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Abgtract. The hyperbolic equation (1D problem) supplemerigdadequate boundary and

initial conditions is considered. This equations@ved using the combined variant of the
boundary element method. The problem is also sdlvedhalytical way. The comparison of

the results obtained by means of these two mettmufirms the effectiveness and accuracy of
the BEM.

1. Formulation of the problem

The following equation is considered

QU(xD) , 92U (1) _92U(x1)

1
ot at? 0 X @)

whereU (x, t) is an unknown functior is the spatial co-ordinate and the time.
The equation (1) is supplemented by the boundangditons

t>0, x=0: U(@O1t)=0 5
t>0, x=1:. U@ t)=0 @

and the initial ones
0<x<1l, t=0: U(x,00=U,>0
0<x<1, t=0: ML:O:O ®)
ot
This type of boundary and initial conditions allotesssolve the problem ana-

lytically and in this way the results obtained bgans of the boundary element
method using discretization in time can be comparigid the analytical solution.
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2. Boundary element method

To solve the equation (1), the BEM using discreimra in time is applied
[1, 2]. So, the time grid

0=t<tl<.. <t'?<t<t’  <tF <o (4)

with constant stepAt =t" —t" is introduced.
For the time interval[tf'z,th the following approximations of time derivative
can be taken into account

AU (x 1) U tH-uxt™ .
ot l=t' T At ®)

and
U(xt)| _U(xtH)-U(xt?) 5
ot =’ 2 At ©

or

aU(x 1) _3U(xt")-4U (x,t"+U(x,t'?) ;
ot =" T 2 At "

The second time derivative is approximated in feitg way

0°U (x 1) _U(xt)-2U (x, t"™)+U (x, t'?)
at? (4t)?

(8)

Let ,6’:%],[ andU " =U(x, f4t).At thef-th time stept = fAt (f = 2)the equa-
tion (1) can be approximately rewritten as
o'
a X

-AU"+BU'-CcU'2=0 (9)

where for the first variant (equation (5))
A=p*+p, B=2p°+p, C=p° (10)

for the second variant (equation (6))

A=ﬁ2+%ﬁ. B=24%, C=/32—%ﬁ (11)
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and for the third variant (equation (7))

A= +> B, B=2S 4 f), C=F+2f (12)
For equation (9) the weighted residual criterioapplied [1]
NEXSK
J’(?—Auf+Buf—1—cuf—2JuD(f,x)dx:o (13)
X
0

where&[(0, 1) is the observation poird, (£, X) is the fundamental solution and this
function should fulfil the equation

0 U, %)

e T AU(EN =0 (6 %) (14)

whered (&, X) is the Dirac function. It can be check that thiofving function

U (.= explpe-al VA (15)

fulfills the equation (14).
Additionally, the functiorg (¢, X) resulting from fundamental solution is defined

g e x=-20E (16)
X
and it can be calculated analytically
0'(0 =2 exp(-[x- VA (17)

where sgrijlis the sign function.
Integrating twice by parts the first component qtigion (13) and taking into
account the property (14) of fundamental solutina obtains

f x=1 « x=1
{u%f.x)":x} —[uf—aua(f’x)} U@+
x=0 (18)

x=0
1
+I(Buf'1—cuf—z)u*(f,x)dxzo
0
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or

U@ th+u"Enqath-u' ¢ 0q0th) =

. N (19)
=q (&, u at)-q(Eo0uEth)+preEth

where q(xt")=-aU(xt")/ax and

1
P(E,tf)=I(BUf_l—CUf_z)U*(E,x)dx (20)
0
For& — 0" one obtains
uothH+u"onqatf)-u"© 0qOth)= (21)
=g 0", puath-q©0,0uEthH+POt"H

and for¢ - 1 one has

uath+u"anqath-u" @ oqoth)=

. . (22)
=q @, yueth-qg@,0ouEtH+pPeth

The system of equations (21), (22) can be writtethé matrix form

—u (00 U (0,1)}{q (O,tf)} _
-u'@o U anjaath

-q'(0",0-1 40" }{u (O,tf)}_{P(O,tf)}
| -d@0 da.y-uath] [Pat)

G Glz}{q(o,tf)}{ml le}{U(O,tf)}{P(O,tf)}
1Go1 Go2f q@t™y| [Ha1 HaJuath| | Path

(24)

(23)

or

whereGy1 = -Gy, = -1/(2JA), Gy =—Gpq = -1/(2V A)expvA),
Hll = H22 =-1/2, Hip=Hy1 = 1/29Xp(_\/x)

