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Abstract. The dual-phase lag equation is formulated for the case when the thermophysical 

parameters occurring in this equation are temperature-dependent. The axial-symmetrical 

domain of biological tissue heated by an external heat source is considered. The problem  

is solved using the implicit scheme of the finite difference method. At the stage of numeri-

cal computations, the analytical relationships taken from the literature describing changes 

in parameters are taken into account.  
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1. Introduction  

One of the methods supporting the treatment of lesions is tissue heating, i.e. arti- 

ficially induced hyperthermia. Mathematical modeling allows one to support the 

planning of this type of treatment, e.g. by determining the temperature distribution 

in the analyzed tissues and estimating the degree of their destruction. There are var- 

ious types of mathematical models that describe the heat flow in living tissues in the 

literature. These are the Pennes equation [1], the Cattaneo-Vernotte equation [2, 3], 

the dual-phase lag equation [4], the three-phase lag equation [5-7], models based on 

the theory of porous media [8] and models taking into account the presence of ther- 

mally significant blood vessels [9, 10]. In order to determine the values of thermo-

physical parameters present in these models, intensive experimental studies of  

various types of tissues are carried out [11, 12]. 

It should be noted that the heating of biological tissues changes their thermophys- 

ical properties. When the temperature rises to 80-99°C, both the thermal conductivity 

and volumetric specific heat increase [13-15], while the blood perfusion rate and 
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the metabolic heat source disappear [16]. Until now, in the modelling of artificial 

hyperthermia, the constant values of these parameters are usually adopted. 

In this paper the temperature distribution in the domain of biological tissue heated 

by an external heat source is described by the dual-phase lag equation (DPLE). This 

equation is derived for the case of temperature-dependent thermophysical parame-

ters and its form is essentially more complicated as in the case of the constant ones.  

The problem is solved using the implicit scheme of the finite difference method.  

The calculations are also performed for constant and variable thermophysical  

parameters and on this basis the conclusions are formulated. 

2. Dual-phase lag equation with temperature-dependent parameters  

The dual-phase lag equation is based on the following relationship between  

the heat flux and the temperature gradient [4] 

    , τ λ( )grad , τq TX t T T X t   q  (1) 

where q  is the heat flux, T is the temperature, λ(T)  is the thermal conductivity,  

τq is the relaxation time, and τT is the thermalization time, X denotes the spatial  

coordinates (e.g. in the cylindrical co-ordinate system X = {r, φ, z}), t is the time. 

The functions T and q are expanded into the Taylor series with an accuracy  

to the first derivatives 

      
 grad ,,

, τ λ( )grad , τ λ( )q T

T X tX t
X t T T X t T

t t

       
 

q
q  (2) 

The well-known Fourier equation (a start point for further considerations) has 

the following form  

        
,

div , ,
T X t

c T X t Q X t
t


  


q  (3) 

where c(T) is the volumetric specific heat and Q(X, t) is the source function.  

From the dependence (2) it follows 

      
 grad ,,

, τ λ( )grad , τ λ( )q T

T X tX t
X t T T X t T

t t

       
 

q
q  (4) 

Hence 

     
 grad ,div ,

div , τ div λ( )grad , τ div λ( )q T

T X tX t
X t T T X t T

t t

                

q
q

  (5) 
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Formula (5) is introduced into equation (3) 

 

       

 
 

, div ,
τ div λ( )grad ,

grad ,
τ div λ( ) ,

q

T

T X t X t
c T T T X t

t t

T X t
T Q X t

t

 
      

      
  

q

 (6) 

From equation (3) it follows that 

        
,

div , ,
T X t

X t c T Q X t
t


  


q  (7) 

This relationship is used in equation (6) 

 

         

 
 

 

, ,
τ , +

grad ,
div λ( )grad , τ div λ( ) ,

q

T

T X t T X t
c T c T Q X t

t t t

T X t
T T X t T Q X t

t

   
      

            

 (8) 

that is 

 

         

 
   

, ,
τ div λ( )grad ,

grad , ,
τ div λ( ) , τ

q

T q

T X t T X t
c T c T T T X t

t t t

T X t Q X t
T Q X t

t t

   
          

        
   

 (9) 

The source function Q(X, t) is the sum of the component related to blood perfu-

sion and metabolism  

  ( , ) ( ) ( , ) ( )b a metQ X t w T c T T X t Q T    (10) 

where w(T) is the blood perfusion rate, cb is the specific heat of blood, Ta is the  

arterial blood temperature and Qmet(T) is the metabolic heat source. 

