal, select a non-basic variable 

that should become a basic variable (it is the so-called entering variable), and 

basic variable which should become a non-basic variable (called the leaving 

variable) to determine a new basic feasible solution with an improved objective 

function value. 

5. Use elementary row operations to solve for the new basic feasible solution.  

Return to step 3. 

To solve the minimization problems, the entering variable condition and opti-

mality condition should be modified. Instead of choosing the entering variable on 

the basis of the most negative coefficient in row 0 of the tableau, select the entering 

variable on the basis of the most positive coefficient. Then terminate the algorithm 

when entries in row 0 of the tableau corresponding to non-basic variables are all 

non-positive. 

The second way to solve the minimization problem is to transform the problem 

as a maximization problem by just multiplying the objective function by (–1) and 

keeping each constraint unchanged. Now solve the LP using the simplex algorithm 

as we did previously. 

Let us consider the following examples: 

Example 14: 2 3 minz x y    

s.t.   
4

6

x y

x y

 


 
 

, 0x y   

Solution 

First transform to the maximization problem  

2 3 maxw z x y       

s.t.   
4

6

x y

x y

 


 
 

, 0x y   
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next, the standard form of LP 

1 22 3 0 0 maxw z x y s s         

s.t.   
1

2

4

6

x y s

x y s

  


  
 

1 2 1 2, , , 0x x s s   

The initial simplex tableau is:  

Basic z  x  y  1s  2s  RHS ratio 

w  1 2 –3 0 0 0  

1s  0 1 1 1 0 4 4 

2s  0 1 –1 0 1 6 – 

 

the basic variables are 1 4,s   2 6,s   non-basic variable are ,x  .y  Since the coeffi- 

cient of variable y  is the most negative non-basic variable coefficient in the top row, 

y  is the entering variable. The first constraint row yields the smallest ratio of 4,  

so 1s  becomes a non-basic variable and is replaced by 1.s  The new basic feasible 

solution after first iteration is shown in the following table:  

Basic z  x  y  1s  2s  RHS ratio 

w  1 5 0 3 0 12  

y  0 1 1 1 0 4  

2s  0 2 0 1 1 10 – 

 

the basic variables are 4,y   2 10,s   non-basic variables are ,x  1,s  and 12.w   

Since all non-basic variable coefficients in the row 0 of the tableau are positive, 

this solution  0 4 0 10T xopt  is optimal with an optimal value of the objective 

function 12.w z     

Example 15: Solve the given minimization problem by using the modified simplex 

algorithm:  

1 25 2 minz x x     
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s.t.   

1

1 2

1 2

2

3 2 6

8 3 12

x

x x

x x


  
  

 

1 2, 0x x   

Solution 

the standard form of LP is the following 

1 25 2 minz x x     

s.t.   

1 1

1 2 2

1 2 3

2

3 2 6

8 3 12

x s

x x s

x x s

 
   
   

 

1 2 1 2 3, , , , 0x x s s s   

and the initial tableau: 

Basic z  1x  2x  1s  2s  3s  RHS ratio 

z  1 5 –2 0 0 0 0  

1s  0 1 0 1 0 0 2 2 

2s  0 3 2 0 1 0 6 2 

3s  0 8 3 0 0 1 12 3
2

 

 

the basic variables are 1 2,s   2 6,s   3 12,s   non-basic variables are 1,x  2 .x  

Since 5 is the most positive non-basic variable coefficient in the top row, 1x  is the 

entering variable. The third constraint row yields the smallest ratio of 3 ,
2  so 3s  

becomes non-basic variable and is replaced by 1.x  The new basic feasible solution 

after first iteration is shown in the following table: 

Basic z  1x  2x  1s  2s  3s  RHS ratio 

z  1 0 31
8

  0 0 5
8

  15
2

   

1s  0 0 3
8

  1 0 1
8

  1
2

  

2s  0 0 7
8

 0 1 3
8

  3
2

  

1x  0 1 3
8

 0 0 1
8

 3
2

  
 



Linear programming 49 

the basic variables are 1
3 ,

2
x   1

1 ,
2

s   2
3 ,

2
s   non-basic variables are 2 ,x  3s  

and 15 .
2

z   Since all non-basic variable coefficients in row 0 of the tableau are 

non-positive, this solution 3 310 0
2 2 2

T    xopt  is optimal with the value of 

the objective function 15 .
2

z   

2.4.3. The Big M-method 

The more general form of a linear programming problem is the problem with  

a different kind of constraint: “ ”, “ ” or “=”. Some modifications of the simplex 

algorithm referred as “Big M-method” may be used to solve a problem like this.  

The Big M-method steps are following:  

1. Modify the constraints so that the right – hand side of each constraint is 

nonnegative. After modification, identify each constraint as a “ ”, “ ” or “=” 

constrain. 

2. Convert each inequality constraint to standard form – if constraint i is  

a “ ” constraint, we add a slack variable ;is  if constraint i is a “ ” constraint, 

we subtract an excess (also called surplus variable) variable ie  (add slack and 

excess variable to the objective function with coefficients equal zero). 

3. Add an “artificial variable” ia  to the constraints identified as “ ” or “=”  

constraints at the end of step 1. Also add the sign restriction 0.ia   

4. Let M denote a very large positive number. If the LP is a minimization problem, 

add (for each artificial variable) iMa  to the objective function. If the LP is  

a maximization problem, add (for each artificial variable) iMa  to the objective 

function. 

5. Since each artificial variable will be in starting basis, all artificial variables must 

be eliminated from row “0” before beginning the simplex by using an elemen-

tary row operation. Now solve the transformed problem by the simplex method. 

If the non-negative conditions are not met, for example, one of the decision  

variables: kx ℝ  is unrestricted in sign, and we replace this variable with the  

difference of two non-negative variables in accordance with the following formula: 

* **,k k k
x x x     * 0,

k
x   ** 0.

k
x   
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The number M is chosen to be a very large number. While there is no definitive 

rule as how large M should be, it is important that M be significantly larger than 

any of the coefficients in the objective function, large enough so that any non-zero 

artificial variable value in the final solution results in a significantly larger z value. 

Thus, we call this approach for solving the LP the “Big M-Method”.  

All artificial variables should be equal to zero in the final solution to the original 

linear programming problem. If any artificial variables are not equal to zero in the 

optimal solution, the original problem is infeasible. 

Example 16: An example of such an LP is given by: 

1 23 minz x x    

s.t.   

1 2

1

1 2

6

1

2 10

x x

x

x x

 
 
  

 

1 2, 0x x   

Solution 

First, convert this problem to appropriate form. Introduce a slack variable 1,s  in the 

first constraint, in the second constraint subtract a nonnegative surplus variable 2e  

and artificial variable 2 .a  In the third constraint, introduce artificial variable 3.a  

So, the standard form of the problem is: 

1 2 1 2 2 33 0 0 minz x x s e Ma Ma        

s.t.   

1 2 1

1 2 2

1 2 3

6

1

2 10

x x s

x e a

x x a

  
   
   

 

1 2 1 2 2 3, , , , , 0x x s e a a   

This yields a basic feasible solution with basic variables: 1 6,s   2 1,a   3 10.a   

The introduction of artificial variables therefore eliminates the difficulty of finding  
 

an initial basic feasible solution. The initial tableau for M = 20 is: 

Basic z  1x  2x  1s  2e  2a  3a  RHS ratio 

z  1 –3 –1 0 0 –20 –20 0  

1s  0 1 1 1 0 0 0 6  

2a  0 1 0 0 –1 1 0 1  

3a  0 2 1 0 0 0 1 10  
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Since 2,a 3a  are basic variables in the basic feasible solution, and have non-zero 

coefficients in row 0, elementary row operations are necessary to obtained appro-

priate form of the initial simplex tableau (pivot on the coefficient in row “i” and 

column “j” to convert column “j” into “1j” by multiply row “i” by a constant, and 

add multiples of row “i” to other rows, in this example: 20 2 0  0;R R new R    

20 3 0  0).R R new R    

Performing these two pivots yields the following initial simplex tableau: 

Basic z  1x  2x  1s  2e  2a  3a  RHS ratio 

z  1 57 19 0 –20 0 0 220  

1s  0 1 1 1 0 0 0 6 6 6
1
  

2a  0 1 0 0 –1 1 0 1 1 1
1
  

3a  0 2 1 0 0 0 1 10 10 5
2
  

 
Now, the simplex algorithm can be started. For the minimization problem, we 

focus on the column corresponding to the non-basic variable whose coefficient in  

row 0 of the tableau, is most positive. In this example, the variable with the most 

positive coefficient in the top row is 1,x  it will be the entering variable, the ratio 

test determines 2a  as the leaving variable. Performing elementary row operations 

yields the new basic feasible solution in the next simplex tableau: 

Basic z  1x  2x  1s  2e  2a  3a  RHS ratio 

z  1 0 19 0 37 –57 0 163  

1s  0 0 1 1 1 –1 0 5 5 5
1
  

1x  0 1 0 0 –1 1 0 1 none 

3a  0 0 1 0 2 –2 1 8 8 4
2
  

 
The actual basic feasible solution is (non-basic variables equal to zero, basic 

variables from tableau)  1 1 0 5 0 0 0 8 ,T x  and the value of the objective func- 

tion is equal to 163.  This solution is not optimal. There are positive coefficients in 

row 0. Since 2e  has the most positive coefficient in row 0, and 3a  has the lowest 

value in ratio test, the entering and the leaving variables are 2e  and 3 ,a  respectively.  
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Two more iterations of the simplex algorithm are then necessary to achieve the  

optimal solution.  

Basic z  1x  2x  1s  2e  2a  3a  RHS ratio 

z  1 0 1
2

 0 0 –20 37
2

  15  

1s  0 0 1
2

 1 0 0 1
2

  1 
1

2
1

2

  

1x  0 1 1
2

 0 0 0 1
2

 5 
5

10
1

2

  

2e  0 0 1
2

 0 1 –1 1
2

 4 
4

8
1

2

  

 

Basic z  1x  2x  1s  2e  2a  3a  RHS ratio 

z  1 0 0 –1 0 –20 –18 14  

2x  0 0 1 2 0 0 –1 2  

1x  0 1 0 –1 0 0 1 4  

2e  0 0 0 –1 1 –1 1 3  

 
Recall that because this is a minimization problem, we terminate the algorithm 

when entries in the top row of the tableau corresponding to non-basic variables are 

all non-positive. Thus, the solution is optimal with 1 4,x   2 2x   and the objective 

function value of z = 14. It is very significant to notice that in this solution, both  

artificial variables are non-basic, which means that they take the value of zero. 

2.5. Duality theory  

Duality occurs when two related parts constitute the whole of something. In the 

context of linear programming, duality refers to the idea that associated with any 

linear problem is another linear problem, so-called dual, the solution of which gives 

the information about the solution of original linear problem. The dependencies  

between the original and the one that is dual are very useful in a variety of ways. 
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2.5.1. Formulating the dual LP 

Let us consider the maximization problem having n decision variables and m 

constraints, written in matrix notation as: 

z   c x max  

s.t.    A x b  

x 0  

where x  is a column vector that belongs to ,n
ℝ  c  is a row vector in ,n

ℝ   

b  belongs to ,m
ℝ  and A  is an m-by-n matrix. 

For example: 1

2

,
x

x

 
  
 

x   4 3 ,c  

8

28 ,

32

 
   
  

b  and 

1 0

2 2 .