This system of equations allows to find the boupdaduesU (0,t"), U (1,t").
Next, the values ol at the internal noded](0, 1) are calculated using the for-
mula (c.f. equation (19))
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uEtHh=qEnuath-q¢oupth+

) . (25)
—UT (&) q@th+u (E,0q0tN)+PEth)
this means (c.f. formulas (15) and (17))
u (&tf):%exp(—fﬂ) u (o,tf)%exp[—(l—f)m uath)+
1 - fyoo L o f f
+amem<5ﬁbqwm) il OJA gty +PEth o5

3. Analytical solution

To solve the problem (1), (2), (3) analyticallyetRourier method [3, 4] is ap-
plied. So, one assumes that

U(xt) =iun(x, t) (27)
n=0
where
U, (% 1) = X, (%) T,(t) (28)
and then
N6 oy o, LUnlD o 9T
ot ot (29)
Un060) -y 1o, 2D 970
0X 2
Putting (29) into (1) one obtains
Xn () T (£) + Xp(X) T (1) = X (X) T (1) (30)
this means
Ta®) , Ta() _ Xn(¥) (31)
Ta®) Ta(®  Xn(¥)
It is assumed that
Ta® , Ta® _ Xa () __;2 (32)

Th(®) Th(® Xn(X) "
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where A, # 0 are the constants.
If the functionsX, (x), T, (t) will be the solutions of equations

T, T -2 Xn(®_ ;2 (33)
T Th® " Xp0 "

then these functions will fulfill the equation (3Mhe equations (33) can be writ-
ten in the form

Ta () +Ta®) +A 5 Ta() =0 (34)
and
Xn(X)+A2 X,(x)=0 (35)
The solution of equation (35) is following
Xn (X) = A, cosAyx + B, sinApx (36)
Taking into account the boundary conditions (2) bag
X,0=A=0, X ,@=B,sind,=0- A,=nm (37)
this means
Xn(X) = B, sinn7rx (38)
The equation (34) can be written in the form
Ty () + T (t) +n22 T (t) =0 (39)
Because
1-4n%m% <0 (40)

so the solution of equation (39) is the following
T ()= exp(—lz) (C, cosay t + Dy, sina t) (41)

where

lan2,2 —
a :4n—”21 (42)

n 2

Finally, the function (27) has the form



Application of the boundary element method usiragritization in time for numerical solution ... 89

U(xt)= exp(—lz) Y sinnmx(E, cosa,t +F, sina,t) (43)

n=1

where:E, =B, C,, F,=B,D, are the constants.
Now, the initial conditions (3) should be takeroimaccount, this means

U(x,00=Y E,sinnmx =U, (44)
n=1
and
U (x,t) =3 (—lEn’fUn F,)sinnrx =0 (45)
at t=0 n=1 2

For the arguments] [-1, 1] functionU (x, 0) can be extended on the uneven
function

0, x=-1
~U,, x0(-1,0)
U(x0)=:0, x=0 (46)
U, x0O(01)
0, x=1

Taking into account the expansion of this functioto a Fourier series one
obtains

2U,
nrit

[1-(-1"] (47)

1
E,=2U, fsinnnxdxz
0

From condition (45) results that the zero functierexpanded into the Fourier
series. In such case

—%En+an F =0 (48)

this means

o [1- (1] (49)

F=m
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Finally, one obtains

U (x,1) =U—;exp(—£2) Z% sinnTx (2cosa, t +ai sina,t)  (50)

n=1 n

4. Results of computations

Application of the boundary element method usingcidtization in time re-
quires a proper assumption of time sfdgpAdditionally, the integral (20) should
be determined with sufficient accuracy. To calaldis integral the domain [0, 1]
is divided into equaM sub-domains and six-point Gauss integral formsilased.
All computations have been done under the assumptat U, = 1

In Figure 1 the curves at the poirt= 0.5 for different approximations of time
derivative (c.f. formulas (5), (6), (7)) are shownis visible that the results are
practically the same. The calculations have beemdor At = 002,M = 100 and

for these values very good agreement with analyolution has been observed.
Figure 2 illustrates the distribution of functibhfor times 1, 2, 3, 4 and 5 s.
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Fig. 1. Course of functiob) atx= 0.5

It should be pointed out that the influence of tistepAt on the results of com-
putations is big. In Figure 3 the curves at thenpok= 025 and for
At =001 002 005 (M =100) are shown.
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Summing up, the BEM using discretization in timensiitutes the effective
numerical method of hyperbolic equation solution ibuequires a proper choice
of time stepAt and number of internal celld.
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Fig. 2. Distribution of functiortty
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Fig. 3. Curves for differemt at the poink= 0.25
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