3. Formulation of the problem  

The axisymmetric biological tissue domain is considered (X = (r, z)). The tem-

perature field in the tissue is described by the dual-phase lag equation (9) in which 

   1
div λ( )grad λ( ) λ( )

T T
T T r T T

r r r z z

                
 (11) 
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It is assumed that the surface 0 ≤ r ≤ R, z = 0 is heated by the external heat flux  

 
2

0 2
1 expb

e e D

t t r
q q

t t r

  
    

   
 (12) 

where q0 is the maximum heat flux, te is the exposure time, and r ≤ rD. On the  

remaining surfaces the no-flux condition qb = 0 is taken into account. It should be 

noted that in the dual-phase lag model the Neumann condition takes the form [17] 

 λ ( ) grad τ grad τ b
T b q

qT
T T q

t t

  
        

n n  (13) 

where n is the normal outward vector and qb is the known boundary heat flux.  

The initial conditions are also known [17] 

 
( )

0: ,
( )

p

p

p

Q TT
t T T

t c T


  


 (14) 

where Tp is the initial temperature of tissue. 

In the case when the analytical formulas describing the dependencies of thermo- 

physical parameters on temperature are known, the equation (9) can be written as 

follows: 

 

  

 

 
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t
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T w T c T T Q T

t


       

       

         

 (15) 

where v(T) = dw(T)/dT, Pmet(T) = dQmet(T)/dT and 
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                               

2 2

2 2
τT

T T

tz z

         

 (16) 
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4. Temperature-dependent changes in tissue thermal properties  

In the papers [13-15], the thermal properties of the liver, i.e. the thermal conduc- 

tivity and the volumetric heat capacity measured as a function of temperature during 

the heating process, are presented.  

Silva et al. [13] experimentally investigate the thermal properties of the ex vivo 

ovine liver in the hyperthermic temperature range, from 25 to 97°C and they  

proposed the following dependencies  

  11 W
λ( ) 0.502 1.447 10 exp 0.256

mK
T T

       
 (17) 

and 

  12

3

MJ
( ) 3.415 1.278 10 exp 0.289

m K
C T T

       
 (18) 

Moreover, the Authors also performed the thermal conductivity and volumetric 

specific heat measurements during the cooling process of the samples. It turns out 

that the values of the thermal properties decrease following the trend suggested by 

the models (17), (18), without showing any hysteresis phenomena. Thus, it is pos-

sible to observe that changes in thermal properties with high temperatures are  

reversible when complete vaporization of the tissue water content does not occur, 

i.e., when a temperature of 100°C is not reached. The tissue thermal properties  

return to their basal values during the cooling.  

Mohammadi et al. [14] measured the thermal properties of the liver, pancreas 

and brain tissues in the temperature range from 22°C to around 97°C. Finally,  

the following approximations are proposed (a porcine liver) 

  10 W
λ( ) 0.543 4.41 10 exp 0.222

mK
T T

       
 (19) 

and  

  10

3

MJ
( ) 3.542 1.79 10 exp 0.233

m K
C T T

       
 (20) 

Lopresto et al. [15] for 21°C  T  99°C and a bovine liver suggest the dependencies 

 
51 25.296 W

λ( ) 0.5075 5.6261 10
mK

T T
       

 (21) 

and  

 
3

3.6186 MJ
( ) 3.3012

100 m K
C T

T

      
 (22) 
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In Figures 1 and 2, the thermal conductivity (formulas (17), (19), (21)) and  

the volumetric specific heat (formulas (18), (20), (22)) as a function of temperature  

are shown. 
 