3 2

 
   
  

A   

The expanded form of this LP is given by:  

1 24 3 maxz x x    

s.t.   

1

1 2

1 2

8

2 2 28

3 2 32

x

x x

x x




 
  

 

1 2, 0x x   

Let y  denote a row vector in .m
ℝ  

Definition 1. The dual problem of given linear problem is written in matrix  

form as: 

w   y b min  

 y A c  

y 0  

The original linear programming problem is called the primal problem. 

The general features of the dual linear programming problem: 

1. Its goal is minimization if the primal is a maximization problem. 

2. Its objective function coefficients are determined from the right-hand sides of 

the original LP’s constraints. 
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3. The right-hand side of the primal are the objective coefficients of the dual  

problem. 

4. The column coefficients in a constraint of a primal variables will be the left-hand 

side coefficients of the dual constraints. 

In the example model  1 2 3w y y y  is a row vector in ,3
ℝ  and the dual LP’s 

objective function is given by  1 2 3 1 2 3

8

28 8 28 32 .

32

w y y y y y y

 
     
  

 

So, the expanded form of the dual is: 

1 2 38 28 32 minw y y y     

s.t.   
1 2 3

2 3

2 3 4

2 2 3

y y y

y y

  


 
 

1 2 3, , 0y y y   

A comparison of the primal problem with its dual yields:  

 the primal LP involves three constraints in two decision variables,  

 the dual LP involves two constraints in three decision variables. 

The duality is a very useful feature in practice: we can obtain the solution of the LP 

by solving its dual. Thus, one has the freedom to solve either of the LP’s, depend-

ing upon which is computationally easier.  

2.5.2. The dual theorems 

The path to establishing relationships between an LP and its corresponding  

dual begins with the following theorem: 

Theorem 1 (Weak Duality Theorem). Suppose 0x  is a primal-feasible solution, 

meaning it satisfies the constraints and sign conditions in primal LP, and 0y  is  

a dual-feasible solution, meaning it satisfies the constraints and sign restrictions  

in dual LP. Then 

0 0  c x y b  

In other words, any feasible solution to the dual can be used to develop a bound  

on the optimal value of the primal objective function. 
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Theorem 2 (Strong Duality Theorem). If the linear programming problem has  

an optimal solution 0 ,x  then its dual also has an optimal solution, 0 ,y  and their 

corresponding objective function values, 0z  and 0 ,w  are equal. 

Important Fact: the dual of a linear problem’s dual is the original linear problem. 

Combining Theorem 1, Theorem 2 and the important fact, the following major  

result can be formulated, which summarizes the three possible outcomes for a linear 

problem and its dual: 

Theorem 3. For a linear problem and its dual, one of the three possible outcomes 

must occur: 

1. If the primal LP has an optimal solution, then so does the dual LP and the con-

clusions of both the Weak and Strong Duality Theorems hold. 

2. If the primal LP is unbounded, then the dual is infeasible. 

3. If the primal LP is infeasible, then the dual LP is either infeasible or unbounded. 

There are two methods of obtaining the dual linear problem solution. One way 

is to solve it directly. The second way of reaching the dual solution is to do so indi-

rectly from the solution of the primal problem. This can be done using the follow-

ing theorem. 

Theorem 4 (the Complementary Slackness Property). Assume that 0x  is  

a feasible solution to LP and 0y  is a feasible solution to dual LP. Then a necessary 

and sufficient condition for both to be simultaneously optimal solutions of their  

respective LP’s is that 

   0 0 , 1,2,...,
i i

i n  y A c x 0    and      0 0 , 1,2,...,
j j

j m  y b Ax 0  

In other words, if a constraint in either the primal or dual is a strict inequality,  

then the corresponding (complementary) variable in the other problem must be 

equal to zero. 

The table below provides a summary of the general formulation for an LP having m 

constraints in n variables. In this table, “u. r. s.” denotes a decision variable that is 

unrestricted in sign. 
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Primal Dual 

maximize c x  minimize y b  

Constraint sign Variable sign 

1

n

ij i j

i

a x b


   for some 1 j m   0jy    for this same j  

1

n

ij i j

i

a x b


   for some 1 j m   u.r.s.jy   for this same j  

Variable sign Constraint sign 

0ix    for some 1 i n   
1

n

j ij i

i

y a c


   for this same i  

u.r.s.ix   for some 1 i n   
1

n

j ij i

i

y a c


   for this same i  

 
Example 17: A furniture factory makes desks, tables, and chairs. Each product 

needs the limited resources of R1, R2 and R3. The limits of resources are described 

in the table.  

Let us suppose that a businessman has been found who is willing to buy all  

resources from this factory. Determine the resources price that will encourage  

the furniture factory to sell the resources.  

Resources Desk Table Chairs Max available 

R1 8 6 1 48 

R2 4 2 1.5 20 

R3 2 1.5 0.5 8 

Price [$] 60 30 20  

 
Solution. The problem can be described by the dual problem. The decision varia-

bles in dual are the resources price – price paid for one unit of resource R1, R2, and 

R3. The total cost of purchasing the resources (dual problem) should be equal to 

the total profit (primal problem). 

The primal and the dual problems are 

1 2 360 30 20 maxz x x x     
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s.t.   

1 2 3

1 2 3

1 2 3

8 6 48

4 2 1.5 20

2 1.5 0.5 8

x x x

x x x

x x x

  


  
   

 

1 2 3, , 0x x x   

1 2 348 20 8 minw y y y     

s.t.   

1 2 3

1 2 3

1 2 3

8 4 2 60

6 2 1.5 30

1.5 0.5 20

y y y

y y y

y y y

  


  
   

 

1 2 3, , 0y y y   

The solution of the dual problem can be obtained in two ways, directly with the 

simplex method or indirectly from the solution of the primal problem. So, using the 

second way for this example, the optimal solution of the primal LP obtained with 

the simplex method is the following  2 0 8 ,opt x  and 280.optz   Next, the  

solution to the dual problem will be found using the duality theorems. From  

the strong duality property, the so-called complementary slackness conditions,  

the following dependencies arise: if the optimal variable is positive, its correspond-

ing (complementary) dual constraint holds with equality, and if a primal constraint 

holds with strict inequality, then the corresponding dual variable must be zero.  

18 2 6 0 8 24 48 0

4 2 2 0 1.5 8 20

2 2 1.5 0 0.5 8 8

y       


     
      

 

additionally, since the first and third optimal variable are positive, the correspond-

ing dual constraints are fulfilled with equality: 

2 3

2 3

8 0 4 2 60

0 1.5 0.5 20

y y

y y

   


  
 

The solution of this system of equations is the optimal solution of the dual problem: 

 0 10 10 ,opt y  

and  1 2 348 20 8 48 0 20 10 8 10 280w y y y           

Interpretation of the results: an entrepreneur can offer the following resource price, 

$10 for resource R2 and $10 for resource R3, he or she should not buy resource R1, 

the minimum purchase cost will then be $280. 
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2.5.3. Economic interpretation of dual variables  

When the primal is a standard max problem, the dual variables are related to the 

value of resources available to the decision-maker. For this reason, dual variables are 

often referred to as resource shadow prices.  

Definition 1. The shadow price for the i-th constraint of an LP is the amount by 

which the optimal z value is “improved” (increased in a maximization problem and 

decreased in a minimization problem) if the right-hand side of the i-th constraint  

is increased by 1.  

This definition applies only if the change in RHS of the constraint leaves the  

current basis optimal.  

A “ ” constraint will always have a nonpositive shadow price; a “ ” constraint 

will always have a non-negative shadow price. 

Example 18: For the given linear problem 

1 215 25 maxz x x    

s.t.   

1 2

1 2

1 2

2

3 4 100

2 3 70

2 30

3

x x

x x

x x

x

 
  


 
 

 

1 2, 0x x   

the optimal solution to the problem is  24 3 ,opt x  and 435.optz   Find the shadow 

price of each constraint. 

Solution. The shadow price of each constraint is the optimal value of the corre-

sponding dual variable of each constraint. Let us start with dual problem 

1 2 3 4100 70 30 3 minw y y y y      

s.t.   
1 2 3

1 2 3 4

3 2 15

4 3 2 25

y y y

y y y y

  


   
 

1 2 3 4, , 0, 0y y y y   

So, using the duality theorems, the shadow prices (optimal solution of dual) are: 

 0 0 15 5 ,opt  y  and  435.optw   
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2.6. Sensitivity analysis  

The second important topic in linear programming, next to duality, is sensitivity  
 

analysis. This chapter is about sensitivity analysis that takes place after a linear  
 

programming problem has been solved. Sensitivity analysis is precisely the study  
 

of how the optimal solution to a linear programming problem depends on model   
 

parameters (the technological coefficients ,ija  right-hand side ,ib  and objective 

function coefficients ).jc  In other words: what happens to the optimal solution 

value if one number in the data is changed. Typically, greater attention is given  
 

to performing sensitivity analysis on the ,ib  and jc  than on the ija  parameters.  

On real problems with hundreds or thousands of constraints and variables, the effect  
 

of changing one ija  value is usually negligible, but changing one ,ib  or jc  value 

can have a real impact.  

2.6.1. Sensitivity to an objective function coefficient 

Two cases of objective coefficient value change should be analyzed: 

1) If the objective function coefficient corresponds to a non-basic variable in the 

solution of the original linear problem, then the range of values δ  for which  

the optimal solution values remain unchanged is straightforward to determine. 

We can subtract δ  from the coefficient of the corresponding variable in the top 

row of the original final tableau. 

2) If the coefficient corresponds to a basic variable, we should pivot to update  

the value of the objective function and to determine whether another iteration of 

the simplex algorithm is necessary. For values of δ  not leading to an additional 

iteration, the decision variable value in the optimal solution is the same as it is 

in the original LP. However, the objective function value will now depend upon 

δ,  in a manner determined by the pivots. 

Example 19: Consider the following problem: 

1 2 34 3 6 maxz x x x     

s.t.   
1 2 3

1 2 3

3 3 30

2 2 3 40

x x x

x x x

  


  
 

1 2 3, , 0x x x   
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The final simplex tableau corresponding to this problem is:  

Basic z  1x  2x  3x  1s  2s  RHS 

z  1 1 0 0 1 1 70 

3x  0 4
3

 0 1 2
3

 1
3

  20
3

 

2x  0 –1 1 0 –1 1 10 

 

The basic variables at the final iteration are given by 2 10x   and 3
20 .

3
x   

Suppose that the objective coefficient 1c  increases from 4 to 4 δ.  In this case,  

no additional pivots are necessary in order to update the objective value. This is 

because the coefficient corresponds to a decision variable that was non-basic in the 

optimal solution of the original LP. This is the first case described above, so we get 

the following table: 

Basic z  1x  2x  3x  1s  2s  RHS 

z  1 1 δ  0 0 1 1 70 

3x  0 4
3

 0 1 2
3

 1
3

  20
3

 

2x  0 –1 1 0 –1 1 10 

 
The current solution remains optimal when the optimality condition is met 

1 0 1.        

Example 20: Consider the following problem 

1 22 3 maxz x x    

s.t.   

