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Abstract. In this paper an application of the interval lattice Boltzmann method for solving 

one-dimensional problems is presented. The Boltzmann transport equation transformed in 

the phonon energy density equation is considered. Such approach in which the parameters 

appearing in the problem analyzed are treated as the constant values is widely used. Here, 

the model with interval value of relaxation time is analyzed. In the final part of the paper, 

results of numerical computations are shown. 

Introduction 

Heat transport in dielectric materials and semiconductors is mainly realized by 

quanta of crystal vibrational energy called phonons. The study of phonons is an 

important part of solid state physic, because phonons play a major role in many 

of the physical properties of solids, especially a material's thermal conductivity. 

The crystal can be considered as a container filled with a gas of phonons. Phonons 

always “move” from the part with the higher temperature to the part with the lower 

temperature.  During this move phonons carry energy. This kind of phenomena can 

be described by the Boltzmann transport equation in which the relaxation time 

appears. The relaxation time is estimated experimentally and its actual value is 

still a subject of discussion [3, 4]. In such conditions it seems natural to define the 

relaxation time as an interval value. In the paper the heat transport proceeding in 

a thin silicon film is considered. 

1. Boltzmann transport equation 

The Boltzmann transport equation (BTE) is one of the fundamental equations 

of solid state physic and takes the following form [1, 2] 
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where f  is the phonon distribution function, 
0

f  is the equilibrium distribution func- 

tion given by the Bose-Einstein statistic, v is the phonon group velocity, 
r

τ  is the 

relaxation time and 
ef

g  is the phonon generation rate due to electron-phonon scat- 

tering. 

In order to take advantage of the simplifying assumption of the Debye model, 

the BTE can be transformed in a phonon energy density equation of the form [1] 
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where e is the phonon energy density, 
0

e  is the equilibrium phonon energy density 

and vq  is the internal heat generation rate related to an unit of volume. The equa-

tion (2) must be supplemented by the boundary initial conditions. 

Using the Debye model the relation between phonon energy and lattice temper-

ature can be calculated using the formula 
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where 
D

Θ  is the Debye temperature of the solid, 
b

k  is the Boltzmann constant, T is 

the lattice temperature while η  is the number density of oscillators and is defined 

using the formula 
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where h  is the Planck constant divided by 2π  and ω  is the phonon frequency. 

2. The Interval Lattice Boltzmann Method 

The interval lattice Boltzmann method (ILBM) is a discrete representation of 

the Boltzmann transport equation. For one dimensional problems the interval Boltz- 

mann transport equation can be written as 
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where xv  is the component of velocity along the x-axis and [ ],r rτ τ  is the interval 

relaxation time. 

All mathematical computations must be calculated according to the rules of an 

interval arithmetic [5, 6]. 
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The ILBM discretizes the space domain considered by defining lattice sites where 

the phonon energy density is calculated. The lattice is a network of discrete points 

arranged in a regular mesh with phonons located in lattice sites. Phonons can travel 

only to neighboring lattice sites by ballistically traveling with the certain velocity 

and collide with other phonons residing at these sites [1]. 

The time step needed for a phonon to travel from one lattice site to the neigh-

boring lattice site is denoted by t∆ , while 
k

c  (k = 1, 2) is a discrete set of propaga-

tion velocities in the main lattice directions, this means 

 1 2( , 0) ( , 0)c c= = −c c  (6) 

 

Fig. 1. Velocity vectors in a 1D lattice 

In the ILBM it is needed to solve two equations allowing to compute phonon ener-

gy in different lattice nodes according to equations 
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where e1 and e2 denote the phonon energy for two main lattice directions and 

/v x t= ∆ ∆  where x∆  is the lattice distance from site to site. The equations (7) 

must be supplemented by the following boundary-initial conditions 
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where 1 2,T T  denote the boundary temperatures and 0T  is the initial temperature. 

The approximation of the first derivatives using right-hand side differential qu-

otients is the following 
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and using left-hand side differential quotients is of the form 
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Thus one obtains the approximate form of the equations (7) 

 
( )

( )

1
0 0

1 1 1 1 1 11

1
0 0

2 2 2 2 2 21

, 1 , , , ,

, 1 , , , ,

f f f

v
i i i

f f f

v
i i i

e e b b e e b b e e t q

e e b b e e b b e e t q

+

+

+

−

        = − + + ∆        

        = − + + ∆        

 (11) 

where [ ], / ,
r r

b b t  = ∆ τ τ  . 

The total phonon energy density is the sum of discrete phonon densities in all 

the lattice directions 
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The same equilibrium phonon energy density in all the lattice directions is assumed 

and can be calculated using the equation 
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The ILBM algorithm is an expansion of the algorithm presented in the paper [1] 

being equivalent method for constant value of the relaxation time. 

The lattice temperature is determined using the formula describing the relation 

between phonon energy and lattice temperature (see equation (3))  

 
3

1

/ 3
4

0

( )

9 d
exp( ) 1

f
D

f
f D

T

b

e T
T

z
k z

z

+

Θ

Θ
=

η
−∫

 (14) 

3. Example of computations 

As an numerical example the transient heat transport in a silicon film of the dimen- 

sion L = 200 nm has been analyzed. The following input data have been introduced: 

the Debye temperature K640=ΘD , the relaxation time ps]6606.6,3994.6[~ =τr , 

the boundary conditions 1 2800K, 300KT T= = , the initial temperature 0 300KT =  
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and 0
v

q = . The lattice step nm20=∆x  and the time step ps5=∆t  have been 

assumed. 

Figure 2 illustrates the interval temperature distribution for time 25t = ps, 

50t = ps and 150t = ps in the silicon film. The solid line denotes the upper bound 

of the temperature interval while the dotted line denotes the lower bound of the 

temperature interval. 

Figure 3 shows the interval courses of the temperature function obtained at the 

internal nodes 1 20x = nm (1), 2 100x = nm (2), 3 180x = nm (3). 
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Fig. 2. The interval temperature distribution (1 - 25 ps, 2 - 50 ps and 3 - 150 ps) 
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Fig. 3. The interval heating curves at internal nodes 
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Conclusions 

In the paper the Boltzmann transport equation with the interval relaxation time 

has been considered. The ILBM for solving 1D problems has been presented. This 

application should be extended to 2D and 3D problems and take into account the 

boundary conditions of the 2
nd

 and 3
rd

 type. 
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