 

Fig. 1. Thermal conductivity as a function of temperature:  

A1 – formula (17), A2 – formula (19), A3 – formula (21) 

As can be seen, these relationships do not differ much from each other, although 

they relate to the parameters of the liver for different animals. When analyzing 

these Figures, it can be seen that up to the temperature of 80°C, both the thermal 

conductivity and the volumetric specific heat hardly change. Hence the conclusion 

that in the case of modeling moderate hyperthermia, these parameters can be treat-

ed as the constant values. Above 90°C, a rapid increase in the values of the thermal 

conductivity and the volumetric specific heat is observed.  

 

 

Fig. 2. Volumetric specific heat as a function of temperature:  

A1 – formula (18), A2 – formula (20), A3 – formula (22) 

It should be noted that the blood perfusion rate w(T) and the metabolic heat source 

are also temperature dependent. A frequently used relationship that describes the 

change in blood perfusion rate versus temperature is [16] 
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37

10
0( ) 2

T

bw T w



  (23) 

where wb0 represents the basal blood perfusion rate. As can be seen, an increase in 

temperature of 10°C causes a two-fold increase in the blood perfusion rate com-

pared to the initial value of wb0 . 

A similar relationship is assumed for the metabolic heat source [16] 

 

37

10
0( ) 2

T

met mQ T Q



  (24) 

where Qm0 represents the basal metabolic heat source. 

The relationships (23), (24) can be used to model the moderate hyperthermia in 

which the tissue temperature does not exceed 50-55°C. It is known that with further 

temperature increase, the metabolic component and blood perfusion rate gradually 

decrease to zero. Thus, in the computations presented later in this paper, due to the 

lack of experimental data, it was assumed that in the temperature range [55°C, 

90°C] these components decrease linearly to zero. 

5. Method of solution  

To solve the problem formulated, the implicit scheme of the finite difference 

method is applied [10, 17]. The differential grid is shown in Figure 3.  

For internal node (i, j), i = 1, 2, ..., m‒1, j = 1, 2, ..., n‒1 and transition t f → t f+1 

the following approximation of operator (16) is proposed 
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 (25) 
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Fig. 3. Differential mesh 

Next, the derivatives with respect to time are replaced by difference quotients, e.g.  
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, ,

,

=

f ff
i j i j

i j

T TT

t t
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   

 (26) 

where Δt is the time step. 

After mathematical manipulations one has 
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where 
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The approximation of the left-hand side of equation (15) is as follows 
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 (30) 

The following approximation of equation (15) is obtained 
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where 
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Equation (31) can be converted to the form 
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and  
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  (35) 

The differential approximation of the boundary condition (13) is as follows 
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For j = 0 (i = 1, 2, …, m‒1) one obtains 
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 (37) 

Equations for the remaining boundary nodes are obtained in a similar way.  

For the transition t f → t f+1, the system of equations (33) is solved using the  

iterative method. The iterative process has been continued until the condition 

    1
1 1

, , ε
k k

f f
i j i jT T

    for each node has been fulfilled, where k is the number of 

iterations. It should be noted that the presented algorithm is unconditionally stable [18]. 

6. Results of computations  

The cylindrical fragment of the tissue domain (R = 0.02 m, Z = 0.02 m) is con- 

sidered. The surface 0  r  R, z = 0 is heated by the external heat flux (formula (12)) 

where q0 = 53 kW/m2 is the maximum heat flux, te = 120 s is the exposure time, 

rD = 0.005 m and r  rD . On the remaining surfaces the no-flux condition qb = 0  

is taken into account. The initial tissue temperature is equal to Tp = 37°C,  

arterial blood temperature equals Ta = 37°C and specific heat of blood equals 

cb = 3770 J/(kg K). 