1 2

1 2

1

2 2 14

2 8

4 16

x x

x x

x

 
  
 

 

1 2, 0x x   

with the final simplex tableau: 

Basic z  1x  2x  1s  2s  3s  RHS 

z  1 0 0 0 3
2

 1
8

 14 

1s  0 0 0 1 –1 1
4

  2 

2x  0 0 1 0 1
2

 1
8

  2 

1x  0 1 0 0 0 1
4

 4 
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The basic variables at the final iteration were given by 1 2 1, , .x x s  Suppose that we 

want to change coefficient 1,c  which corresponds to the basic variable (the second 

case): 

Basic z  1x  2x  1s  2s  3s  RHS 

z  1 0      0 0 3
2

 1
8

 14 

1s  0 0 0 1 –1 1
4

  2 

2x  0 0 1 0 1
2

 1
8

  2 

1x  0 1 0 0 0 1
4

 4 

 

to update the value of 1x  and the objective, an additional pivot is necessary: 

Basic z  1x  2x  1s  2s  3s  RHS 

z  1 0 0 0 3
2

 1 1
8 4
    14 4   

1s  0 0 0 1 –1 1
4

  2 

2x  0 0 1 0 1
2

 1
8

  2 

1x  0 1 0 0 0 1
4

 4 

 

From this tableau, we see that if 1 1 0,
8 4
     

1
2

    then the optimal value  

of the decision variable remains at the same point    1 2, 4,2 .x x   However, the  

corresponding objective function value changes to 14 4 .z      

2.6.2. Sensitivity to constraint bounds 

Now we consider the effect of changing one or more constants that bound  

the right-hand sides of linear problem constraints. In matrix form we can write this 

as follows: ,  b b y  where: b  it is vector of coefficients of right-hand side  

after changes, b  it is vector of coefficients of right-hand side of the optimal solu- 

tion of an original linear problem, and y  represents the column vector of slack  

or artificial variables corresponding to the constraint that right-hand side being 

changed. Suppose we wish to increase or decrease the right-hand side entries by .  

If we want to determine this value, we have to solve the following inequalities: 

.   b y 0  We can do it using the final tableau corresponding to the optimal  

solution of original linear problem.  
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Example 21: Consider the given LP (Example 20) formed by changing the bound 

on the second constraint: 

1 22 3 maxz x x    

s.t.   

1 2

1 2

1

2 2 14

2 8

4 16

x x

x x

x

 
  
 

 

1 2, 0x x   

Let us consider the following system of inequalities: .   b y 0  

We can do it using the final tableau corresponding to the optimal solution of 

original LP 

where   

2

2 ,

4

 
   
  

b  

is the right-hand side in the final tableau 

and   

1

1/ 2 ,

0

 
   
  

y  

y  – represents the column vector of slack variables 2s  corresponding to the second 

constraint in final tableau. 

From the given system of inequalities, we obtain 

2

2

2

2

2

2 0
2 1

21
2 1 / 2 0 2 0

42
4 0

4 0 0

  
                                  

 

Therefore, since 2 24 ,b     the solution remains feasible only if 24 2,     that is, 

20 6.b   Note that the value of optimal basic variables and optimal value of the 

objective function can change. For example, for 2 1,   the new optimal solution is:  

1 2

2 1 1

1 5 5
2 1 4,

2 2 2

4 0 1 4

x x

   
   
         
   
       

   and   
31

.
2

z   
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2.7. Special cases of linear programming problems  

The simplex algorithm has a very useful feature, as it is possible to determine 

from the tableau whether an LP has alternative optimal solutions or is unbounded 

or the original problem is infeasible.  

The original problem is infeasible – if any artificial variables are not equal to 

zero in the final tableau (optimal solution). 

The LP problem has an alternative optimal solution – if non-basic variable in the 

top row of LP has a coefficient equal to zero in the optimal solution, this non-basic 

variable entering into the basis does not change the objective function value, so the 

new solution is also optimal. 

The LP is unbounded – if the variable in the top row of an LP maximum prob-

lem has a negative coefficient and all the elements in the column of this variable 

are negative or equal to zero. This non-basic variable is the entering variable and 

can improve the value of the objective function without limit.  

Degeneracy – if the LP has at least one basic feasible solution in which a basic 

variable is equal to zero, then it is a degenerate solution. This means that the  

extreme point represented by a basic solution is formed by the intersection of more 

constraints than are needed. Therefore, the same extreme point can be expressed 

algebraically by several basic solutions.  

Exercises 

4. The farm raising dairy cows determined that cows need at least minimum 

amounts of four nutrients to grow healthy. The manager is considering two 

types of feed for cows. The table shows the number of units of each nutrient  

in each kilogram of food, the minimum daily requirements of each nutrient for 

each cow, and the cost of the food. Formulate a mathematical model of the 

problem that will help the manager raise cows at minimum cost. 

 food 1 food 2 
min daily requirement 

[units] 

nutrient 1 20 30 110 

nutrient 2 10 10 18 

nutrient 3 50 30 90 

nutrient 4 6 2.5 14 

cost [PLN/kg] 41 36  
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5. Graphically solve the following linear problems: 

a) 1 23 maxz x x    

s.t.   

1 2

1 2

1 2

3 2 0

6

9 5 45

x x

x x

x x

 
  
  

  1 2, 0x x   

b) 1 minz x    

s.t.   

1 2

1 2

1 2

6 4 12

4

2 4 4

x x

x x

x x

  
  
  

  1 2, 0x x   

6. The linear programming problem has the feasible area determined by the given 

system of linear inequalities:  

2 10

3 15

x y

x y

 


 
  , 0x y   

Graph this feasible area. The corner points for this problem are the following: 

O(0,0); A(0,5); B(4,3); and C(5,0). For the given objective function ,z ax by   

determine conditions on parameters a and b that will ensure that the maximum 

value of the objective function z occurs: 

a) only at A,  

b) only at B,  

c) only at C,  

d) at both A and B,  

e) at both  B and C.  

7. Convert the given linear programming problem to the standard form: 

1 2 32 3 5 maxz x x x     

s.t.   

1 2 3

1 2 3

1 2 3

5

6 7 9 4

4 10

x x x

x x x

x x x

   
   
   

  1 2 3, 0, u.r.s.x x x  

Express the problem in matrix form. 
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8. For a given linear programming problem, find all possible bases and all basic 

feasible solutions. Determine the optimal solution by inspection of the objective 

function value for an obtained basic feasible solution. Solve the problem graph-

ically and verify the obtained optimal solution.  

1 23 maxz x x    

s.t.   
1 2

1 2

2

2 4

x x

x x

 

  

  1 2, 0x x   

9. Solve the problems using the simplex method step-by-step: 

a) 1 22 3 maxz x x    

s.t.   
1 2

1 2

2 4

2 5

x x

x x

 


 
  1 2, 0x x   

b) 1 24 minz x x     

s.t.   

1 2

2

1 2

2 8

5

4

x x

x

x x

 
 
  

  1 2, 0x x   

c) 1 24 minz x x     

s.t.   

1 2

1 2

1 2

3 3

4 3 6

2 4

x x

x x

x x

 
  
  

  1 2, 0x x   

10. Find the dual of the given linear problems: 

a) 1 2 35 12 4 maxz x x x      

s.t.   
1 2 3

1 2 3

2 10

2 8

x x x

x x x

  


  
  1 2 3, , 0x x x   

b) 1 215 12 minz x x     

s.t.   
1 2

1 2

2 3

4 7

x x

x x

 


 
  1 2, 0x x   
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11. Consider the given linear problem 

a) 1 2 35 3 maxz x x x      

s.t.   
1 2 3

1 2 3

2 6

2 7

x x x

x x x

  


  
  1 2 3, , 0x x x   

the optimal solution to the problem is 
5 8

0 ,
3 3

opt

    
x  and 

49
,

3
optz   

b) 1 2 3 43 4 5 maxz x x x x       

s.t.   
1 2 3 4

1 2 3 4

2 2 5

2 3 3 8

x x x x

x x x x

   


   
  1 2 3 4, , , 0x x x x   

the optimal solution to the problem is  1 0 0 2 ,opt x  and 13.optz    

Use the complementary slackness theorem to find the optimal dual solution  

of these problems. 
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CHAPTER 3 
 

TRANSPORTATION PROBLEM 

The transportation problem is one of the original applications of linear pro-

gramming problems which is usually used to minimize the transportation cost for 

the industries with a number of sources and a number of destinations while satisfying 

the supply limit and demand requirements. Transportation models play an important 

role in logistics and supply-chain management for reducing cost and improving 

service. It is now accepted as one of the most important analytical and planning 

tools in business and industry. Many practical problems which are focused on  

cost-effective ways to transport goods and services of one type or another have  

the same form as transportation problems, for example: the assignment problem, 

the transshipment problem. 

A short history: the transportation model was used during the Second World 

War to determine how to move troops (located, for example, at training basis in 

different parts of the United States) to battlegrounds in Europe and Asia. It was 

first studied by F.L. Hitchcock in 1941, then separately by T.C. Koopmans in 1947, 

and finally placed in the framework of linear programming and solved by the  

simplex method by G.B. Dantzig in 1951.  

3.1. Transportation problem – mathematical model formulating 

The transportation problem is an optimization problem with a linear objective  
 

function and linear constraints. Generally, it can be described as follows: a company  
 

produces articles at m different supply centers, 1,2,..., .i m  The supply produced at 

supply center i is .is  The demand for the article is spread out at n different demand 

centers, 1,2,..., .j n  The demand at the j-th demand center is .jd  The problem of the 

company is to get articles from supply centers to demand centers at minimum cost.  
 

Assuming that the cost of shipping one unit from supply center i to the demand  
 

center j is ijc  and that shipping cost is a linear function then if you shipped ijx  

units from supply center i to demand j, the cost would be .ij ijc x  
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The problem is to identify the minimum cost shipping schedule. The constraints  

are that you must meet demand at each demand center and not exceed supply  

at each supply center. 

The relevant data can be formulated in a transportation tableau:  

 Demand point 1 Demand point 2 …… Demand point n Supply 

Supply point 1 
 

11c   
12c     

1nc  

1s  

    

Supply point 2 
 

21c   
22c     

12c  

2s  

    

…… 
        

…… 
    

Supply point m 
 

1mc   
2mc     

mnc  

ms  

    

Demand 
1d  2d   

nd   

 
Summing up, the mathematical model for the transportation problem is: 

minij ij

i j

z c x   

s.t.   
1

1

supply constraints

demand constraints

m

ij i

i

n

ij j

j

x s

x d










 





  0ijx   

where ijx  – decision variables, it is the number of units shipped from supply point  

i to demand point j, and the cost of transportation on this route is .ij ijc x  

Example 22: Consider a power company that has three electric power plants to meet 

the needs of four cities. Each power plant can supply the following kWh of elec-

tricity: plant 1 – 35 million, plant 2 – 50 million, and plant 3 – 40 million. The peak 

power demands in these cities are as follows (in kWh): city 1 – 45 million, city 2 –  

20 million, city 3 – 30 million, city 4 – 30 million. The costs (in dollars) of sending 

1 million kWh of electricity from the plant to city are given in the table below.  

To minimize the cost of meeting each city’s peak power demand, formulate a transpor- 

tation problem in a transportation tableau and represent the problem as an LP model. 
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From  
To 

City 1 City 2 City 3 City 4 

Plant 1 $8 $6 $10 $9  

Plant 2 $9 $12 $13  $7 

Plant 3 $14 $9 $16 $5 

 
Solution 

The transportation tableau for the problem is the following: 

 city 1 city 2 city 3 city 4 Supply 

plant 1 
 8  6  10  9 

35 
    

plant 2 
 9  12  13  7 

50 
    

plant 3 
 14  9  16  5 

40 
    

Demand 45 20 30 30 125 

 
Total supply and total demand both equal 125 – it is the so-called balanced trans-

portation problem, and its mathematical model is:  

11 12 13 14

21 22 23 24

31 32 33 34

8 6 10 9

9 12 13 7

14 9 16 5 min

z x x x x

x x x x

x x x x

    

   

   

 

s.t.   

11 12 13 14

21 22 23 24

31 32 33 34

11 21 23

12 22 32

13 23 33

14 24 34

35

50

40 supply constraints

45

20

30

30 demand constraints

x x x x

x x x x

x x x x

x x x

x x x

x x x

x x x

   
    
    


  
   
   


  

  

0; 1,2,3; 1,2,3,4ijx i j    
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3.1.1. Basic definitions 

Definition 1. The balanced transportation problem – a transportation problem  

is said to be balanced if the total supply from all sources equals the total demand  

in the destinations. Thus, for a balanced problem we have 

1 1

m n

i j

i j

s d
 

   

Note that if a solution has ( 1)m n   positive allocations for a balanced transportation 

problem, then the basic feasible solution is obtained. This solution has ( 1)m n   

basic variables. 

Definition 2. Degenerate the basic feasible solution – if the number of positive 

allocations in the basic feasible solution is less than ( 1).m n   

Definition 3. An ordered sequence of at least four different cells in the transporta-

tion tableau is called a loop if: 

 any two consecutive cells lie in either the same row or same column, 

 no three consecutive cells lie in the same row or column, 

 the last cell in the sequence has a row or column in common with the first cell 

in the sequence. 

Problems that are not balanced are called an unbalanced transportation  

problem and 

1 1

m n

i j

i j

s d
 

   

There are two possible cases: 

1. Excess supply 
1 1

m n

i j

i j

s d
 

   

If total supply  exceeds total demand, we can balance a transportation problem 

by creating a dummy demand point to consume the excess supply. Since 

shipments to the dummy demand point are not real shipments, they are  

assigned a cost of zero. These shipments indicate unused supply capacity: 

1

1 1

.
m n

n i j

i j

d s d
 

    

1

min
m n

ij ij

i j

z c x


   
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s.t.   

1

1

1

n

ij i

j

m

ij j

i

x s

x d












 




 

0, 1,2,..., , 1,2,..., 1ijx i m j n     

2. Unmet demand 
1 1

n m

j i

j i

d s
 

   

If the total demand exceeds the total supply, the demand of some of the demand 

points will not be satisfied. To balance this problem, a dummy supply point 

should be introduced, and the demand of this dummy supply point is equal: 

1

1 1

n m

m j i

j i

s d s
 

    

1

min
m n

ij ij

i j

z c x


   

s.t.   
1

1

1

n

ij i

j

m

ij j

i

x s

x d












 




 

0, 1,2,..., 1, 1,2,...,ijx i m j n     

3.2. Initial basic feasible solution 

The transportation problem is a special case of a linear programming problem, 

so theoretically it can be solved by the simplex method. However, due to the spe-

cial form of the constraints, other much more convenient methods of solving these 

problems have been developed. The methods begin by determining the basic feasible 

solution, and then determine whether it is the optimal solution. If not, then another 

basic feasible solution is determined for which the value of objective is smaller. 

The procedure is repeated until a solution is found for which the value of the  

objective function is minimal.  

There are three methods that can be used to find a basic feasible solution for  

a balanced transportation problem: 

1. Northwest corner method 

2. Minimum cost method 

3. Vogel’s approximation method 
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3.2.1. Northwest corner method 

The method starts from the upper left corner of the transportation tableau and 

sets 11x  as large as possible:  1 1min ,s d  (clearly, 11x  can be no larger than of 1s  

and 1).d  

 If 11 1,x s  cross out the first row of the tableau and change 1d  to 1 1.d s  

 If 11 1,x d  cross out the first column of the tableau and change 1s  to 1 1.s d  

 If 11 1 1,x s d   cross out either row 1 or column 1 (but not both!) 

– If you cross out a row, change 1d  to 0 

– If you cross out a column, change 1s  to 0 

Continue applying this procedure to the most northwest cell in the tableau that 

does not lie in a cross-out row or column. 

Finally, you will come to a point where there is only one cell that can be assigned  

a value. Assign this cell a value equal to its row or column demand, and cross out 

both the cell’s row or column. An initial basic feasible solution has now been  

obtained.  

3.2.2. Minimum cost method 

To begin the minimum cost method, find the variable with the smallest shipping 

cost (call it ),ijx  then assign ijx  its largest possible value,  min , .i js d   

As in the NWC method, cross out row i or column j and reduce the supply or  
 

demand of the non-cross-out of row or column by the value of .ijx  Continue like 

the NWC method (instead of assigning upper left corner, the cell with the mini- 
 

mum cost is assigned).  

3.2.3. Vogel’s approximation method 

Begin by computing for each row and column a penalty equal to the difference 

between the two smallest costs in the row and column. Next, find the row or column 

with the largest penalty. Choose as the first basic variable the variable in this row 

or column that has the smallest cost. As described in the NWC method, make this 

variable as large as possible, cross out a row or column, and change the supply or 

demand associated with the basic variable. Now recompute new penalties (using 

only cells that do not lie in a crossed-out row or column) and repeat the procedure 

until only one uncrossed cell remains. Set this variable equal to the supply or  

demand associated with the variable and cross out the variable’s row and column.  
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Example 23: The company has manufacturing plants in cities A, B, C, and distri-

bution centers in cities D, E, F. The production ability of the plants is 50, 70 and 30 

units, respectively, while the demand forecasts at the centers are 20 40, 90 units, 

respectively. Unit transportation costs are shown in the table below. Find the initial 

basic feasible solution using the Northwest corner method, Minimum cost method, 

and Vogel’s approximation method. 

 city D city E city F SUPPLY 

plant A  
3 

 
5 

 
7 

50 
   

plant B  
12 

 
10 

 
9 

70 
   

plant C  
13 

 
3 

 
9 

30 
   

DEMAND 20 40 90 150 

 

Solution: The mathematical model is 

11 12 13

21 22 23

31 32 33

3 5 7

12 10 9

13 3 9 min

z x x x

x x x

x x x

   

  

  

 

s.t.   

11 12 13

21 22 23

31 32 33

11 21 23

12 22 32

13 23 33

50

70

30 supply constraints

20

40

90 demand constraints

x x x

x x x

x x x

x x x

x x x

x x x

  
   
   


  
   


  

 

0; 1,2,3; 1,2,3ijx i j    

The problem is balanced (total supply equals total demand). Let us start with the  
 

northwest corner method. In this method the unit costs can be omitted, as they are  
 

not needed to find initial basic feasible solution. The procedure starts at the upper 

left corner and is assigned to cell (1,1) the value  11 min 20,50 20.x    Because 

11 1,x d  the first column is crossed out and correct 1 1 1 50 20 30.s s d      

Next, applying this procedure to the most northwest cell that is (1, 2), and 

 12 min 30,40 30,x    and the first row is crossed out, and correction to 

1 2 1 40 30 10.d d s      Continue by following this procedure until there is only 

one cell that can be assigned a value of – 33 30.x    
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20   30 20 30 0 0 

0   70 0   70 

0   30 0   30 

0 40 90  20 10 90  

 
20 30 0 0 20 30 0 0 

0 10  60 0 10 60 0 

0 0  30 0 0  30 

0 0 90  0 0 30  

 
20 30 0 0 

0 10 60 0 

0 0 30 30 

0 0 90  

 
When the NWC method was applied to this problem, the initial basic feasible  

solution in the last table is obtained (check: there exist 1m n   basic variables): 

11 12 22 23 3320, 30, 10, 60, 30x x x x x      – basic variables,  

13 21 31 32 0x x x x     – non-basic variables. 

The minimum cost method 

Let us start with the smallest shipping cost cell – 32 ,x  assign  32 min 30,40x   

30,  cross out row 3, and reduce 2 2 3 40 30 10:d d s      

 
3 

 
5 

 
7 

50 
   

 
12 

 
10 

 
9 

70 
   

0 
13 

30* 
3 

0 
9 

0 
   

20 10 90  
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20* 
3 

 
5 

 
7 

30  20* 
3 

10* 
5 

 
7 

20 
      

0 
12 

 
10 

 
9 

70  0 
12 

0 
10 

 
9 

70 
      

0 
13 

30* 
3 

0 
9 

0  0 
13 

30* 
3 

0 
9 

0 
      

0 10 90   20 0 90  

 

20* 
3 

10* 
5 

20* 
7 

0  20* 
3 

10* 
5 

20* 
7 

0 
      

0 
12 

0 
10 

 
9 

70  0 
12 

0 
10 

70* 
9 

0 
      

0 
13 

30* 
3 

0 
9 

0  0 
13 

30* 
3 

0 
9 

0 
      

0 10 70   0 0 0  

 
When the minimum cost method was applied to this problem, the initial basic  

feasible solution in the last table is obtained:  

11 12 13 23 3220, 10, 20, 70, 30x x x x x      – basic variables 

21 22 31 33 0x x x x     – non-basic variables. 

The Vogel’s approximation method 

20* 
3 

 
5 

 
7 

30  20* 
3 

 
5 

 
7 

30 
      

0 
12 

 
10 

 
9 

70  0 
12 

 
10 

 
9 

70 
      

0 
13 

 
3 

 
9 

30  0 
13 

30* 
3 

0 
9 

0 
      

0 40 90   0 10 90  
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20* 
3 

10* 
5 

 
7 

20  20* 
3 

10* 
5 

20* 
7 

0 
      

0 
12 

0 
10 

 
9 

70  0 
12 

0 
10 

 
9 

70 
      

0 
13 

30* 
3 

0 
9 

0  0 
13 

30* 
3 

0 
9 

0 
      

20 0 90   0 10 70  

 

20* 
3 

10* 
5 

20* 
7 

0 
   

0 
12 

0 
10 

70* 
9 

0 
   

0 
13 

30* 
3 

0 
9 

0 
   

0 0 0  

 
When the Vogel’s approximation method was applied to this problem, the initial 

basic feasible solution in the last table is obtained: 

11 12 13 23 3220, 10, 20, 70, 30x x x x x      – basic variables 

21 22 31 33 0x x x x     – non-basic variables. 

3.3. Optimal solution for the transportation problem 

To find the optimal solution of the transportation problem, the modified simplex 

method can be applied. This modification is called the transportation simplex 

method. 

Steps of the transportation Simplex method 

For the optimality test, we have to calculate the following number ij i jc u v   

iu  – is the dual variables associated with the supply constraint  

jv  – is the dual variables associated with the demand constraint  
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Step 1. For an unbalanced problem, balance it. 

Step 2. Use one of the methods (NWC, MC or Vogel’s) to find an initial basic  

feasible solution for the problem. 

Step 3. Use the fact that ij i jc u v   and assume 1 0u   for all basic variables to 

find the u’s and v’s for the current basic feasible solution.  

Definition 4. Optimality test: If 0i j iju v c    for all non-basic variables, then  

the current basic feasible solution is optimal. 

Step 4. If this is not the case, we enter the variable with the most positive  
 

i j iju v c   (pick this variable as the entering variable) into the basis using the  

pivoting procedure. This yields a new basic feasible solution. Return to step 3. 