At the beginning, the computations were performed assuming constant thermal 

properties of the tissue, namely thermal conductivity λ = λ(Tp) (equation (17)),  

volumetric specific heat c = c(Tp) (equation (18)), blood perfusion rate w = w(Tp) = 

= wb0 = 0.5 kg/(m3s) (equation (23)), metabolic heat source Qmet = Qmet(Tp) = Qm0 = 

= 245 W/m3 (equation (24)), relaxation time τq = 4 s, and thermalization time 

τT = 2 s [8, 10].  

The problem is solved using the implicit scheme of the finite difference method 

under the assumption that n = m = 100 (grid step is equal to h = 0.0002 m), and the 

time step is equal to Δt = 0.0005 s. The computations are also done for n = 50 and 
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n = 150, and it turns out that n = 100 ensures the fine-enough mesh-size needed to 

generate accurate results. A small-time step is assumed to ensure a good approxi- 

mation of the changes in the boundary heat flux (12) and the temperature-dependent 

values of tissue parameters. 

Next, the problem is solved using temperature-dependent parameters (equations 

(17), (18), (23), (24)). Figure 4 shows the temperature history at the points 

A(0.0002 m, 0), B(0.004 m, 0) for constant and temperature-dependent parameters. 

As expected, in the initial stage of the process, these curves coincide, because 

the values of λ(T) and C(T) for lower temperatures are almost constant (see: Figures 

1 and 2), and the other parameters w(T) and Qmet(T) have a little influence on the 

temperature values. Significant differences appear when the temperature rises above 

90°C, and they are about 6°C. In the case of constant parameters, the temperature  

is larger. During the cooling stage, the differences decrease. 

 

 
Fig. 4. Temperature courses at points A and B for constant  

and temperature-dependent tissue parameters 

 
Fig. 5. Temperature courses at point A, Model 1 – equations (17), (18);  

Model 2 – equations (19), (20); Model 3 – equations (21), (22) 

The computations are also performed for the set of equations (19)-(20) and  

(21)-(22). In Figure 5 the temperature courses at the point A are presented. Model 1 
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concerns the ovine liver (equations (17)-(18)), model 2 concerns the porcine liver 

(equations (19)-(20)), while model 3 concerns the bovine liver (equations (21)-(22)). 

It is visible that the curves corresponding to the models 1 and 3 almost match. 

Slightly lower temperatures are obtained for model 2 (Table 1).  

Table 1. Maximum temperatures 

 Model 1 Model 2 Model 3 S 

Max temperature [°C] 93.226 90.941 92.892 1.008 

 

The aim of the next computations is to estimate the influence of the delay times 

values τq and τT on the temperature distributions (Fig. 6). The results of the simula-

tions are listed in Table 2.  

In Tables 1 and 2 information about the values of standard deviations S with  

respect to the mean values is also presented. 

Table 2. Temperatures at point A calculated for different time delays 

Time 

delays [s] 

T = 2, 

q = 4 

T = 0, 

q = 4 

T = 10, 

q = 14 

T = 0.1, 

q = 1 S 

Time [s] Temperature [°C] 

60 91.234 91.533 93.382 90.709 1.007 

90 91.332 91.420 90.855 91.596 0.274 

120 65.832 64.773 63.137 66.888 1.386 

150 51.672 51.133 50.133 51.922 0.687 

 

 
Fig. 6. Temperature courses at points A and B for different values of  

time delays q and T 

7. Conclusions 

The dual-phase lag equation for temperature-dependent thermophysical parameters 

of biological tissue has been formulated. The DPLE supplemented by appropriate 
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boundary and initial conditions has been solved using the implicit scheme of the  

finite difference method.  

The performed computations showed that in the case of temperatures reaching 

80-99°C, there are significant differences in temperature distributions for variable 

and constant thermophysical parameters. The differences in the temperature distri-

butions caused by different values of the delay times are smaller and do not exceed 

1%. 

Hence the conclusion that in the modelling of high-temperature hyperthermia, 

the variability of thermophysical parameters with temperature should be considered. 
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