For the maximization problem, proceed as stated, but replace step 4 by the follow-

ing step:  

Step 5. If optimality indexes are nonnegative ( 0)i j iju v c    for all non-basic 

variables, then the current basic feasible solution is optimal. Otherwise, enter the  
 

variable with the most negative i j iju v c   into the basis using the pivoting proce-

dure. This yields a new basic feasible solution. Return to step 3. 

Pivoting procedure 

1. Find the loop involving the entering variable (determined at step 4 of the trans-

portation simplex method) and some or all of the basic variables. 

2. Counting only cells in the loop, label those that are an even number (0, 2, 4, and 

so on) of cells away from the entering variable as even cells. Also label those 

that are an odd number of cells away from the entering variable as odd cells. 

3. Find the odd cell whose variable assumes the smallest value. Call this value .  

The variable corresponding to this odd cell will leave the basis. To perform the 

pivot, decrease the value of each odd cell by   and increase the value of each 

even cell by .  The values of variables not in the loop remain unchanged.  

The pivot is now complete. If 0,   the entering variable will equal 0, and  

the odd variable that has a current value of 0 will leave the basis. 
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Example 24: Apply the transportation simplex method to solve the problem  

described in Example 23, using the initial basic feasible solution obtained by the 

northwest corner method. 

Solution 

The first and second steps of the method are done, so the next is step 3, which 

checks whether this initial solution is optimal by applying the optimality test for 

the transportation simplex method. 

Step 3. The initial basic feasible solution obtained by the NWC method is: 

20* 
3 

30* 
  5 

0 
7 

   

0 
12 

10* 
10 

60* 
9 

   

0 
13 

0 
  3 

30* 
9 

   

 
We give each equation that corresponds to a basic variable in our initial basic 

feasible solution: 

for basic variable 11:x       11 1 1 3c u v     

for basic variable 12:x       12 1 2 5c u v     

for basic variable 22:x      22 2 2 10c u v     

for basic variable 23:x       23 2 3 9c u v     

for basic variable 33:x       33 3 3 9c u v     

Assuming 1 0,u   and solving the given system of equations yields: 

1 1 2 2 3 30, 3, 5, 5, 5, 4.u v u v u v       

Note that this derivation of the iu  and jv  values depends on which ijx  variables 

are basic variables in the current basic feasible solution, so this derivation will need 

to be repeated each time a new basic feasible solution is obtained. 

Now, performe a computation for each non-basic variable îj i j ijc u v c    
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for non-basic variables 13:x    13 1 3 13
ˆ 0 4 7 3c u v c         

 21:x    21 2 1 21
ˆ 5 3 12 4c u v c         

 31:x    31 3 1 31
ˆ 5 3 13 5c u v c         

 32:x    32 3 2 32
ˆ 5 5 3 7c u v c        

Step 4. From the optimality test – the current basic feasible solution is not optimal  
 

(there exists the ˆ 0ijc   for non-basic variables). Therefore, the transportation simplex  

method must go to the iteration to find a better basic feasible solution.  

20* 
0 

30* 
0 

0 
–3 

1 0u  
   

0 
–4 

10* 
0 

60* 
0 

2 5u  
   

0 
–5 

0 
7 

30* 
0 

3 5u  
   

1 3v  2 5v  3 4v   

 
Since 32ĉ  is the most positive one, we would next enter 32x  into the basis using  

the pivoting procedure. Each unit of 32x  that is entered into the basis will decrease 

the total cost by $7. The loop involving 32x  is: (3, 2) – (2, 2) – (2, 3) – (3, 3), 

10,   33x  would leave the basis (leaving variable). 

20* 
0 

30* 
0 

0 
–3 

1 0u  
   

0 
–4 

10   
0 

60   
0 

2 5u  
   

0 
–5 

  
7 

30   
0 

3 5u  
   

1 3v  2 5v  3 4v   

 
To find a new basic feasible solution, we change values of variables in the loop  

only, and the values of variables not in the loop remain unchanged. The pivot is 

now complete, and a new basic feasible solution is obtained. 
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The new basic feasible solution is shown in the following table:  

20* 
0 

30* 
0 

0 
–3 

   

0 
–4 

0 
0 

70* 
0 

   

0 
–5 

10* 
7 

20* 
0 

   

 

where   

1311 12

2 21 22 23

31 32 33

020 30

0 0 70 ,

0 10 20

xx x

x x x

x x x

  
     
    

x   

and the objective function value is 1050.z   Return to step 3.  

Step 3. Find the iu  and jv  for the current BF solution and compute new îjc  for 

each non-basic variable:  

20* 
0 

30* 
0 

0 
4 

1 0u  
   

0 
–11 

0 
–7 

70* 
0 

2 2 u  
   

0 
–12 

10* 
0 

20* 
0 

3 2 u  
   

1 3v  2 5v  3 11v   

 

13 21 22 31
ˆ ˆ ˆ ˆ4, 11, 7, 12.c c c c         

Step 4. The current basic feasible solution is not optimal (there are exists the  
 

ˆ 0).ijc   Since 13ĉ  is the most positive one, we would next enter 13x  into the basis 

13(x  – entering variable). The loop involving 13x  is (1, 3) – (3, 3) – (3, 2) – (1, 2),  
 

20   (see table), 33x  would leave the basis.  

 

 



Transportation problem 81 

20* 
0 

30   
0 

  
4 

1 0u  
   

0 
–11 

0 
–7 

70* 
0 

2 5u  
   

0 
–12 

10   
0 

20   
0 

3 5u  
   

1 3v  2 5v  3 4v   

 
The new BFS is the following:  

20* 
0 

10* 
0 

20* 
0 

   

0 
–7 

0 
–3 

70* 
0 

   

0 
–12 

30* 
0 

0 
–4 

   

 

       

1311 12

3 21 22 23

31 32 33

2020 10

0 0 70 ,

0 30 0

xx x

x x x

x x x

  
     
    

x   

where the objective function value is 970.z   

21 22 31 33
ˆ ˆ ˆ ˆ7, 3, 12, 4c c c c         

Since all îjc ’s are negative, an optimal solution has been obtained. 

3.4. Standard application of the transportation problem – 

Transshipment problems 

One of the variants of transportation problems is the problem with intermediate 

points between the supply centers (called sources) and receiving centers (called 

destinations). These points are referred to as the transshipment points in which 

goods can be transshipped on their journey from sources to destinations. The trans-

portation problem with this characteristic is a transshipment problem.  

The optimal solution to a transshipment problem can be found by converting this 

transshipment problem to a transportation problem and then solving this transporta-

tion problem. 
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Remark: as stated in the “Formulating Transportation Problem”, we define a supply 

point as a point that can send goods to another point but cannot receive goods  

from any other point. 

Similarly, a demand point is a point that can receive goods from other points but 

cannot send goods to any other points.  

Steps of converting process 

1. If the problem is unbalanced, balance it 

Let s be a total available supply (or demand) for balanced problem 

2. Construct a transportation tableau as follows: 

A row in the tableau will be needed for each supply point and transshipment 

point 

A column will be needed for each demand point and transshipment point 

Each supply point will have a supply equal to its original supply 

Each demand point will have a demand equal to its original demand 

Each transshipment point will have a supply equal to “that point’s original  

supply + s” 

Each transshipment point will have a demand equal to “that point’s original 

demand + s” 

3. Solve the transportation problem. 

Example 25: A company manufactures TVs at two factories, one in Gdansk and 

one in Szczecin. The Gdansk factory can produce up to 150 TVs per day, and the 

Szczecin factory can produce up to 200 TVs per day. TVs are shipped by air to 

customers in London and Paris. The customer in each city requires 130 TVs per 

day. Because of the deregulation of air fares, the company believes that it may be 

cheaper to first fly some TVs to Brussels or Hamburg and then fly to their final 

destinations. The costs of flying a TV are shown in the table below. The company 

wants to minimize the total cost of shipping the required TVs to its customers. 

From 
[euros] 

To  

Gdansk Szczecin Brussels Hamburg London Paris 

Gdansk 0 – 8 13 25 28 

Szczecin – 0 15 12 26 25 

Brussels – – 0 6 16 17 

Hamburg – – – 0 14 16 

London – – – – 0 – 

Paris  – – – – – 0 

 
Solution: In this problem, Brussels and Hamburg are transshipment points. 
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Step 1. Total supply = 150 + 200 = 350, and total demand = 130 + 130 = 260 

This problem is unbalanced, so we have to balance it:  

dummy’s demand = 350 – 260 = 90, s = 350 total available supply for the balanced 

problem 

Step 2. Constructing the transportation tableau: 

transshipment point’s demand = its original demand + s = 0 + 350 = 350 

transshipment point’s supply = its original supply + s = 0 + 350 = 350 

 Brussels Hamburg London Parish Dummy SUPPLY 

Gdansk  
8 

 
13 

 
25 

 
28 0 

150 
     

Szczecin  
15 

 
12 

 
26 

 
25 0 

200 
     

Brussels  
0 

 
6 

 
16 

 
17 0 

350 
     

Hamburg  
6 

 
0 

 
14 

 
16 0 

350 
     

DEMAND 350 350 130 130 90  

 
Step 3. Mathematical model  

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

8 13 25 28 0

15 12 26 25 0

0 6 16 17 0

6 0 14 16 0 min

z x x x x x

x x x x x

x x x x x

x x x x x

     

    

    

    

 

s.t.   

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

11 21 31 41

12 22 32 42

13 23 33 43

14 24 34 44

15 25 35 45

150

200

350

350

350

350

130

130

90

x x x x x

x x x x x

x x x x x

x x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

    
     
     


    
    
    
    


   
   

 

0; 1,2,3,4; 1,2,3,4,5ijx i j    
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solving this transportation problem, we obtained 

 Brussels Hamburg London Parish Dummy SUPPLY 

Gdansk 
 8  13  25  28  0 

150 
130  0  0  0  20  

Szczecin 
 15  12  26  25  0 

200 
0  0  0  130  70  

Brussels 
 0  6  16  17  0 

350 
220  0  130  0  0  

Hamburg 
 6  0  14  16  0 

350 
0  350  0  0  0  

DEMAND  350  350  130  130  90 1050 

 
Result: The company should produce 130 TVs at Gdansk, ship them to Brussels, 

and transship them from Brussels to London. The 130 TVs produced at Szczecin 

should be shipped directly to Paris. The total shipment is 6370 Euros. 

Exercises 

12. A particleboard manufacturing company has production plants in three cities 

P1, P2, P3, and three warehouses in cities W1, W2, W3. The production capac-

ity of the plants is 5,00, 4,00, and 2,00 units per month, respectively, and the 

cost of producing one plate at these plants is 3, 6, and 1 PLN. The first ware-

house needs 2500 plates, the second 4500, and the third needs 3000 plates per 

month. Unit transportation costs (in PLN) are shown in the table. Determine 

which cities to produce particleboard in and how to distribute them to ware-

houses so that the total production and transportation costs are minimized. 

From 
To 

Supply 

W1 W2 W3 

P1 2 7 6 5000 

P2 7 3 1 4000 

P3 6 5 9 2000 

Demand 2500 4500 3000  
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13. The 3 Parties supply the following quantity of coal P1 = 14t, P2 = 12t, P3 = 5t 

to the 3 consumers whose coal requirements are as follows C1 = 6t, C2 = 10t, 

C3 = 15t. The cost matrix is given below. Formulate a transportation problem 

which minimizes the total cost in a transportation tableau and represents  

the problem as an LP model. Find the initial basic feasible solution using  

the northwest corner method, minimum cost method, and Vogel’s method.  

For these solutions find the corresponding values of the objective function.  

From 
To 

C1 C2 C3 

P1 6 8 4 

P2 4 9 3 

P3 1 2 6 

 
14. Consider the following transportation problem which involves the supply sys-

tem of 4 breweries, supplying the needs of 4 hotels for beer. The transportation 

cost for a barrel of beer from each brewery to each hotel is given in table.  

The production capacities of breweries 1, 2, 3 and 4 are 20, 10, 10 and 5 barrels 

per day, respectively. The demands of hotels A, B, C and D are 5, 20, 10 and 

10 barrels per day, respectively.  

Breweries 
Hotels  

A B C D 

1 8 14 12 17 

2 11 9 15 13 

3 12 19 10 6 

4 12 5 13 8 

 
Formulate a linear programming model for this problem. Find an initial basis 

using the: northwest corner method, least cost method, Vogel approximation 

method. For each initial BFS check the optimality condition. 

 

 



86 Chapter 3 

15. Solve the given transportation problem starting with an initial solution obtained 

by the Vogel’s approximation method. 

 1 2 3 4 Supply 

1  
10 

 
5 

 
6 

 
7 

25 
    

2  
8 

 
2 

 
7 

 
6 

25 
    

3  
9 

 
3 

 
4 

 
8 

50 
    

Demand  15  20  30  35  

 



Introduction to Mathematical Programming. Part I 87 

CHAPTER 4 
 

INTEGER LINEAR PROGRAMMING 

For many linear programming applications, the solution in which decision varia- 

bles are integer-valued is sought. Within this chapter a general technique for solving 

linear programming problems that require integer-valued solutions is discovered.  

4.1. Formulating the integer linear problem 

Definition 1. The integer linear programming problem (abbreviated by ILP) is  

a linear problem in which additional conditions called integer conditions, must be 

satisfied. These conditions require all or only some decision variables take integer 

values in the optimal solution. 

An ILP in which all variables are required to be integers is called a pure ILP 

problem. If some variables are restricted to be integers and some are not, then the 

problem is a mixed ILP problem. The third case of ILP is a problem where the 

integer variables are additionally restricted to be 0 or 1. Such problems are called 

pure or mixed binary integer linear programming problems. 

4.2. The branch and bound method 

The most effective algorithm for obtaining the optimal solution in integer  

programming problems is a method called the “branch and bound method”.  

This method was first proposed in the early 1960’s by Ailsa Land and Alison Doig, 

the professors of Operational research in the Management Department at the London 

School of Economics.  

The branch and bound method is a technique that is based on solving a carefully 

chosen sequence of closely related linear programming problems. The first step  

of the method requires solving the corresponding problem called linear relaxation.  

To any integer linear problem, a linear problem that corresponds is called the  

relaxation of the ILP.  

Definition 2. The linear relaxation is a problem formed by using the ILP, elimi-

nating the restriction that decision variables be integer-valued.  
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In general, the optimal objective function value of an integer linear problem  

involving maximization is no larger than that of the corresponding relaxation LP.  

For the minimization problem, the optimal objective value for linear relaxation  

is less than or equal to that of IP.  If linear relaxation is infeasible, then so is IP.  

Consequently, if the solution of the relaxation is integer-valued, then this solution 

is also a solution of the integer linear programming problem. If not, the next step  

of the branch and bound method must be applied. In this step, the original feasible 

region is partitioned into two non-overlapping regions (sub-problems), neither of 

which contains the solution of linear relaxation.  

Suppose that in a given sub-region (sub-problem, call it subr. I), assumes a frac-

tional value ,i

p
x

q
 .p q  Then the two newly generated sub-problems are: 

subr. II = subr. I + constraint ,i

p
x

q

 
  

 
E   

subr. III = subr. I + constraint 1 ,i

p
x

q

 
  

 
E   

where E is a floor and ceiling function. 

Each of these two regions initiate a new linear problem, which is simply the 

original LP together with an additional constraint. Then, these two new LPs are 

solved. A process will be referred to as branching. If an integer-valued solution 

results from one of these new linear problems, then it becomes a candidate solution 

for the original integer linear problem. Otherwise, the corresponding region is 

again partitioned, and the process repeats itself. In the end, after exhausting all  

cases, we get the solution to the integer programming problem.  

Example 26. Let us consider a production problem in the toy company, which 

manufactures plush toy dogs and cats. Both toys are comprised of two grades of 

materials, labeled grades A and B. Each toy dog requires 2 pounds of each grade 

material and sells for 3 PLN. The plush toy cat requires 1 pound of grade A and  

3 pounds of grade B and sells for 4 PLN. Suppose the daily availability of materials 

is given by 6 pounds for grade A and 9 pounds for grade B. Under the assumption 

the company sells all the toys that it produces, determine how many toys of each 

type should be produced, subject to the given constraints, so as to maximize daily 

revenue.  
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Solution. Let us start with the mathematical model. Let 1x  and 2x  denote the  

numbers of produced toy dogs and toy cats, respectively, the mathematical model  
 

of the problem can be formulated as: 

1 23 4 maxz x x    

s.t.   
1 2

1 2

2 6
;

2 3 9

x x

x x

 


 
  1 2, 0,x x   1 2,x x Z  

where Z is a set of integer numbers, and objective function z – represents the profit. 

Note that, in particular, we require that 1x  and 2x  be integer-valued in the solution, 

so it is an integer linear programming problem. The feasible region of the problem  
 

with integer solutions marked is shown in Figure 4.1. 
 

 
Figure 4.1. Feasible region and integer solution for ILP 

These points are candidates for the optimal solution of the original integer problem. 

These kinds of candidates are called feasible “lattice points”.  

For a problem with two decision variables, one of the ways to solve the integer  

linear problem is to evaluate the objective function at all feasible lattice points and 

to determine which produces the largest objective value. If the constraint’s inequal-

ities produced a bounded feasible region, then only a finite number of candidates 

exist from which to choose. The graphical inspection of feasible region (Fig. 4.1) 

yields the following lattice points for Example 26: 

(0,0) 0;z     (1,0) 3;z     (2,0) 6;z     (3,0) 9;z   

(0,1) 4;z     (0,2) 8;z     (0,3) 12;z     (1,1) 7;z   

(1,2) 11;z     (2,1) 10;z   
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So, the optimal solution is the point with the largest objective value: 

(0,3) 12.z   

For small scale problems, this approach is satisfactory, but for larger scale prob-

lems, it proves extremely inefficient, and the other method of solution is needed, 

which is the branch and bound method. The first step of this method is the linear  

relaxation of the ILP, for Example 26, it is given by the following mathematical 

model: 

1 23 4 maxz x x    

s.t.   
1 2

1 2

2 6

2 3 9

x x

x x

 


 
  1 2, 0,x x   1 2,x x Z  

The relaxation solution is straightforward to compute (for example by graphical 

method) and is given by:  

1

2

9

514
12.75.

3 4

2

x
z

x

 
  

      
   

  

x  

The linear relaxation gives a solution in which decision variables are not-integer 

valued. A naive approach to solving the ILP is rounding off the relaxation solution 

to the nearest lattice point. Unfortunately, this approach can yield the wrong  

results: the ILP solution determined by graphical inspection of feasible region is 

given by 1 20, 3 12.x x z     Rounding down the relaxation solution gives: 

1 22, 1 10,x x z     which is the feasible solution but not optimal. On the other 

hand, rounding up 1 23, 2 17x x z     is not a feasible solution. 

Coming back to the branch and bound method, the partition of the feasible  

region will be considered. Neither of the decision variables in the relaxation solu-

tion is integer-valued, so to partition the feasible region into two disjoint regions, 

any decision variables can be chosen to branch. Let us select branch variable 1.x  

Two new linear problems are obtained, the first one with additional constraint 

1

9
2

4
x

   
 

E  and the second one with new constraint 1

9
1 3:

4
x

    
 

E  

I. 1 23 4 maxz x x    

s.t.   

1 2

1 2

1

2 6

2 3 9

2

x x

x x

x

 
  
 

  1 2, 0x x   
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II. 1 23 4 maxz x x    

s.t.   

1 2

1 2

1

2 6

2 3 9

3

x x

x x

x

 
  
 

  1 2, 0x x   

and the following solutions are obtained: 

I. 1 22, 1.6 12.6x x z     

II. 1 23, 0 9x x z     

The second solution is integer-valued and a candidate for the optimal solution of 

original LP. 

So, now we branch the problem I, the solution of I produces a value of 2x  that is 

not integer-valued, so we branch on 2 .x  The new sub-problems are: 

III. 1 23 4 maxz x x    

s.t.   

1 2

1 2

1

2

2 6

2 3 9

2

1

x x

x x

x

x

 
  



 

  1 2, 0x x   

IV. 1 23 4 maxz x x    

s.t.   

1 2

1 2

1

2

2 6

2 3 9

2

2

x x

x x

x

x

 
  



 

  1 2, 0x x   

and the respective solutions are as follows: 

III. 1 22, 1 10x x z     

IV. 1 21.5, 2 12.5x x z     

These results indicate that 1 2( 2, 1)x x   is also a candidate solution. Because  

its objective value is larger than that produced by the first candidate solution, 

1 2( 3, 0 9),x x z     we eliminate the first candidate from further consideration. 
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The solution of IV produces a value of 1x  that is not integer-valued, so we branch 

on 1,x  creating two new LPs: 

V. 1 23 4 maxz x x    s.t.   

1 2

1 2

1

2

1

2 6

2 3 9

2

2

1

x x

x x

x

x

x

 
  


 
 

  1 2, 0x x   

VI. 1 23 4 maxz x x    s.t.   

1 2

1 2

1

2

1

2 6

2 3 9

2

2

2

x x

x x

x

x

x

 
  


 
 

  1 2, 0x x   

The respective solutions are as follows: 

V. 1 21, 2.3 12.3x x z     

VI. infeasible. 

Branching V on 2x  gives two more LPs: 

VII. 1 23 4 maxz x x    

s.t.   

1 2

1 2

1

2

1

2

2 6

2 3 9

2

2

1

2

x x

x x

x

x

x

x

 
  
 



 




  1 2, 0x x   

VIII. 1 23 4 maxz x x    

s.t.   

1 2

1 2

1

2

1

2

2 6

2 3 9

2

2

1

3

x x

x x

x

x

x

x

 
  
 



 




  1 2, 0x x   
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Linear programming problems VII and VIII produce solutions of  1 2
T

x  

and  0 3
T

x  respectively, with corresponding objective values 11z   and 

12.z   Both are candidate solutions. At this stage, the branching process is com- 
 

plete, and four candidate solutions are determined:  

 0 3
T

x  has already been eliminated from consideration, and 

 1 2 ,
T

x   2 1 ,
T

x   0 3 ,
T

x  

the last yields the largest objective value of 12.z   Thus, the original ILP has its 

solution given by  0 3 .
T

x  So, the company should produce 0 toy dogs and  

3 toy cats to maximize daily revenue. 

4.3. Binary and mixed integer linear problem 

A special case of integer programming that appears often in real-world applica-

tions is mixed integer linear programming problems, and binary integer linear 

problems, in which some, but not all decision variables must be integer-valued in 

the solution or must take the value 0 or 1. Solving these problems is easily accom-

plished using the branch and bound method, with branching done only on these 

variables required to take the particular values – integer, 0, or 1. 

Example 27: (Binary ILP) There are four possible projects which run for three 

years and have the following characteristics: 

project return 
capital requirements 

year 1 year 2 year 3 

1 0.2 0.5 0.3 0.2 

2 0.3 1 0.5 0.2 

3 0.5 1.5 1.5 0.3 

4 0.1 0.1 0.4 0.1 

available capital 3.1 2.5 0.4 

 
A businessman wants to know which project to choose to maximize the total profit. 

Use the branch and bound method for solving this problem. 

Solution. Let us assume 

1,

0,
j

project j is select
x

project j is not select


 


 

this is the binary linear programming problem with following mathematical model 
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I. 1 2 3 40.2 0.3 0.5 0.1 maxz x x x x      

s.t.   

1 2 3 4

1 2 3 4

1 2 3 4

0.5 1.5 0.1 3.1

0.3 0.8 1.5 0.4 2.5

0.2 0.2 0.3 0.1 0.4

x x x x

x x x x

x x x x

   
    
    

 

 0, 0,1 ,j jx x   1,2,3,4j  

The first step in the solution is to replace  0,1jx   by 0 1,jx   which give  

the linear relaxation problem with the following solution: 

1 4 2 30, 0.5, 1 0.65.x x x x z       

The variable 2 0.5x   does not meet the binary condition, as it is fractional. 

Branching on 2x  generates two new problems:  

I. 1 2 3 40.2 0.3 0.5 0.1 maxz x x x x      

s.t.   

1 2 3 4

1 2 3 4

1 2 3 4

2

0.5 1.5 0.1 3.1

0.3 0.8 1.5 0.4 2.5

0.2 0.2 0.3 0.1 0.4

0

x x x x

x x x x

x x x x

x

   
    


   
 

 

0, 0 1,j jx x    1,2,3,4j  

with solution: 2 4 1 30, 0.5, 1 0.6,x x x x z       and  

II. 1 2 3 40.2 0.3 0.5 0.1 maxz x x x x      

s.t.   

1 2 3 4

1 2 3 4

1 2 3 4

2

0.5 1.5 0.1 3.1

0.3 0.8 1.5 0.4 2.5

0.2 0.2 0.3 0.1 0.4

1

x x x x

x x x x

x x x x

x

   
    


   
 

 

0, 0 1,j jx x    1,2,3,4j  

with solution:  1 4 2 30, 1, 0.67 0.63.x x x x z       

Choosing problem II (the larger value of the objective function) and branching  

on 3x  (is fractional), yields 
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III. 1 2 3 40.2 0.3 0.5 0.1 maxz x x x x      

s.t.   

1 2 3 4

1 2 3 4

1 2 3 4

2

3

0.5 1.5 0.1 3.1

0.3 0.8 1.5 0.4 2.5

0.2 0.2 0.3 0.1 0.4

1

0

x x x x

x x x x

x x x x

x

x

   
    

   
 
 

 

0, 0 1,j jx x    1,2,3,4j  

with solution: 1 2 3 41, 0, 0.5,x x x x z       and  

IV. 1 2 3 40.2 0.3 0.5 0.1 maxz x x x x      

s.t.   

1 2 3 4

1 2 3 4

1 2 3 4

2

3

0.5 1.5 0.1 3.1

0.3 0.8 1.5 0.4 2.5

0.2 0.2 0.3 0.1 0.4

1

1

x x x x

x x x x

x x x x

x

x

   
    

   
 
 

 

0, 0 1,j jx x    1,2,3,4j  

with solution:  infeasible. 

The solution of problem III is feasible for the original ILP and is a candidate  

solution with 0.5.z   

Choosing the only remaining problem I, and branching on 1,x  

V. 1 2 3 40.2 0.3 0.5 0.1 maxz x x x x      

s.t.   

1 2 3 4

1 2 3 4

1 2 3 4

2

1

0.5 1.5 0.1 3.1

0.3 0.8 1.5 0.4 2.5

0.2 0.2 0.3 0.1 0.4

0

0

x x x x

x x x x

x x x x

x

x

   
    

   
 
 

 

0, 0 1,j jx x    1,2,3,4j  

with solution: 3 4 1 31, 0, 0.6,x x x x z       and 
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VI. 1 2 3 40.2 0.3 0.5 0.1 maxz x x x x      

s.t.   

1 2 3 4

1 2 3 4

1 2 3 4

2

1

0.5 1.5 0.1 3.1

0.3 0.8 1.5 0.4 2.5

0.2 0.2 0.3 0.1 0.4

0

1

x x x x

x x x x

x x x x

x

x

   
    

   
 
 

 

0, 0 1,j jx x    1,2,3,4j  

with solution:  2 4 1 30, 1, 0.67 0.53.x x x x z       

Problem V is new candidate solution with 0.6.z   

Problem VI does not meet the binary condition (the variable 3 0.67x   is fraction-

al), and cannot be branched, value of the objective function is less than the current 

z – value and cannot yield the optimal solution to the original binary problem.  

So, the optimal solution to the binary integer problem is  

3 4 1 21, 0, 0.6.x x x x z       This means that the businessman should choose 

project number 3 and 4 to maximize the return. 

Exercises 

16. Find the optimal solution to the mixed ILP using the branch and bound method. 

1 2 33 3 maxz x x x     

s.t.   
1 2 3

1 2 3

3 2 7

2 2 11

x x x

x x x

  


  
 

1 2 3, , 0,x x x   1 3,x x Z  

17. A woman is organizing a housewarming party. Her friends decided to buy the 

presents together, and they have 3000 PLN available. She gave them a list of 

things that she needed with preference on a scale of 2 to 5. The thing that is 

needed the least is worth 2 points, and the thing that is most needed is worth  

5 points.  
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No. Presents 
Price 

[PLN] 
Preference 

1. robot Vacuum Cleaner, 3 In 1 2000 5 

2. set of cups 150 2 

3. champagne glasses 150 5 

4. cognac glasses 200 4 

5. potted flowers 250 3 

 
What things should friends buy to meet the person's needs and not exceed  

the amount available? 
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CHAPTER 5 
 

COMPUTER IMPLEMENTATION 

The purpose of this chapter is to provide a quick introduction to the computer 

algebra system Maple and, more importantly, to demonstrate these aspects of  

Maple that can be useful in modeling and solving a wide range of mathematical 

programming problems.  

Maple is one of the mathematical types of software known as Computer Algebra 

System (CAS), it is a mathematical problem-solving environment for advanced 

mathematics that gives us the ability to work with mathematical expressions in  

a way similar to the traditional computations. It combines symbolic, numerical and 

graphical methods used in different areas of mathematics, for example, algebra, 

calculus, discrete mathematics, and many other areas. 

5.1. An introduction to using Maple package 

A large amount of information about the Maple package can be found in the 

“Maple User Manual” or the “Maple Fundamentals Guide” that are available at 

Maple’s web site: www.maplesoft.com. On the other hand, Maple has an extensive 

Help System. To obtain help about a command, it is enough to type the question 

mark “?”, and then the name of command.  

One of the advanced features of Maple is its document interface where we can per-

form certain calculations in a “what you see is what you get” style. Computation in 

this style is convenient and useful.  

There are a few rules that are important for Maple’s users:  

 Maple takes case-sensitivity into account, 

 every command line entered into Maple must end with either a semicolon  

(i.e., ;) or a colon (i.e., :). If a semicolon is at the end of a statement, then the 

output will be displayed on the screen, while if a colon is used, then the output 

is suppressed - although the statement is still executed. To execute a command, 

press the Enter key, while the blinking cursor is anywhere in the statement.  

The cursor does not need to be at the end of the statement in order to execute it, 
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 the assignment operation (:=) allows the user to name or value Maple objects – 

variables and other types of structures, 

 Maple remembers the order in which commands are executed in the worksheet. 

To clear all values in the worksheet, write “restart” at the first command line 

and execute the worksheet again,  

 to add the line below the current cursor line type key combination: “CTRL – J”, 

to insert additional line above, type “CTRL – K” instead, 

 to add any notes in the command line, first type the “#” sign.  

In this chapter, the solutions of specific problems of linear programming with 

the Maple package will be presented.  Every Maple worksheet displayed in this 

chapter has been tested with Maple 15. 

5.2. Linear algebra with Maple 

In this section of Chapter 5, the Maple packages including “LinearAgebra”, and 

“VectorCalculus” are used. To find out something about a package’s concrete 

command, just type the “question sign(?) and command name”. 

The “Linear Algebra” package has the ability to perform a wide variety of opera-

tions on matrices, vectors, and the linear system of equations. To load this package, 

give the following command: 

restart: 

with(LinearAlgebra):. 

If you load any package using the “with” command by ending with a semicolon, 

Maple shows the names of all commands defined by the package. If you end  

a command with a colon these definitions will not displayed.  

Maple has different possibilities to construct the matrices,  

 matrix command: “Matrix(m, n, L)” where m – denotes the number of rows, 

and n – number of columns, L – is a list of elements, reading across the rows, 
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 column vector notation:  

we can use the angle bracket shortcut, < > to describe a column vector, separate 

entries with commas, and separate columns with vertical bars, | in matrices 

 

 

 

 

 

 

 

 

 

 

 use the matrix palette to interactively create a matrix without command. In the 

matrix palette, the specification of the matrix size and properties is available.  

To insert a matrix, just click the insert Matrix button 

 

enter the values of the entries; to move to the next entry placeholder, press Tab. 

After specifying all entries, press Enter. 

Below, several “LinearAlgebra” package commands are shown in examples: 

Example 28: Compute the determinant of matrix 

1 3 2 3

1 3 2 0
:

2 1 4 4

1 2 4 5

 
 
 
 
 
 

X  

Solution 
 

 



Computer implementation 101 

 

 

 

. 

Example 29: Solve the matrix equation ,Ax b  where  

1 2 3

A 2 5 2 ;

3 1 5

 
   
  

   

7

b 1 ;

10

 
   
  

   

1

2

3

x

x

x

x

 
   
  

 

Solution 

 

 

; 
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. 

The solution is: 

1

2

3

2

x 1

1

x

x

x

 
    
  

. 

5.3. A step-by-step Maple implementation to solve  

the linear programming problem 

5.3.1. The graphical solution of LP 

To start with graphical solution, the plot of the feasible region for a linear prob-

lem is necessary. In Maple, the plot commands are contained in the plots package, 

so first type “with(plots)” in the current worksheet. The region in the plane that 

consist of points satisfying the given inequalities, or constraints of the linear problem, 

can be graphed using the command “inequal(inequalities, options);”, the inequalities 

must be linear and enclosed within brackets and separated by commas. The options 

impose the plot region, the color of the area satisfying the inequalities, (optionsfea-

sible), the color of the boundary of the area, (optionsclosed), and the color of the 

points not satisfying at least one inequality, (optionsexcluded).  

Example 30: Use the graphical method to solve the problem:  

                                          1 2 1 2, 2 maxz f x x x x     

s.t.   

1

1 2

1 2

1 2

1 2

2 10

2 5 60

18

3 44

, 0

x

x x

x x

x x

x x


  


 
  


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Solution: the following Maple commands were used to obtain the solution: 

 

 

 

 

 

 

 

 
Figure 5.1. Feasible region with izoprofit lines for 10,15, 20, 31, 35z   
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Figure 5.2. Feasible region with optimal solution point 

 

. 

where: 

CS – describe the set of constraints, 

FR – feasible region, 

PL – isoprofit lines for 10,15, 20, 31, 35z   

Point – optimal solution, intersection point for the third and fourth constraints. 

5.3.2. The Simplex method 

To solve any linear programming problem, Maple has a package called “simplex”. 

To load this package, just type “with(simplex)”, then define the objective function, 

constraints, and then the option: maximize or minimize. 

Example 31:  1 2 1 2, 4 3 maxz f x x x x     

s.t.   

1

1 2

1 2

8

2 2 28

3 3 32

x

x x

x x


  
  

 

1 2, 0x x   
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Solution 

 

 

 

 

 

 

; 

to find the optimal value of the objective function, write: 

 

 

or 

 

. 

Example 32:  1 2 1 2, minz f x x x x     

s.t.   
1 2

1 2

4 3 5

3 4 4

x x

x x

 


 
  1 2, 0x x   

Solution: 
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The integer programming problem can be solved with Maple directly by using 

package “Optimization”. To load this package, give the following command: 

„ ”. 

To solve an ILP having no sign restrictions, use Maple’s “LPSolve” command, which 

is available in optimization package, and simply add the option “assume=integer”. 

For an ILP requiring nonnegative decision variable values, add “assume=nonnegint” 

instead. For a mixed ILP, the option “integervariables=[list]” specifies which par-

ticular variables are required to take on integer variables. For a binary LP, adding 

“assume=binary” requires all decision variables equal to 0 or 1 in the solution, 

whereas “binaryvariables=[list]” specifies which subset of the decision variables 

have binary values. You can find a sample worksheet illustrating the use of these 

command options in the following examples: 

Example 33:  Solve the given linear programming problems directly with Maple:  

a) the LP problem is given in matrix form 

z   c x min  

s.t.    A x b  

,x 0   and integer 

where 

1

2

,
x

x

 
  
 

x    50 100 ,c   
28

,
24

 
  
 

b   and  
7 2

.
2 12

 
  
 

A  

Solution. 
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b) 1 2 3 40.2 0.3 0.5 0.1 maxz x x x x      

s.t.   

1 2 3 4

1 2 3 4

1 2 3 4

0.5 1.5 0.1 3.1

0.3 0.8 1.5 0.4 2.5  

0.2 0.2 0.3 0.1 0.4

x x x x

x x x x

x x x x

   
    
    

 

0 1,   1, 2, 3, 4ix or i   

Solution. 

 

 

 

 

 

 

 

 

 

 

. 
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5.3.3. Transportation problem 

To solve the transportation problem with Maple, the “Simplex” package can be 

used. The example shows the Maple commands that can be used to obtain the 

transportation problem solution. 

Example 34: There are 3 Parties who supply the following quantity of coal 

P1 = 14t, P2 = 12t, P3 = 5t. There are 3 consumers who require the coal as follows 

C1 = 6t, C2 = 10t, C3 = 15t. The cost matrix is given below. Find the schedule of 

transportation policy which minimizes the cost.  

From 
To 

C1 C2 C3 

P1 6 8 4 

P2 4 9 3 

P3 1 2 6 

 
Solution. The mathematical model of the problem is: 

11 12 13

21 22 23

31 32 33

6 8 4

4 9 3

2 6 min

z x x x

x x x

x x x

   

  

  

 

s.t.   

11 12 13

21 22 23

31 32 33

11 21 31

12 22 32

13 23 33

14

12

5

6

10

15

x x x

x x x

x x x

x x x

x x x

x x x

  
   
   


  
   


  

 

0ijx   

and the solution with Maple: 
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. 
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Exercises 

18. Solve the following problems graphically with Maple software. 

a.  1 2 1 2, 4 minz f x x x x     

s.t.   

1 2

1 2

1

1 2

3 6

4 12

2

, 0

x x

x x

x

x x

 


 
 



 

b.  1 2 1 2, 4 maxz f x x x x      

s.t.   

1 2

1 2

1 2

3 2 8

 12

0, u.r.s.

x x

x x

x x

 


 


 

c.  1 2 1 2, 5 maxz f x x x x     

s.t.   

1 2

1 2

1 2

2 3 12

3 0

, 0

x x

x x

x x

 


 


 

d.  1 2 1 2, 5 maxz f x x x x     

s.t.   

1 2

1 2

1 2

3 0

8

, 0

x x

x x

x x

 


 


 

e.  1 2 1 2, 5 minz f x x x x     

s.t.   

1 2

1 2

1 2

1 2

2 6

4

5 10

, 0

x x

x x

x x

x x

 


 
  



 

f.  1 2 1 2, 4 minz f x x x x     
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s.t.   

1 2

1 2

1

1 2

3 10

5

3

, 0

x x

x x

x

x x

 


 
 



 

19. Use the simplex algorithm to solve the following problems. 

a) Marc’s physics teacher has given his class three long lists of problems with 

the instruction to submit no more than 100 of them for credit (only problems 

correctly solved). The problems in the first set are worth 5 points each, those 

in the second set are worth 4 points each, and the problems in the last set are 

worth 6-points each. Mark knows that he requires on average 3 minutes  

to solve a 5-point problem, 2 minutes to solve a 4-point problem, and  

4 minutes to solve a 6-point one. He cannot afford to devote more than  

3.5 hours altogether on this physics assignment. Moreover, the first two sets 

of problems involve numerical calculations, and he knows that he cannot 

stand more than 2.5 hours of work on this type of problem. How many  

problems in each of the three categories shall he solve in order to get the 

maximum possible credit for his effort?  

b)  1 2 1 2, 2 3 maxz f x x x x     

s.t.   

1 2

1 2

1 2

2 4

2 5

, 0

x x

x x

x x

 


 


 

c)  1 2 1 2, 2 3 minz f x x x x     

s.t.   

1 2

1 2

1 2

4

6

, 0

x x

x x

x x

 


 


 

d)  1 2 1 2 3 4, 5 4 6 8 minz f x x x x x x       

s.t.   

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2 2 4 40

2 2 2 8

4 2 10

, , , 0

x x x x

x x x x

x x x x

x x x x

   


   
    


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e)  1 2 1 2, 3 maxz f x x x x     

s.t.   

1 2

1 2

1 2

2 4

3

, 0

x x

x x

x x

 


 


 

f)  1 2 1 2 3, 4 4 minz f x x x x x      

s.t.   

1 2 3

1 2

1 2 3

1 2 3

2

2 3

2 3 3

, , 0

x x x

x x

x x x

x x x

  


 
   



 

20. Consider the transportation problem with n supply points and m demand points. 

The dates are shown in the table. Find the schedule of transportation which 

minimizes the total cost. 

a) 3, 4n m   

From 
To 

Supply 
D1 D2 D3 D4 

S1 4 1 3 4 60 

S2 2 3 2 3 35 

S3 3 5 2 4 45 

Demand 22 15 18 35  

 
b) 3, 4n m   

From 
To 

Supply 
D1 D2 D3 D4 

S1 5 7 3 8 500 

S2 24 6 9 5 400 

S3 32 6 4 54 200 

Demand 250 450 300 400  

 
Supply centers are also production points, and unit production cost is: 4, 3, 5,  

respectively. 
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ANSWERS TO SELECTED PROBLEMS 

2.1. 5. 2.2.  4. 2.3. 6 4.  

3a. 
1

2

x

y





 3b. 

1

3

x

y





 3c. 

2

2

2

x

y

z





 

 

3d. 5 2 ,

1

z p

y p

x p




 
  

 .pℝ  

4. 1 241 36 minz x x    

s.t.   

1 2

1 2

1 2

1 2

20 30 110

10 10 18
,

50 30 90

6 2.5 14

x x

x x

x x

x x

 
  


 
  

 1 2, 0x x   

5a. 1 2

12 18 54
, , ,

5 5 5
x x z    

5b. 1 2

10 2 10
, , ,

3 3 3
x x z


    

6a. 2a b  6b. 2
3

a
b a   6c. 

3

a
b   

6d. 2b a  6e. 
3

a
b   

8. 1 20, 2, 6x x z    

9a. The linear program in standard form is: 

1 22 3 maxz x x    

s.t.   
1 2 1

1 2 2

2 4

2 5

x x s

x x s

  


  
 

1 2 1 2, , , 0x x s s   
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The initial tableau – I iteration  

Basic z  1x  2x  1s  2s  RHS ratio 

z  1 –2 –3 0 0 0  

1s  0 2 1 1 0 4 4 

2s  0 1 2 0 1 5 5
2

 

 

The actual BFS is  1 0 0 4 5 ,T x  1( ) 0.z x  

III iteration – the optimal simplex tableau: 

Basic z  1x  2x  1s  2s  RHS ratio 

z  1 0 0 1
3

 4
3

 8  

1x  0 1 0 2
3

 1
3

  1  

2x  0 0 1 1
3

  2
3

 2  

 
Since there are no negative coefficients in row 0, we have reached the optimal 

solution 

 1 2 ,T
opt x     8optz x  

9b.  0 5 ,T
opt x     5optz  x  

9c. 
2 9

,
5 5

T
opt

    
x     17

5
optz x  

10a. 1 210 8 minw y y    

s.t.   

1 2

1 2

1 2

2 5

2 12

4

y y

y y

y y

 
  
  

  1 20; u.r.s.y y  

10b. 1 23 7 maxw y y    

s.t.   
1 2

1 2

2 15

4 12

y y

y y

 


 
  1 20; 0.y y   
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11a. 1 26 7 minw y y    

s.t.   

1 2

1 2

1 2

2 5

2 3

1

y y

y y

y y

 
  
  

  1 2, 0;y y   
7 1

3 3

T
opt

    
y  

11b. 1 25 8 minw y y    

s.t.   

1 2

1 2

1 2

1 2

2 3

2 3 4

1

2 3 5

y y

y y

y y

y y

 
  


 
  

  1 2, 0;y y    1 1T
opt y  

12. 

11 12 13 14

21 22 23 24

31 32 33 34

2500 1500 0 1000

0 1000 3000 0 ,

0 2000 0 0

opt

x x x x

x x x x

x x x x

    
      
     

x  ( ) 69500optz x  

Hint. This is unbalanced problem,  total supply (11000) exceeds total demand 

(10000), create a dummy demand point. 

15. 

11 12 13 14

21 22 23 24

31 32 33 34

0 0 0 25

0 15 0 10 ,

15 5 30 0

opt

x x x x

x x x x

x x x x

    
      
     

x  ( ) 535optz x  

16. 
1

0 3 ,
3

T
opt

    
x   ( ) 10optz x  

17. The mathematical model:  

1 2 3 4 55 2 5 4 3 maxz x x x x x       

s.t.   1 2 3 4 52000 150 150 200 250 3000x x x x x      

 1 2 3 4 5, , , , 0,1x x x x x   

18a. 1 212; 3, 0z x x    

18b. unbounded 

18c. 1 26; 0, 6z x x    

18e. 1 216; 6, 2z x x    
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18f. 1 214; 3, 2z x x    

19a. The mathematical model: 

1 2 35 4 6 maxz x x x     

s.t.   
1 2 3

1 2

3 2 4 210

3 2 150

x x x

x x

  


 
  1 2 3, , 0x x x   

19b. 1 28; 1, 2z x x    

19d. 1 2 3 448; 0, 4, 0, 8z x x x x       

19f. 1 2 31; 0, 0, 1z x x x     
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